

Java
 Starting Out with

Java
From Control Structures

through Objects

TM

This page intentionally left blank

Java

S i x t h E d i t i O n

Tony Gaddis
Haywood Community College

 Starting Out with

Java
From Control Structures

through Objects

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

TM

Editor in Chief: Marcia Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Carole Snyder
Production Project Manager: Camille Trentacoste
Procurement Manager: Mary Fischer

Senior Specialist, Program Planning and Support:
 Maura Zaldivar-Garcia
Cover Designer: Joyce Wells
Cover Image: Binh Thanh Bui/Shutterstock
Manager, Rights Management: Rachel Youdelman
Associate Project Manager, Rights Management:
 William J. Opaluch
Full-Service Project Management: Kailash Jadli,
 Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Bindery: Edwards Brothers
Cover printer: Phoenix Color/Hagerstown

Copyright © 2016 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America.
This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their
respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or
promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson
Education, Inc. or its affiliates, authors, licensees or distributors.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability. Whether
express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft and/or
its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract. Negligence or other tortious action, arising out of or in
connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors changes are
periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time partial screen shots may be viewed in full within
the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony, author.
 Starting out with Java. From control structures through objects/Tony Gaddis,
Haywood Community College.—6th edition.
 pages cm
 ISBN-13: 978-0-13-395705-1
 ISBN-10: 0-13-395705-5
 1. Java (Computer program language) 2. Data structures (Computer science)
3. Object-oriented programming (Computer science) I. Title.
 QA76.73.J38G333 2016
 005.13'3—dc23
 2014049102

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-395705-1
ISBN-10: 0-13-395705-5

http://www.pearsoned.com/permissions

v

Contents in Brief

 Preface xxiii

Chapter 1 Introduction to Computers and Java 1

Chapter 2 Java Fundamentals 27

Chapter 3 Decision Structures 111

Chapter 4 Loops and Files 189

Chapter 5 Methods 269

Chapter 6 A First Look at Classes 319

Chapter 7 Arrays and the ArrayList Class 405

Chapter 8 A Second Look at Classes and Objects 495

Chapter 9 Text Processing and More about Wrapper Classes 559

Chapter 10 Inheritance 613

Chapter 11 Exceptions and Advanced File I/O 703

Chapter 12 A First Look at GUI Applications 761

Chapter 13 Advanced GUI Applications 849

Chapter 14 Applets and More 917

Chapter 15 Creating GUI Applications with JavaFX and Scene Builder 991

Chapter 16 Recursion 1047

Chapter 17 Databases 1075

 Index 1171

 Appendixes A–M Companion Website

 Case Studies 1–7 Companion Website

This page intentionally left blank

Preface xxiii

Chapter 1 Introduction to Computers and Java 1
1.1 Introduction. 1
1.2 Why Program? . 1
1.3 Computer Systems: Hardware and Software. 2

Hardware .2
Software .5

1.4 Programming Languages . 6
What Is a Program? . .6
A History of Java .8
Java Applications and Applets .8

1.5 What Is a Program Made Of? . 9
Language Elements .9
Lines and Statements .11
Variables .11
The Compiler and the Java Virtual Machine .12
Java Software Editions .14
Compiling and Running a Java Program . .14

1.6 The Programming Process . 16
Software Engineering . .18

1.7 Object-Oriented Programming. 19
Review Questions and Exercises 21
Programming Challenge 25

Chapter 2 Java Fundamentals 27
2.1 The Parts of a Java Program . 27
2.2 The print and println Methods, and the Java API 33
2.3 Variables and Literals . 39

Displaying Multiple Items with the + Operator .40
Be Careful with Quotation Marks .41
More about Literals .42

Contents

Identifiers .42
Class Names .44

2.4 Primitive Data Types. 44
The Integer Data Types .46
Floating-Point Data Types .47
The boolean Data Type .50
The char Data Type . .50
Variable Assignment and Initialization .52
Variables Hold Only One Value at a Time .53

2.5 Arithmetic Operators . 54
Integer Division .57
Operator Precedence .57
Grouping with Parentheses .59
The Math Class . .62

2.6 Combined Assignment Operators . 63
2.7 Conversion between Primitive Data Types . 65

Mixed Integer Operations .67
Other Mixed Mathematical Expressions .68

2.8 Creating Named Constants with final. 69
2.9 The String Class . 70

Objects Are Created from Classes .70
The String Class .71
Primitive Type Variables and Class Type Variables71
Creating a String Object .72

2.10 Scope. 75
2.11 Comments . 77
2.12 Programming Style . 82
2.13 Reading Keyboard Input. 84

Reading a Character .88
Mixing Calls to nextLine with Calls to Other Scanner Methods 88

2.14 Dialog Boxes . 92
Displaying Message Dialogs . .92
Displaying Input Dialogs .93
An Example Program .93
Converting String Input to Numbers .95

2.15 Common Errors to Avoid . 99
Review Questions and Exercises 100
Programming Challenges 105

Chapter 3 Decision Structures 111
3.1 The if Statement . 111

Using Relational Operators to Form Conditions113
Putting It All Together .114
Programming Style and the if Statement .118
Be Careful with Semicolons .119

viii Contents

 Contents ix

Having Multiple Conditionally Executed Statements 119
Flags .120
Comparing Characters . .120

3.2 The if-else Statement. 121
3.3 Nested if Statements . 124
3.4 The if-else-if Statement . 131
3.5 Logical Operators. 137

The Precedence of Logical Operators .143
Checking Numeric Ranges with Logical Operators 144

3.6 Comparing String Objects . 145
Ignoring Case in String Comparisons .150

3.7 More about Variable Declaration and Scope. 151
3.8 The Conditional Operator (Optional) . 152
3.9 The switch Statement . 154
3.10 Displaying Formatted Output with System.out.printf

and String.format. 164
Format Specifier Syntax .167
Precision .167
Specifying a Minimum Field Width .168
Flags .170
Formatting String Arguments .174
The String.format Method . .175

3.11 Common Errors to Avoid . 178
Review Questions and Exercises 179
Programming Challenges 184

Chapter 4 Loops and Files 189
4.1 The Increment and Decrement Operators . 189

The Difference between Postfix and Prefix Modes 192
4.2 The while Loop . 193

The while Loop Is a Pretest Loop .196
Infinite Loops . .196
Don’t Forget the Braces with a Block of Statements 197
Programming Style and the while Loop .198

4.3 Using the while Loop for Input Validation . 200
4.4 The do-while Loop . 204
4.5 The for Loop. 207

The for Loop Is a Pretest Loop . .210
Avoid Modifying the Control Variable in the Body
of the for Loop .211
Other Forms of the Update Expression .211
Declaring a Variable in the for Loop’s Initialization Expression 211
Creating a User Controlled for Loop .212
Using Multiple Statements in the Initialization
and Update Expressions . .213

x Contents

4.6 Running Totals and Sentinel Values. 216
Using a Sentinel Value .219

4.7 Nested Loops . 221
4.8 The break and continue Statements (Optional) 229
4.9 Deciding Which Loop to Use . 229
4.10 Introduction to File Input and Output . 230

Using the PrintWriter Class to Write Data to a File 230
Appending Data to a File .236
Specifying the File Location .237
Reading Data from a File .237
Reading Lines from a File with the nextLine Method 238
Adding a throws Clause to the Method Header 241
Checking for a File’s Existence .245

4.11 Generating Random Numbers with the Random Class. 249
4.12 Common Errors to Avoid . 255
Review Questions and Exercises 256
Programming Challenges 262

Chapter 5 Methods 269
5.1 Introduction to Methods . 269

void Methods and Value-Returning Methods .270
Defining a void Method .271
Calling a Method . .272
Hierarchical Method Calls .277
Using Documentation Comments with Methods278

5.2 Passing Arguments to a Method. 279
Argument and Parameter Data Type Compatibility281
Parameter Variable Scope .282
Passing Multiple Arguments . .282
Arguments Are Passed by Value .284
Passing Object References to a Method .285
Using the @param Tag in Documentation Comments288

5.3 More about Local Variables . 291
Local Variable Lifetime .292
Initializing Local Variables with Parameter Values292

5.4 Returning a Value from a Method. 293
Defining a Value-Returning Method .293
Calling a Value-Returning Method .295
Using the @return Tag in Documentation Comments 296
Returning a boolean Value . .300
Returning a Reference to an Object .300

5.5 Problem Solving with Methods . 302
Calling Methods That Throw Exceptions . .306

5.6 Common Errors to Avoid . 306
Review Questions and Exercises 307
Programming Challenges 312

 Contents xi

Chapter 6 A First Look at Classes 319
6.1 Objects and Classes . 319

Classes: Where Objects Come From .320
Classes in the Java API .321
Primitive Variables vs . Objects .323

6.2 Writing a Simple Class, Step by Step . 326
Accessor and Mutator Methods .340
The Importance of Data Hiding .340
Avoiding Stale Data . .341
Showing Access Specification in UML Diagrams 341
Data Type and Parameter Notation in UML Diagrams 341
Layout of Class Members .342

6.3 Instance Fields and Methods . 343
6.4 Constructors . 348

Showing Constructors in a UML Diagram . .350
Uninitialized Local Reference Variables .350
The Default Constructor . .350
Writing Your Own No-Arg Constructor .351
The String Class Constructor .352

6.5 Passing Objects as Arguments . 360
6.6 Overloading Methods and Constructors. 372

The BankAccount Class .374
Overloaded Methods Make Classes More Useful 380

6.7 Scope of Instance Fields . 380
Shadowing .381

6.8 Packages and import Statements . 382
Explicit and Wildcard import Statements .382
The java.lang Package . .383
Other API Packages .383

6.9 Focus on Object-Oriented Design: Finding the Classes
and Their Responsibilities . 384
Finding the Classes .384
Identifying a Class’s Responsibilities .387
This Is Only the Beginning .390

6.10 Common Errors to Avoid . 390
Review Questions and Exercises 391
Programming Challenges 396

Chapter 7 Arrays and the ArrayList Class 405
7.1 Introduction to Arrays . 405

Accessing Array Elements .407
Inputting and Outputting Array Contents . .408
Java Performs Bounds Checking .411
Watch Out for Off-by-One Errors .412
Array Initialization . .413
Alternate Array Declaration Notation .414

xii Contents

7.2 Processing Array Elements . 415
Array Length .417
The Enhanced for Loop .418
Letting the User Specify an Array’s Size .419
Reassigning Array Reference Variables .421
Copying Arrays .422

7.3 Passing Arrays as Arguments to Methods . 424
7.4 Some Useful Array Algorithms and Operations 428

Comparing Arrays .428
Summing the Values in a Numeric Array .429
Getting the Average of the Values in a Numeric Array430
Finding the Highest and Lowest Values in a Numeric Array 430
The SalesData Class .431
Partially Filled Arrays .439
Working with Arrays and Files .440

7.5 Returning Arrays from Methods . 441
7.6 String Arrays . 443

Calling String Methods from an Array Element 445
7.7 Arrays of Objects . 446
7.8 The Sequential Search Algorithm . 449
7.9 Two-Dimensional Arrays. 452

Initializing a Two-Dimensional Array .456
The length Field in a Two-Dimensional Array . .457
Displaying All the Elements of a Two-Dimensional Array 459
Summing All the Elements of a Two-Dimensional Array 459
Summing the Rows of a Two-Dimensional Array460
Summing the Columns of a Two-Dimensional Array 460
Passing Two-Dimensional Arrays to Methods .461
Ragged Arrays .463

7.10 Arrays with Three or More Dimensions. 464
7.11 The Selection Sort and the Binary Search Algorithms 465

The Selection Sort Algorithm .465
The Binary Search Algorithm .468

7.12 Command-Line Arguments and Variable-Length Argument Lists . . . 470
Command-Line Arguments .471
Variable-Length Argument Lists .472

7.13 The ArrayList Class . 474
Creating and Using an ArrayList Object . .475
Using the Enhanced for Loop with an ArrayList 476
The ArrayList Class’s toString method .477
Removing an Item from an ArrayList .478
Inserting an Item . .479
Replacing an Item .480
Capacity .481
Using the Diamond Operator for Type Inference (Java 7) 482

7.14 Common Errors to Avoid . 483

 Contents xiii

Review Questions and Exercises 483
Programming Challenges 488

Chapter 8 A Second Look at Classes and Objects 495
8.1 Static Class Members . 495

A Quick Review of Instance Fields and Instance Methods 495
Static Members .496
Static Fields .496
Static Methods .499

8.2 Passing Objects as Arguments to Methods . 502
8.3 Returning Objects from Methods . 505
8.4 The toString Method. 507
8.5 Writing an equals Method . 511
8.6 Methods That Copy Objects. 514

Copy Constructors .516
8.7 Aggregation. 517

Aggregation in UML Diagrams . .525
Security Issues with Aggregate Classes .525
Avoid Using null References .527

8.8 The this Reference Variable. 530
Using this to Overcome Shadowing .531
Using this to Call an Overloaded Constructor
from Another Constructor .532

8.9 Enumerated Types . 533
Enumerated Types Are Specialized Classes .534
Switching On an Enumerated Type .540

8.10 Garbage Collection . 542
The finalize Method .544

8.11 Focus on Object-Oriented Design: Class Collaboration. 544
Determining Class Collaborations with CRC Cards 547

8.12 Common Errors to Avoid . 548
Review Questions and Exercises 549
Programming Challenges 553

Chapter 9 Text Processing and More
about Wrapper Classes 559
9.1 Introduction to Wrapper Classes. 559
9.2 Character Testing and Conversion with the Character Class 560

Character Case Conversion .565
9.3 More String Methods . 568

Searching for Substrings .568
Extracting Substrings .575
Methods That Return a Modified String .579
The Static valueOf Methods .580

xiv Contents

9.4 The StringBuilder Class . 582
The StringBuilder Constructors .583
Other StringBuilder Methods .584
The toString Method .587

9.5 Tokenizing Strings . 593
9.6 Wrapper Classes for the Numeric Data Types 597

The Static toString Methods . .598
The toBinaryString, toHexString, and toOctalString Methods598
The MIN_VALUE and MAX_VALUE Constants . .598
Autoboxing and Unboxing .598

9.7 Focus on Problem Solving: The TestScoreReader Class 600
9.8 Common Errors to Avoid . 604
Review Questions and Exercises 605
Programming Challenges 608

Chapter 10 Inheritance 613
10.1 What Is Inheritance?. 613

Generalization and Specialization .613
Inheritance and the “Is a” Relationship .614
Inheritance in UML Diagrams .622
The Superclass’s Constructor .623
Inheritance Does Not Work in Reverse .625

10.2 Calling the Superclass Constructor . 626
When the Superclass Has No Default
or No-Arg Constructors .632
Summary of Constructor Issues in Inheritance .633

10.3 Overriding Superclass Methods . 634
Overloading versus Overriding .639
Preventing a Method from Being Overridden .642

10.4 Protected Members . 643
Package Access .648

10.5 Chains of Inheritance . 649
Class Hierarchies .655

10.6 The Object Class . 655
10.7 Polymorphism . 657

Polymorphism and Dynamic Binding .658
The “Is-a” Relationship Does Not Work in Reverse 660
The instanceof Operator .661

10.8 Abstract Classes and Abstract Methods . 662
Abstract Classes in UML . .668

10.9 Interfaces . 669
An Interface is a Contract .671
Fields in Interfaces .675
Implementing Multiple Interfaces .675
Interfaces in UML .675

 Contents xv

Default Methods .676
Polymorphism and Interfaces .678

10.10 Anonymous Inner Classes. 683
10.11 Functional Interfaces and Lambda Expressions 686
10.12 Common Errors to Avoid . 691
Review Questions and Exercises 692
Programming Challenges 698

Chapter 11 Exceptions and Advanced File I/O 703
11.1 Handling Exceptions . 703

Exception Classes . .704
Handling an Exception . .705
Retrieving the Default Error Message .709
Polymorphic References to Exceptions . .712
Using Multiple catch Clauses to Handle Multiple Exceptions 712
The finally Clause .720
The Stack Trace .722
Handling Multiple Exceptions with One catch Clause (Java 7) 723
When an Exception Is Not Caught .725
Checked and Unchecked Exceptions .726

11.2 Throwing Exceptions . 727
Creating Your Own Exception Classes . .730
Using the @exception Tag in Documentation Comments 733

11.3 Advanced Topics: Binary Files, Random Access Files,
and Object Serialization . 734
Binary Files .734
Random Access Files .741
Object Serialization .746
Serializing Aggregate Objects . .750

11.4 Common Errors to Avoid . 751
Review Questions and Exercises 751
Programming Challenges 757

Chapter 12 A First Look at GUI Applications 761
12.1 Introduction. 761

The JFC, AWT, and Swing . .762
Event-Driven Programming .764
The javax.swing and java.awt Packages .764

12.2 Creating Windows . 764
Using Inheritance to Extend the JFrame Class .767
Equipping GUI Classes with a main Method .769
Adding Components to a Window .771
Handling Events with Action Listeners .777

xvi Contents

Writing an Event Listener for the KiloConverter Class 779
Background and Foreground Colors .784
The ActionEvent Object .788

12.3 Layout Managers . 793
Adding a Layout Manager to a Container .794
The FlowLayout Manager .794
The BorderLayout Manager .797
The GridLayout Manager .804

12.4 Radio Buttons and Check Boxes . 810
Radio Buttons .810
Check Boxes .816

12.5 Borders . 821
12.6 Focus on Problem Solving: Extending Classes from JPanel 824

The Brandi’s Bagel House Application . .824
The GreetingPanel Class . .825
The BagelPanel Class .826
The ToppingPanel Class .828
The CoffeePanel Class .830
Putting It All Together .832

12.7 Splash Screens . 836
12.8 Using Console Output to Debug a GUI Application 837
12.9 Common Errors to Avoid . 842
Review Questions and Exercises 842
Programming Challenges 845

Chapter 13 Advanced GUI Applications 849
13.1 The Swing and AWT Class Hierarchy . 849
13.2 Read-Only Text Fields . 850
13.3 Lists . 852

Selection Modes .852
Responding to List Events . .853
Retrieving the Selected Item .854
Placing a Border around a List .858
Adding a Scroll Bar to a List .858
Adding Items to an Existing JList Component .863
Multiple Selection Lists . .863

13.4 Combo Boxes. 868
Retrieving the Selected Item .869

13.5 Displaying Images in Labels and Buttons . 874
13.6 Mnemonics and Tool Tips . 880

Mnemonics .880
Tool Tips .882

13.7 File Choosers and Color Choosers . 882
File Choosers .883
Color Choosers .885

 Contents xvii

13.8 Menus . 886
13.9 More about Text Components: Text Areas and Fonts 895

Text Areas .895
Fonts . .898

13.10 Sliders . 899
13.11 Look and Feel. 904
13.12 Common Errors to Avoid . 906
Review Questions and Exercises 907
Programming Challenges 912

Chapter 14 Applets and More 917
14.1 Introduction to Applets . 917
14.2 A Brief Introduction to HTML . 919

Hypertext .919
Markup Language .920
Document Structure Tags . .920
Text Formatting Tags .922
Creating Breaks in Text .924
Inserting Links .927

14.3 Creating Applets with Swing . 928
Running an Applet . .930
Handling Events in an Applet .932

14.4 Using AWT for Portability . 937
14.5 Drawing Shapes . 942

The XY Coordinate System . .942
Graphics Objects .942
The repaint Method .956
Drawing on Panels .957

14.6 Handling Mouse Events . 963
Handling Mouse Events .963

14.7 Timer Objects. 973
14.8 Playing Audio. 977

Using an AudioClip Object .978
Playing Audio in an Application .981

14.9 Common Errors to Avoid . 982
Review Questions and Exercises 982
Programming Challenges 988

Chapter 15 Creating GUI Applications with JavaFX
and Scene Builder 991
15.1 Introduction. 991

Event-Driven Programming .993
15.2 Scene Graphs. 993

xviii Contents

15.3 Using Scene Builder to Create JavaFX Applications 995
Starting Scene Builder .996
The Scene Builder Main Window .997

15.4 Writing the Application Code . 1009
The Main Application Class .1010
The Controller Class . .1012
Using the Sample Controller Skeleton . .1017
Summary of Creating a JavaFX Application .1018

15.5 RadioButtons and CheckBoxes . 1019
RadioButtons . .1019
Determining in Code Whether a RadioButton Is Selected1021
Responding to RadioButton Events .1024
CheckBoxes .1027
Determining in Code Whether a CheckBox Is Selected1028
Responding to CheckBox Events .1030

15.6 Displaying Images . 1033
Displaying an Image with Code .1034

15.7 Common Errors to Avoid . 1038
Review Questions and Exercises 1038
Programming Challenges 1042

Chapter 16 Recursion 1047
16.1 Introduction to Recursion. 1047
16.2 Solving Problems with Recursion . 1050

Direct and Indirect Recursion .1054
16.3 Examples of Recursive Methods . 1055

Summing a Range of Array Elements with Recursion1055
Drawing Concentric Circles .1056
The Fibonacci Series . .1058
Finding the Greatest Common Divisor .1060

16.4 A Recursive Binary Search Method . 1061
16.5 The Towers of Hanoi . 1064
16.6 Common Errors to Avoid . 1069
Review Questions and Exercises 1069
Programming Challenges 1072

Chapter 17 Databases 1075
17.1 Introduction to Database Management Systems 1075

JDBC .1076
SQL . .1077
Using a DBMS .1077
Java DB . .1078
Creating the CoffeeDB Database .1078

 Contents xix

Connecting to the CoffeeDB Database .1078
Connecting to a Password-Protected Database1080

17.2 Tables, Rows, and Columns . 1081
Column Data Types .1083
Primary Keys .1083

17.3 Introduction to the SQL SELECT Statement 1084
Passing an SQL Statement to the DBMS . .1086
Specifying Search Criteria with the WHERE Clause 1096
Sorting the Results of a SELECT Query .1102
Mathematical Functions .1103

17.4 Inserting Rows . 1106
Inserting Rows with JDBC . .1108

17.5 Updating and Deleting Existing Rows. 1110
Updating Rows with JDBC .1111
Deleting Rows with the DELETE Statement .1115
Deleting Rows with JDBC .1115

17.6 Creating and Deleting Tables . 1119
Removing a Table with the DROP TABLE Statement 1122

17.7 Creating a New Database with JDBC . 1122
17.8 Scrollable Result Sets . 1124
17.9 Result Set Metadata . 1125
17.10 Displaying Query Results in a JTable . 1129
17.11 Relational Data. 1139

Joining Data from Multiple Tables .1142
An Order Entry System . .1143

17.12 Advanced Topics . 1161
Transactions .1161
Stored Procedures .1162

17.13 Common Errors to Avoid . 1163
Review Questions and Exercises 1163
Programming Challenges 1168

Index 1171

Companion Website:

Appendix A Working with Records and Random Access Files
Appendix B The ASCII/Unicode Characters
Appendix C Operator Precedence and Associativity
Appendix D Java Key Words
Appendix E Installing the JDK and JDK Documentation
Appendix F Using the javadoc Utility
Appendix G More about the Math Class
Appendix H Packages
Appendix I More about JOptionPane Dialog Boxes
Appendix J Answers to Checkpoints
Appendix K Answers to Odd-Numbered Review Questions

xx Contents

Appendix L Getting Started with Alice
Appendix M Configuring JavaDB
Case Study 1 Calculating Sales Commission
Case Study 2 The Amortization Class
Case Study 3 The PinTester Class
Case Study 4 Parallel Arrays
Case Study 5 The FeetInches Class
Case Study 6 The SerialNumber Class
Case Study 7 A Simple Text Editor Application

Chapter 1 Compiling and Running a Java Program, p. 14
 Using an IDE, p. 15
 Your First Java Program, p. 25

Chapter 2 Displaying Console Output, p. 33
 Declaring Variables, p. 39
 Simple Math Expressions, p. 55
 The Miles-per-Gallon Problem, p. 106

Chapter 3 The if Statement, p. 111
 The if-else Statement, p. 121
 The if-else-if Statement, p. 132
 The Time Calculator Problem, p. 185

Chapter 4 The while Loop, p. 193
 The Pennies for Pay Problem, p. 263

Chapter 5 Passing Arguments to a Method, p. 279
 Returning a Value from a Method, p. 293
 The Retail Price Calculator Problem, p. 312

Chapter 6 Writing Classes and Creating Objects, p. 327
 Initializing an Object with a Constructor, p. 348
 The Personal Information Class Problem, p. 397

Chapter 7 Accessing Array Elements in a Loop, p. 409
 Passing an Array to a Method, p. 424
 The Charge Account Validation Problem, p. 489

Chapter 8 Returning Objects from Methods, p. 505
 Aggregation, p. 517
 The BankAccount, Class Copy Constructor Problem, p. 554

Chapter 9 The Sentence Capitalizer Problem, p. 608

Chapter 10 Inheritance, p. 613
 Polymorphism, p. 657
 The Employee and Productionworker Classes Problem, p. 698

Chapter 11 Handling Exceptions, p. 703
 The Exception Project Problem, p. 759

LOCATIOn OF VIDEOnOTES In ThE TEXT
VideoNote

(continued on the next page)

Chapter 12 Creating a Simple GUI Application, p. 764
 Handling Events, p. 777
 The Monthly Sales Tax Problem, p. 846

Chapter 13 The JList Component, p. 852
 The JComboBox Component, p. 868
 The Image Viewer Problem, p. 912

Chapter 14 Creating an Applet, p. 929
 The House Applet Problem, p. 988

Chapter 15 Using Scene Builder to Create the Kilometer Converter GUI, p. 998
 Learning More About the Main Application Class, p. 1010
 Writing the Main Application Class For the Kilometer Converter GUI, p. 1011
 Learning More About the Controller Class, p. 1013
 Registering the Controller Class with the Application’s GUI, p. 1014
 JavaFX RadioButtons, p. 1019
 JavaFX CheckBoxes, p. 1027
 The Retail Price Calculator Problem, p. 1042

Chapter 16 Reducing a Problem with Recursion, p. 1051
 The Recursive Power Problem, p. 1073

Chapter 17 Displaying Query Results in a JTable, p. 1129
 The Customer Inserter Problem, p. 1168

VideoNote

LOCATIOn OF VIDEOnOTES In ThE TEXT (continued)

Preface

Welcome to Starting Out with Java: From Control Structures through Objects,
Sixth Edition. This book is intended for a one-semester or a two-quarter CS1

course. Although it is written for students with no prior programming background, even
experienced students will benefit from its depth of detail.

Control Structures First, Then Objects
This text first introduces the student to the fundamentals of data types, input and output,
control structures, methods, and objects created from standard library classes.

Next, the student learns to use arrays of primitive types and reference types. After this, the
student progresses through more advanced topics, such as inheritance, polymorphism, the
creation and management of packages, GUI applications, recursion, and database program-
ming. From early in the book, applications are documented with javadoc comments. As the
student progresses through the text, new javadoc tags are covered and demonstrated.

As with all the books in the Starting Out With . . . series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that are
concise and practical.

Changes in This Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the previous
edition. Many improvements have been made, which are summarized here:

·	 A New Chapter on JavaFX: New to this edition is Chapter 15 Creating GUI
Applications with JavaFX and Scene Builder. JavaFX is the next generation toolkit
for creating GUIs and graphical applications in Java, and is bundled with Java 8.
This new chapter introduces the student to the JavaFX library, and shows how to use
Scene Builder (a free download from Oracle) to visually design GUIs. The chapter is
written in such a way that it is independent from the existing chapters on Swing and
AWT. The instructor can choose to skip the Swing and AWT chapters and go straight
to JavaFX, or cover all of the GUI chapters.

xxiii

·	 String.format Is Used Instead of DecimalFormat: In previous editions, the DecimalFormat
class was used to format strings for GUI output. In this edition, the String.format
method is used instead. With String.format, the student can use the same format
specifiers and flags that were learned with the System.out.printf method.

·	 StringTokenizer Is No Longer Used: In previous editions, the StringTokenizer class
was introduced as a way to tokenize strings. In this edition, all string tokenizing is
done with the String.split method.

·	 Introduction of @Override annotation: Chapter 10 now introduces the use of
@Override annotation, and explains how it can prevent subtle errors.

·	 A New Section on Anonymous Inner Classes: Chapter 10 now has a new section that
introduces anonymous inner classes.

·	 The Introduction to Interfaces Has Been Improved: The introductory material on
interfaces in Chapter 10 has been revised for greater clarity.

·	 Default Methods: In this edition, Chapter 10 provides new material on default meth-
ods in interfaces, a new feature in Java 8.

·	 Functional Interfaces and Lambda Expressions: Java 8 introduces functional inter-
faces and lambda expressions, and in this edition, Chapter 10 has a new section on
these topics. The new material gives a detailed, stepped-out explanation of lambda
expressions, and discusses how they can be used to instantiate objects of anonymous
classes that implement functional interfaces.

·	 New Programming Problems: Several new motivational programming problems have
been added to many of the chapters.

Organization of the Text
The text teaches Java step-by-step. Each chapter covers a major set of topics and builds
knowledge as students progress through the book. Although the chapters can be easily
taught in their existing sequence, there is some flexibility. Figure P-1 shows chapter
 dependencies. Each box represents a chapter or a group of chapters. An arrow points from
a chapter to the chapter that must be previously covered.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Java. This chapter provides an introduc-
tion to the field of computer science and covers the fundamentals of hardware, software,
and programming languages. The elements of a program, such as key words, variables,
operators, and punctuation, are discussed by examining a simple program. An overview of
entering source code, compiling, and executing a program is presented. A brief history of
Java is also given.

xxiv Preface

 Preface xxv

Chapter 2: Java Fundamentals. This chapter gets students started in Java by introduc-
ing data types, identifiers, variable declarations, constants, comments, program output, and
simple arithmetic operations. The conventions of programming style are also introduced.
Students learn to read console input with the Scanner class and with dialog boxes using
JOptionPane.

Chapters 1–6 (Cover in Order)
Java Fundamentals

Depend On

Chapter 11
Exceptions and

Advanced File I/O

Chapter 14
Applets and More

*Some examples in
Chapter 17 use GUIs,
which are introduced

in Chapter 12.

Chapter 13
Advanced GUI
Applications

Chapter 9
Text Processing and

Wrapper Classes

Chapter 10
Inheritance

Chapter 16
Recursion

Chapter 12
A First Look at GUI

Applications

Chapter 7
Arrays and the

ArrayList Class

Chapter 8
A Second Look at

Classes and Objects

Depends On Depends On

Depends On

Depends OnDepends On

*Some examples in
Chapter 16 are applets,
which are introduced

in Chapter 14.

Chapter 17
Databases

Depends On

Chapter 15
Creating GUI Applications

with JavaFX and Scene
Builder

Depends On

Figure P-1 Chapter dependencies

xxvi Preface

Chapter 3: Decision Structures. In this chapter students explore relational operators
and relational expressions and are shown how to control the flow of a program with the if,
if-else, and if-else-if statements. Nested if statements, logical operators, the conditional
operator, and the switch statement are also covered. The chapter discusses how to compare
String objects with the equals, compareTo, equalsIgnoreCase, and compareToIgnoreCase
methods. Formatting numeric output with the System.out.printf method and the
String.format method is discussed.

Chapter 4: Loops and Files. This chapter covers Java’s repetition control structures. The
while loop, do-while loop, and for loop are taught, along with common uses for these
devices. Counters, accumulators, running totals, sentinels, and other application-related
topics are discussed. Simple file operations for reading and writing text files are included.

Chapter 5: Methods. In this chapter students learn how to write void methods, value-
returning methods, and methods that do and do not accept arguments. The concept of
functional decomposition is discussed.

Chapter 6: A First Look at Classes. This chapter introduces students to designing
classes for the purpose of instantiating objects. Students learn about class fields and meth-
ods, and UML diagrams are introduced as a design tool. Then constructors and overloading
are discussed. A BankAccount class is presented as a case study, and a section on object-
oriented design is included. This section leads the students through the process of identify-
ing classes and their responsibilities within a problem domain. There is also a section that
briefly explains packages and the import statement.

Chapter 7: Arrays and the ArrayList Class. In this chapter students learn to create
and work with single and multi-dimensional arrays. Numerous array-processing tech-
niques are demonstrated, such as summing the elements in an array, finding the highest and
lowest values, and sequentially searching an array. Other topics, including ragged arrays
and variable-length arguments (varargs), are also discussed. The ArrayList class is intro-
duced, and Java’s generic types are briefly discussed and demonstrated.

Chapter 8: A Second Look at Classes and Objects. This chapter shows students how
to write classes with added capabilities. Static methods and fields, interaction between
objects, passing objects as arguments, and returning objects from methods are discussed.
Aggregation and the “has a” relationship is covered, as well as enumerated types. A section
on object-oriented design shows how to use CRC cards to determine the collaborations
among classes.

Chapter 9: Text Processing and More about Wrapper Classes. This chapter dis-
cusses the numeric and Character wrapper classes. Methods for converting numbers to
strings, testing the case of characters, and converting the case of characters are covered.
Autoboxing and unboxing are also discussed. More String class methods are covered,
including using the split method to tokenize strings. The chapter also covers the
StringBuilder and StringTokenizer classes.

 Preface xxvii

Chapter 10: Inheritance. The study of classes continues in this chapter with the subjects
of inheritance and polymorphism. The topics covered include superclasses, subclasses, how
constructors work in inheritance, method overriding, polymorphism and dynamic binding,
protected and package access, class hierarchies, abstract classes, abstract methods, anony-
mous inner classes, interfaces, and lambda expressions.

Chapter 11: Exceptions and Advanced File I/O. In this chapter students learn to
develop enhanced error trapping techniques using exceptions. Handling exceptions is cov-
ered, as well as developing and throwing custom exceptions. The chapter discusses advanced
techniques for working with sequential access, random access, text, and binary files.

Chapter 12: A First Look at GUI Applications. This chapter presents the basics of
developing GUI applications with Swing. Fundamental Swing components and the basic
concepts of event-driven programming are covered.

Chapter 13: Advanced GUI Applications. This chapter continues the study of GUI
application development with Swing. More advanced components, menu systems, and
look-and-feel are covered.

Chapter 14: Applets and More. In this chapter students apply their knowledge of GUI
development to the creation of applets. In addition to using Swing applet classes, AWT
classes are discussed for portability. Drawing simple graphical shapes is discussed.

Chapter 15: Creating GUI Applications with JavaFX and Scene Builder. This
chapter introduces JavaFX, which is the next generation library for creating graphical
applications in Java. This chapter also shows how to use Scene Builder, a free screen designer
from Oracle, to visually design GUIs. This chapter is written in such a way that it is inde-
pendent from the existing chapters on Swing and AWT. You can choose to skip chapters 12,
13, and 14, and go straight to Chapter 15, or cover all of the GUI chapters.

Chapter 16: Recursion. This chapter presents recursion as a problem-solving technique.
Numerous examples of recursive methods are demonstrated.

Chapter 17: Databases. This chapter introduces the student to database programming.
The basic concepts of database management systems and SQL are first introduced. Then the
student learns to use JDBC to write database applications in Java. Relational data is cov-
ered, and numerous example programs are presented throughout the chapter.

Features of the Text

Concept Statements. Each major section of the text starts with a concept statement that
concisely summarizes the focus of the section.

xxviii Preface

Example Programs. The text has an abundant number of complete and partial example
programs, each designed to highlight the current topic. In most cases the programs are prac-
tical, real-world examples.

Program Output. Each example program is followed by a sample of its output, which
shows students how the program functions.

Checkpoints. Checkpoints, highlighted by the checkmark icon, appear at intervals through-
out each chapter. They are designed to check students’ knowledge soon after learning a new
topic. Answers for all Checkpoint questions are provided in Appendix K, which can be
downloaded from the book’s resource page at www.pearsonhighered.com/cs-resources.

nOTE: Notes appear at several places throughout the text. They are short explanations
of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different program-
ming problems and appear regularly throughout the text.

WARnInG! Warnings caution students about certain Java features, programming tech-
niques, or practices that can lead to malfunctioning programs or lost data.

In the Spotlight. Many of the chapters provide an In the Spotlight
section that presents a programming problem, along with detailed, step-
by-step analysis showing the student how to solve it.

Videonotes. A series of videos, developed specifically for this book, are available at www.
pearsonhighered.com/gaddis. Icons appear throughout the text alerting the student to videos
about specific topics.

Case Studies. Case studies that simulate real-world business applications are intro-
duced throughout the text and are provided on the book’s resource page at www.pearson-
highered.com/gaddis.

Common Errors to Avoid. Each chapter provides a list of common errors and explana-
tions of how to avoid them.

Review Questions and Exercises. Each chapter presents a thorough and diverse set of
review questions and exercises. They include Multiple Choice and True/False, Find the
Error, Algorithm Workbench, and Short Answer.

VideoNote

www.pearsonhighered.com/gaddis
http://www.pearson-highered.com/gaddis
http://www.pearson-highered.com/gaddis
http://www.pearson-highered.com/gaddis
http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/cs-resources

 Preface xxix

Programming Challenges. Each chapter offers a pool of programming challenges
designed to solidify students’ knowledge of topics at hand. In most cases the assignments
present real-world problems to be solved.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items
are available on the Gaddis Series resource page at www.pearsonhighered.com/cs-resources:

•	 The	source	code	for	each	example	program	in	the	book
•	 Access	to	the	book’s	companion	VideoNotes
•	 Appendixes	A–M	(listed	in	the	Contents)
•	 A	collection	of	seven	valuable	Case	Studies	(listed	in	the	Contents)
•	 Links	to	download	the	Java™	Edition	Development	Kit
•	 Links	to	download	numerous	programming	environments	including	jGRASP™,	Eclipse™,	

TextPad™,	NetBeans™,	JCreator,	and	DrJava

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students, who often struggle with the
basic concepts and paradigms of popular high-level programming languages. A self-study
and homework tool, the MyProgrammingLab course consists of hundreds of small practice
exercises organized around the structure of this textbook. For students, the system auto-
matically detects errors in the logic and syntax of their code submissions and offers targeted
hints that enable students to figure out what went wrong—and why. For instructors, a com-
prehensive gradebook tracks correct and incorrect answers and stores the code inputted by
students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the CodeLab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab
in your course, visit www.myprogramminglab.com.

Instructor Resources

The following supplements are available to qualified instructors:

•	 Answers	to	all	of	the	Review	Questions
•	 Solutions	for	the	Programming	Challenges
•	 PowerPoint	Presentation	slides	for	each	chapter
•	 Computerized	Test	Banks
•	 Source	Code
•	 Lab	Manual
•	 Student	Files	for	the	Lab	Manual
•	 Solutions	to	the	Lab	Manual

http://www.myprogramminglab.com
http://www.pearsonhighered.com/cs-resources:

xxx Preface

Visit	the	Pearson	Instructor	Resource	Center	(www.pearsonhighered.com/irc)	or	contact	your	
local Pearson representative for information on how to access these resources.

Acknowledgments
There have been many helping hands in the development and publication of this book.
We would like to thank the following faculty reviewers for their helpful suggestions
and expertise:

Reviewers For This Edition

Carl Stephen Guynes
University of North Texas

Alan G. Jackson
Oakland Community College

Zhen Jiang
West Chester University

Neven Jurkovic
Palo Alto College

Dennis Lang
Kansas State University

Jiang Li
Austin Peay State University

Cheng Luo
Coppin State University

Felix Rodriguez
Naugatuck Valley Community College

Diane Rudolph
John A Logan College

Timothy Urness
Drake University

Zijiang Yang
Western Michigan University

Reviewers of Previous Editions

Ahmad Abuhejleh
University of Wisconsin, River Falls

Colin Archibald
Valencia Community College

Ijaz Awani
Savannah State University

Bill Bane
Tarleton State University

N. Dwight Barnette
Virginia Tech

Asoke Bhattacharyya
Saint Xavier University, Chicago

Marvin Bishop
Manhattan College

Heather Booth
University of Tennessee, Knoxville

David Boyd
Valdosta University

Julius Brandstatter
Golden Gate University

Kim Cannon
Greenville Tech

Jesse Cecil
College of the Siskiyous

James Chegwidden
Tarrant County College

Kay Chen
Bucks County Community College

Brad Chilton
Tarleton State University

Diane Christie
University of Wisconsin, Stout

http://www.pearsonhighered.com/irc

 Preface xxxi

Cara Cocking
Marquette University

Jose Cordova
University of Louisiana, Monroe

Walter C. Daugherity
Texas A & M University

Michael Doherty
University of the Pacific

Jeanne M. Douglas
University of Vermont

Sander Eller
California Polytechnic University,
Pomona

Brooke Estabrook-Fishinghawk
Mesa Community College

Mike Fry
Lebanon Valley College

David Goldschmidt
College of St. Rose

Georgia R. Grant
College of San Mateo

Nancy Harris
James Madison University

Chris Haynes
Indiana University

Ric Heishman
Northern Virginia Community College

Deedee Herrera
Dodge City Community College

Mary Hovik
Lehigh Carbon Community College

Brian Howard
DePauw University

Alan Jackson
Oakland Community College (MI)

Norm Jacobson
University of California, Irvine

Stephen Judd
University of Pennsylvania

Harry Lichtbach
Evergreen Valley College

Michael A. Long
California State University, Chico

Tim Margush
University of Akron

Blayne E. Mayfield
Oklahoma State University

Scott McLeod
Riverside Community College

Dean Mellas
Cerritos College

Georges Merx
San Diego Mesa College

Martin Meyers
California State University, Sacramento

Pati Milligan
Baylor University

Laurie Murphy
Pacific Lutheran University

Steve Newberry
Tarleton State University

Lynne O’Hanlon
Los Angeles Pierce College

Merrill Parker
Chattanooga State Technical
Community College

Bryson R. Payne
North Georgia College and State
University

Rodney Pearson
Mississippi State University

Peter John Polito
Springfield College

Charles Robert Putnam
California State University,
Northridge

Y. B. Reddy
Grambling State University

xxxii Preface

I also want to thank everyone at Pearson for making the Starting Out With . . . series so
successful. I have worked so closely with the team at Pearson that I consider them among
my closest friends. I am extremely fortunate to have Matt Goldstein as my editor, and
Kelsey Loanes as Editorial Assistant. They have guided me through the process of revising
this	book,	as	well	as	many	others.	I	am	also	fortunate	to	have	Demetrius	Hall	and	Bram	Van	
Kempen as Marketing Managers. Their hard work is truly inspiring, and they do a great job
getting my books out to the academic community. The production team, led by Camille
Trentacoste, worked tirelessly to make this book a reality. Thanks to you all!

About the Author
Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks.
He has nearly two decades of experience teaching computer science courses, primarily at
Haywood Community College. Tony is a highly acclaimed instructor who was previously
selected as the North Carolina Community College “Teacher of the Year” and has received
the Teaching Excellence award from the National Institute for Staff and Organizational
Development. The Starting Out With . . . series includes introductory textbooks covering
programming	logic	and	design,	C++,	Java™,	Microsoft®	Visual	Basic®,	Microsoft®	Visual	
C#, Python, Alice, and App Inventor, all published by Pearson.

Elizabeth Riley
Macon State College

Carolyn Schauble
Colorado State University

Bonnie Smith
Fresno City College

Daniel Spiegel
Kutztown University

Caroline St. Clair
North Central College

Karen Stanton
Los Medanos College

Peter van der Goes
Rose State College

Tuan	A	Vo
Mt. San Antonio College

Xiaoying Wang
University of Mississippi

Yu Wu
University of North Texas

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

http://www.myprogramminglab.com

This page intentionally left blank

Java
 Starting Out with

Java
From Control Structures

through Objects

TM

This page intentionally left blank

1

Introduction to
Computers and JavaC

H
A

P
T

E
R

1
Topics

 1.1 Introduction
 1.2 Why Program?
 1.3 Computer Systems: Hardware and

Software

 1.4 Programming Languages
 1.5 What Is a Program Made Of?
 1.6 The Programming Process
 1.7 Object-Oriented Programming

1.1 introduction
This book teaches programming using Java. Java is a powerful language that runs on prac-
tically every type of computer. It can be used to create large applications or small programs
that are part of a Web site. Before plunging right into learning Java, however, this chapter
will review the fundamentals of computer hardware and software, and then take a broad
look at computer programming in general.

1.2 Why program?

concepT: Computers can do many different jobs because they are programmable.

Every profession has tools that make the job easier to do. Carpenters use hammers, saws,
and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics tech-
nicians use probes, scopes, and meters. Some tools are unique and can be categorized as
belonging to a single profession. For example, surgeons have certain tools that are designed
specifically for surgical operations. Those tools probably aren’t used by anyone other than
surgeons. There are some tools, however, that are used in several professions. Screwdrivers,
for instance, are used by mechanics, carpenters, and many others.

The computer is a tool used by so many professions that it cannot be easily categorized. It
can perform so many different jobs that it is perhaps the most versatile tool ever made. To the
accountant, computers balance books, analyze profits and losses, and prepare tax reports.
To the factory worker, computers control manufacturing machines and track production.
To the mechanic, computers analyze the various systems in an automobile and pinpoint
hard-to-find problems. The computer can do such a wide variety of tasks because it can

2 Chapter 1 Introduction to Computers and Java

be programmed. It is a machine specifically designed to follow instructions. Because of the
computer’s programmability, it doesn’t belong to any single profession. Computers are
designed to do whatever job their programs, or software, tell them to do.

Computer programmers do a very important job. They create software that transforms
computers into the specialized tools of many trades. Without programmers, the users of
computers would have no software, and without software, computers would not be able to
do anything.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be carefully designed. Here are a few of the things that must be designed
for any real-world computer program:

•	 The	logical	flow	of	the	instructions
•	 The	mathematical	procedures
•	 The	layout	of	the	programming	statements
•	 The	appearance	of	the	screens
•	 The	way	information	is	presented	to	the	user
•	 The	program’s	“user	friendliness”
•	 Manuals,	help	systems,	and/or	other	forms	of	written	documentation

There is also a science to programming. Because programs rarely work right the first time
they are written, a lot of analyzing, experimenting, correcting, and redesigning is required.
This demands patience and persistence of the programmer. Writing software demands disci-
pline as well. Programmers must learn special languages such as Java because computers do
not understand English or other human languages. Programming languages have strict rules
that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software
like designing a car: Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

1.3 computer systems: Hardware and software

concepT: All computer systems consist of similar hardware devices and
software components.

Hardware
Hardware refers to the physical components that a computer is made of. A computer, as we
generally think of it, is not an individual device, but a system of devices. Like the instru-
ments in a symphony orchestra, each device plays its own part. A typical computer system
consists of the following major components:

•	 The	central	processing	unit	(CPU)
•	 Main	memory
•	 Secondary	storage	devices
•	 Input	devices
•	 Output	devices

The organization of a computer system is shown in Figure 1-1.

 1.3 Computer Systems: Hardware and Software 3

Let’s take a closer look at each of these devices.

The cpU

At the heart of a computer is its central processing unit, or CPU.	The	CPU’s	job	is	to	fetch	
instructions, follow the instructions, and produce some resulting data. Internally, the central
processing unit consists of two parts: the control unit and the arithmetic and logic unit (ALU).
The control unit coordinates all of the computer’s operations. It is responsible for determin-
ing where to get the next instruction and regulating the other major components of the com-
puter with control signals. The arithmetic and logic unit, as its name suggests, is designed to
perform	mathematical	operations.	The	organization	of	the	CPU	is	shown	in	Figure	1-2.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Figure 1-1 The organization of a computer system

Figure 1-2 The organization of the CPU

A program is a sequence of instructions stored in the computer’s memory. When a computer
is	running	a	program,	the	CPU	is	engaged	in	a	process	known	formally	as	the	fetch/decode/
execute cycle.	The	steps	in	the	fetch/decode/execute	cycle	are	as	follows:

4 Chapter 1 Introduction to Computers and Java

Fetch	 	The	CPU’s	control	unit	fetches,	from	main	memory,	the	next	instruction	in	the	
sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes the
instruction and generates an electronic signal.

Execute	 	The	signal	is	routed	to	the	appropriate	component	of	the	computer	(such	as	the	
ALU,	a	disk	drive,	or	some	other	device).	The	signal	causes	the	component	to	
perform an operation.

These steps are repeated as long as there are instructions to perform.

Main Memory

Commonly known as random access memory, or RAM, the computer’s main memory is a
device that holds information. Specifically, RAM holds the sequences of instructions in the
programs that are running and the data those programs are using.

Memory is divided into sections that hold an equal amount of data. Each section is made of
eight	“switches”	that	may	be	either	on	or	off.	A	switch	in	the	on	position	usually	represents	
the number 1, whereas a switch in the off position usually represents the number 0. The com-
puter stores data by setting the switches in a memory location to a pattern that represents a
character or a number. Each of these switches is known as a bit, which stands for binary
digit. Each section of memory, which is a collection of eight bits, is known as a byte. Each
byte is assigned a unique number known as an address. The addresses are ordered from
lowest to highest. A byte is identified by its address in much the same way a post office box
is identified by an address. Figure 1-3 shows a series of bytes with their addresses. In the
illustration, sample data is stored in memory. The number 149 is stored in the byte at
address	16,	and	the	number	72	is	stored	in	the	byte	at	address	23.

RAM is usually a volatile type of memory, used only for temporary storage. When the com-
puter is turned off, the contents of RAM are erased.

Figure 1-3 Memory bytes and their addresses

secondary storage

Secondary storage is a type of memory that can hold data for long periods of time—even
when there is no power to the computer. Frequently used programs are stored in secondary
memory and loaded into main memory as needed. Important data, such as word processing
documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a spinning circular disk. Solid state
drives, which store data in solid-state memory, are increasingly becoming popular. A
solid-state drive has no moving parts, and operates faster than a traditional disk drive.

 1.3 Computer Systems: Hardware and Software 5

Most computers have some sort of secondary storage device, either a traditional disk
drive or a solid-state drive, mounted inside their case. External drives are also available,
which connect to one of the computer’s communication ports. External drives can be used to
create backup copies of important data or to move data to another computer.

In addition to external drives, many types of devices have been created for copying data, and
for moving it to other computers. Universal Serial Bus drives, or USB drives are small
devices	that	plug	into	the	computer’s	USB	(Universal	Serial	Bus)	port,	and	appear	to	the	
system as a disk drive. These drives do not actually contain a disk, however. They store data
in a special type of memory known as flash memory.	USB	drives	are	inexpensive,	reliable,	
and small enough to be carried in your pocket.

Optical	devices	such	as	the	CD	(compact	disc)	and	the	DVD	(digital	versatile	disc)	are	also	
popular for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits	and	thus	read	the	encoded	data.	Optical	discs	hold	large	amounts	of	data,	and	because	
recordable CD and DVD drives are now commonplace, they make a good medium for
creating backup copies of data.

input Devices

Input is any data the computer collects from the outside world. The device that collects the
data and sends it to the computer is called an input device. Common input devices are the
keyboard,	mouse,	scanner,	and	digital	camera.	Disk	drives,	optical	drives,	and	USB	drives	
can also be considered input devices because programs and data are retrieved from them
and loaded into the computer’s memory.

output Devices

Output	is	any	data	the	computer	sends	to	the	outside	world.	It	might	be	a	sales	report,	a	
list of names, or a graphic image. The data is sent to an output device, which formats and
presents	it.	Common	output	devices	are	monitors	and	printers.	Disk	drives,	USB	drives,	
and	CD	recorders	can	also	be	considered	output	devices	because	the	CPU	sends	data	to	
them to be saved.

software
As previously mentioned, software refers to the programs that run on a computer. There are
two general categories of software: operating systems and application software. An operat-
ing system is a set of programs that manages the computer’s hardware devices and controls
their processes. Most all modern operating systems are multitasking, which means they are
capable of running multiple programs at once. Through a technique called time sharing, a
multitasking system divides the allocation of hardware resources and the attention of the
CPU	among	all	the	executing	programs.	UNIX,	Linux,	Mac	OS,	and	Windows	are	multi-
tasking operating systems.

Application software refers to programs that make the computer useful to the user.
These programs solve specific problems or perform general operations that satisfy the
needs of the user. Word processing, spreadsheet, and database packages are all examples of
application software.

6 Chapter 1 Introduction to Computers and Java

checkpoint

www.myprogramminglab.com

1.1 Why is the computer used by so many different people, in so many different professions?

1.2	 List the five major hardware components of a computer system.

1.3 Internally,	the	CPU	consists	of	what	two	units?

1.4 Describe	the	steps	in	the	fetch/decode/execute	cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What does the term multitasking mean?

1.4 programming Languages

concepT: A program is a set of instructions a computer follows in order to perform
a task. A programming language is a special language used to write
computer programs.

What is a program?
Computers are designed to follow instructions. A computer program is a set of instructions
that enable the computer to solve a problem or perform a task. For example, suppose we
want the computer to calculate someone’s gross pay. The following is a list of things the
computer should do to perform this task.

 1. Display	a	message	on	the	screen:	“How	many	hours	did	you	work?”
	 2.	 Allow the user to enter the number of hours worked.
 3. Once	the	user	enters	a	number,	store	it	in	memory.
 4. Display	a	message	on	the	screen:	“How	much	do	you	get	paid	per	hour?”
 5. Allow the user to enter an hourly pay rate.
 6. Once	the	user	enters	a	number,	store	it	in	memory.
 7. Once	both	the	number	of	hours	worked	and	the	hourly	pay	rate	are	entered,	multiply	

the two numbers and store the result in memory.
 8. Display a message on the screen that shows the amount of money earned. The mes-

sage must include the result of the calculation performed in Step 7.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps	for	performing	a	task	or	solving	a	problem.	Notice	that	these	steps	are	sequentially	
ordered.	Step	1	should	be	performed	before	Step	2,	and	so	forth.	It	is	important	that	these	
instructions be performed in their proper sequence.

Although you and I might easily understand the instructions in the pay-calculating algo-
rithm,	it	is	not	ready	to	be	executed	on	a	computer.	A	computer’s	CPU	can	only	process	
instructions that are written in machine language. If you were to look at a machine lan-
guage	program,	you	would	see	a	stream	of	binary	numbers	(numbers	consisting	of	only	1s	
and	0s).	The	binary	numbers	form	machine	language	instructions,	which	the	CPU	interprets	
as commands. Here is an example of what a machine language instruction might look like:

1011010000000101

http://www.myprogramminglab.com

 1.4 Programming Languages 7

As you can imagine, the process of encoding an algorithm in machine language is very
tedious	and	difficult.	In	addition,	each	different	type	of	CPU	has	its	own	machine	language.	
If you wrote a machine language program for computer A and then wanted to run it on
computer	B,	which	has	a	different	type	of	CPU,	you	would	have	to	rewrite	the	program	in	
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the
task of programming. A program can be written in a programming language, which is much
easier to understand than machine language, and then translated into machine language.
Programmers use software to perform this translation. Many programming languages have
been created. Table 1-1 lists a few of the well-known ones.

Table 1-1 Programming languages

Language Description

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose, proce-
dural programming language. It was originally designed to be simple enough for
beginners to learn.

FORTRAN FORmula	TRANslator	is	a	procedural	language	designed	for	programming	com-
plex mathematical algorithms.

COBOL Common	Business-Oriented	Language	is	a	procedural	language	designed	for	
business applications.

Pascal Pascal is a structured, general-purpose, procedural language designed primarily
for teaching programming.

C C is a structured, general-purpose, procedural language developed at Bell Laboratories.

C++ Based on the C language, C++ offers object-oriented features not found in C.
C++ was also invented at Bell Laboratories.

C# Pronounced	“C	sharp.”	It	is	a	language	invented	by	Microsoft	for	developing	
applications	based	on	the	Microsoft	.NET	platform.

Java Java is an object-oriented language invented at Sun Microsystems, and is now
owned	by	Oracle.	It	may	be	used	to	develop	stand-alone	applications	that	operate	
on a single computer, applications that run over the Internet from a Web server, and
applets that run in a Web browser.

JavaScript JavaScript is a programming language that can be used in a Web site to perform
simple operations. Despite its name, JavaScript is not related to Java.

Perl A general-purpose programming language used widely on Internet servers.

PHP A programming language used primarily for developing Web server applications
and dynamic Web pages.

Python Python is an object-oriented programming language used in both business and
academia. Many popular Web sites contain features developed in Python.

Ruby Ruby is a simple but powerful object-oriented programming language. It can be used
for a variety of purposes, from small utility programs to large Web applications.

Visual Basic Visual Basic is a Microsoft programming language and software development envi-
ronment that allows programmers to create Windows-based applications quickly.

8 Chapter 1 Introduction to Computers and Java

A History of Java
In	1991	a	team	was	formed	at	Sun	Microsystems	(a	company	that	is	now	owned	by	Oracle)	
to speculate about the important technological trends that might emerge in the near future.
The team, which was named the Green Team, concluded that computers would merge with
consumer	appliances.	Their	first	project	was	to	develop	a	handheld	device	named	*7	(pro-
nounced	star	seven)	that	could	be	used	to	control	a	variety	of	home	entertainment	devices.	
For the unit to work, it had to use a programming language that could be processed by all
the devices it controlled. This presented a problem because different brands of consumer
devices use different processors, each with its own machine language.

Because no such universal language existed, James Gosling, the team’s lead engineer, created
one.	Programs	written	in	this	language,	which	was	originally	named	Oak,	were	not	trans-
lated into the machine language of a specific processor, but were translated into an interme-
diate language known as byte code. Another program would then translate the byte code
into machine language that could be executed by the processor in a specific consumer device.

Unfortunately,	the	technology	developed	by	the	Green	Team	was	ahead	of	its	time.	No	cus-
tomers could be found, mostly because the computer-controlled consumer appliance indus-
try was just beginning. But rather than abandoning their hard work and moving on to other
projects, the team saw another opportunity: the Internet. The Internet is a perfect environ-
ment	for	a	universal	programming	language	such	as	Oak.	It	consists	of	numerous	different	
computer platforms connected together in a single network.

To demonstrate the effectiveness of its language, which was renamed Java, the team used it to
develop a Web browser. The browser, named HotJava, was able to download and run small
Java programs known as applets. This gave the browser the capability to display animation
and interact with the user. HotJava was demonstrated at the 1995 SunWorld conference
before	a	wowed	audience.	Later	the	announcement	was	made	that	Netscape	would	incorpo-
rate	Java	technology	into	its	Navigator	browser.	Other	Internet	companies	rapidly	followed,	
increasing the acceptance and the influence of the Java language. Today, Java is very popular
for developing not only applets for the Internet but also stand-alone applications.

Java Applications and Applets
There are two types of programs that may be created with Java: applications and applets.
An application is a stand-alone program that runs on your computer. You have probably
used several applications already, such as word processors, spreadsheets, database manag-
ers, and graphics programs. Although Java may be used to write these types of applications,
other languages such as C, C++, and Visual Basic are also used.

In the previous section you learned that Java may also be used to create applets. The term
applet refers to a small application, in the same way that the term piglet refers to a small
pig.	Unlike	applications,	an	applet	is	designed	to	be	transmitted	over	the	Internet	from	a	
Web server, and then executed in a Web browser. Applets are important because they can be
used to extend the capabilities of a Web page significantly.

Web	pages	are	normally	written	in	Hypertext	Markup	Language	(HTML).	HTML	is	lim-
ited, however, because it merely describes the content and layout of a Web page. HTML
does not have sophisticated abilities such as performing math calculations and interacting
with the user. A Web designer can write a Java applet to perform operations that are

 1.5 What Is a Program Made Of? 9

 normally performed by an application and embed it in a Web site. When someone visits the
Web site, the applet is downloaded to the visitor’s browser and executed.

security

Any time content is downloaded from a Web server to a visitor’s computer, security is an
important concern. Because Java is a full-featured programming language, at first you might
be suspicious of any Web site that transmits an applet to your computer. After all, couldn’t
a Java applet do harmful things, such as deleting the contents of the disk drive or transmit-
ting private information to another computer? Fortunately, the answer is no. Web browsers
run Java applets in a secure environment within your computer’s memory and do not allow
them to access resources, such as a disk drive, that are outside that environment.

1.5 What is a program Made of?

concepT: There are certain elements that are common to all programming
languages.

Language elements
All	programming	languages	have	some	things	in	common.	Table	1-2	lists	the	common	ele-
ments you will find in almost every language.

Table 1-2 The common elements of a programming language

Language Element Description

Key Words These are words that have a special meaning in the programming lan-
guage. They may be used for their intended purpose only. Key words
are also known as reserved words.

Operators Operators	are	symbols	or	words	that	perform	operations	on	one	or	more	
operands. An operand is usually an item of data, such as a number.

Punctuation Most programming languages require the use of punctuation
characters. These characters serve specific purposes, such as marking
the beginning or ending of a statement, or separating items in a list.

Programmer-Defined
Names

Unlike	key	words,	which	are	part	of	the	programming	language,	these	
are words or names that are defined by the programmer. They are used
to identify storage locations in memory and parts of the program that
are created by the programmer. Programmer-defined names are often
called identifiers.

Syntax These are rules that must be followed when writing a program. Syntax
dictates how key words and operators may be used, and where punctu-
ation symbols must appear.

10 Chapter 1 Introduction to Computers and Java

Let’s look at an example Java program and identify an instance of each of these elements.
Code Listing 1-1 shows the code listing with each line numbered.

noTe: The line numbers are not part of the program. They are included to help point
out specific parts of the program.

Table 1-3 The Java key words

abstract const final int public throw

assert continue finally interface return throws

boolean default float long short transient

break do for native static true

byte double goto new strictfp try

case else if null super void

catch enum implements package switch volatile

char extends import private synchronized while

class false instanceof protected this

code Listing 1-1 Payroll.java

 1 public class Payroll
 2 {
 3 public static void main(String[] args)
 4 {
 5 int hours = 40;
 6 double grossPay, payRate = 25.0;
 7
 8 grossPay = hours * payRate;
 9 System.out.println("Your gross pay is $" + grossPay);
10 }
11 }

Key Words (Reserved Words)

Two of Java’s key words appear in line 1: public and class. In line 3, the words public,
static, and void are all key words. The words int in line 5 and double in line 6 are also key
words. These words, which are always written in lowercase, each have a special meaning in
Java and can only be used for their intended purpose. As you will see, the programmer is
allowed to make up his or her own names for certain things in a program. Key words, how-
ever, are reserved and cannot be used for anything other than their designated purpose. Part
of learning a programming language is learning the commonly used key words, what they
mean, and how to use them.

Table 1-3 shows a list of the Java key words.

 1.5 What Is a Program Made Of? 11

programmer-Defined names

The words hours, payRate, and grossPay that appear in the program in lines 5, 6, 8, and 9
are programmer-defined names. They are not part of the Java language but are names made
up by the programmer. In this particular program, these are the names of variables. As you
will learn later in this chapter, variables are the names of memory locations that may hold
data.

operators

In line 8 the following line appears:

grossPay = hours * payRate;

The = and * symbols are both operators. They perform operations on items of data, known
as operands. The * operator multiplies its two operands, which in this example are the vari-
ables hours and payRate. The = symbol is called the assignment operator. It takes the value
of the expression that appears at its right and stores it in the variable whose name appears
at its left. In this example, the = operator stores in the grossPay variable the result of the
hours variable multiplied by the payRate	variable.	In	other	words,	the	statement	says,	“the	
grossPay variable is assigned the value of hours times payRate.”

punctuation

Notice	that	lines	5,	6,	8,	and	9	end	with	a	semicolon.	A	semicolon	in	Java	is	similar	to	a	
period	in	English:	It	marks	the	end	of	a	complete	sentence	(or	statement,	as	it	is	called	in	
programming	jargon).	Semicolons	do	not	appear	at	the	end	of	every	line	in	a	Java	program,	
however. There are rules that govern where semicolons are required and where they are not.
Part of learning Java is learning where to place semicolons and other punctuation symbols.

Lines and statements
Often,	the	contents	of	a	program	are	thought	of	in	terms	of	lines	and	statements.	A	line is
just that—a single line as it appears in the body of a program. Code Listing 1-1 is shown
with each of its lines numbered. Most of the lines contain something meaningful; however,
line 7 is empty. Blank lines are only used to make a program more readable.

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 9 of Code Listing 1-1:

System.out.println("Your gross pay is $" + grossPay);

This statement causes the computer to display a message on the screen. Statements can be
a combination of key words, operators, and programmer-defined names. Statements
often occupy only one line in a program, but sometimes they are spread out over more than
one line.

Variables
The most fundamental way that a Java program stores an item of data in memory is with a
variable. A variable is a named storage location in the computer’s memory. The data stored
in	a	variable	may	change	while	the	program	is	running	(hence	the	name	“variable”).	Notice	
that in Code Listing 1-1 the programmer-defined names hours, payRate, and grossPay

12 Chapter 1 Introduction to Computers and Java

appear in several places. All three of these are the names of variables. The hours variable is
used to store the number of hours the user has worked. The payRate variable stores the
user’s hourly pay rate. The grossPay variable holds the result of hours multiplied by payRate,
which is the user’s gross pay.

Variables are symbolic names made up by the programmer that represent locations in the
computer’s RAM. When data is stored in a variable, it is actually stored in RAM. Assume
that a program has a variable named length. Figure 1-4 illustrates the way the variable
name represents a memory location.

In Figure 1-4, the variable length	is	holding	the	value	72.	The	number	72	is	actually	stored	
in	RAM	at	address	23,	but	the	name	length symbolically represents this storage location. If
it	helps,	you	can	think	of	a	variable	as	a	box	that	holds	data.	In	Figure	1-4,	the	number	72	
is stored in the box named length.	Only	one	item	may	be	stored	in	the	box	at	any	given	
time.	If	the	program	stores	another	value	in	the	box,	it	will	take	the	place	of	the	number	72.

Figure 1-4 A variable name represents a location in memory

The compiler and the Java Virtual Machine
When a Java program is written, it must be typed into the computer and saved to a file. A
text editor, which is similar to a word processing program, is used for this task. The Java
programming statements written by the programmer are called source code, and the file
they are saved in is called a source file. Java source files end with the .java extension.

After the programmer saves the source code to a file, he or she runs the Java compiler. A
compiler is a program that translates source code into an executable form. During the trans-
lation process, the compiler uncovers any syntax errors that may be in the program. Syntax
errors are mistakes that the programmer has made that violate the rules of the progra-
mming language. These errors must be corrected before the compiler can translate the
source	code.	Once	the	program	is	free	of	syntax	errors,	the	compiler	creates	another	file	that	
holds the translated instructions.

Most programming language compilers translate source code directly into files that contain
machine language instructions. These are called executable files because they may be exe-
cuted	directly	by	the	computer’s	CPU.	The	Java	compiler,	however,	translates	a	Java	source	
file into a file that contains byte code instructions. Byte code instructions are not machine
language,	and	therefore	cannot	be	directly	executed	by	the	CPU.	Instead,	they	are	executed	
by the Java Virtual Machine	 (JVM).	The	 JVM	is	a	program	that	 reads	 Java	byte	code	
instructions and executes them as they are read. For this reason, the JVM is often called an
interpreter, and Java is often referred to as an interpreted language. Figure 1-5 illustrates
the process of writing a Java program, compiling it to byte code, and running it.

 1.5 What Is a Program Made Of? 13

Although	Java	byte	code	is	not	machine	language	for	a	CPU,	it	can	be	considered	as	machine	
language for the JVM. You can think of the JVM as a program that simulates a computer
whose machine language is Java byte code.

portability

The term portable means that a program may be written on one type of computer and then
run on a wide variety of computers, with little or no modification necessary. Because Java
byte code is the same on all computers, compiled Java programs are highly portable. In fact,
a compiled Java program may be run on any computer that has a JVM. Figure 1-6 illus-
trates the concept of a compiled Java program running on Windows, Linux, Mac, and
UNIX	computers.

With most other programming languages, portability is achieved by the creation of a com-
piler for each type of computer that the language is to run on. For example, in order for the
C++ language to be supported by Windows, Linux, and Mac computers, a separate C++
compiler must be created for each of those environments. Compilers are very complex pro-
grams, and more difficult to develop than interpreters. For this reason, a JVM has been
developed for many types of computers.

Byte Code
File

Figure 1-5
Program development process

Byte Code
File

Figure 1-6 Java byte code may be run on any
computer with a Java Virtual Machine

14 Chapter 1 Introduction to Computers and Java

Java software editions
The software that you use to create Java programs is referred to as the JDK	(Java	Develop-
ment	Kit)	or	the	SDK	(Software	Development	Kit).	There	are	the	following	different	edi-
tions	of	the	JDK	available	from	Oracle:

•	 Java SE—The Java Standard Edition provides all the essential software tools neces-
sary for writing Java applications and applets.

•	 Java EE—The Java Enterprise Edition provides tools for creating large business appli-
cations that employ servers and provide services over the Web.

•	 Java ME—The Java Micro Edition provides a small, highly optimized runtime envi-
ronment for consumer products such as cell phones, pagers, and appliances.

These	editions	of	Java	may	be	downloaded	from	Oracle	by	going	to:

http://java.oracle.com

noTe: You can follow the instructions in Appendix E, which can be downloaded from
the book’s companion Web site, to install the JDK on your system. You can access the
book’s	companion	Web	site	by	going	to	www.pearsonhighered.com/gaddis.

Tip: In Windows click Start, go to All Programs, and then go to Accessories. Click
 Command Prompt on the Accessories menu. A command prompt window should open.

compiling and Running a Java program
Compiling	a	Java	program	is	a	simple	process.	Once	you	have	installed	the	JDK,	go	to	your	
operating system’s command prompt.

At the operating system command prompt, make sure you are in the same directory or
folder where the Java program that you want to compile is located. Then, use the javac
command, in the following form:

javac Filename

Filename is the name of a file that contains the Java source code. As mentioned earlier, this
file has the .java extension. For example, if you want to compile the Payroll.java file, you
would execute the following command:

javac Payroll.java

This command runs the compiler. If the file contains any syntax errors, you will see one or
more error messages and the compiler will not translate the file to byte code. When this
happens you must open the source file in a text editor and fix the error. Then you can run
the compiler again. If the file has no syntax errors, the compiler will translate it to byte
code. Byte code is stored in a file with the .class extension, so the byte code for the Payroll.
java file will be stored in Payroll.class, which will be in the same directory or folder as the
source file.

To run the Java program, you use the java command in the following form:

java ClassFilename

Compiling and
Running a Java

Program

VideoNote

http://www.pearsonhighered.com/gaddis
http://java.oracle.com

 1.5 What Is a Program Made Of? 15

ClassFilename is the name of the .class file that you wish to execute; however, you do not
type the .class extension. For example, to run the program that is stored in the Payroll.class
file, you would enter the following command:

java Payroll

This	command	runs	the	Java	interpreter	(the	JVM)	and	executes	the	program.

integrated Development environments

In addition to the command prompt programs, there are also several Java integrated devel-
opment	environments	(IDEs).	These	environments	consist	of	a	text	editor,	compiler,	debug-
ger, and other utilities integrated into a package with a single set of menus. A program is
compiled and executed with a single click of a button, or by selecting a single item from a
menu.	Figure	1-7	shows	a	screen	from	the	NetBeans	IDE.

Using an IDE
VideoNote

checkpoint

www.myprogramminglab.com

1.8 Describe the difference between a key word and a programmer-defined symbol.

1.9 Describe the difference between operators and punctuation symbols.

Figure 1-7 An integrated development environment (IDE) (Oracle Corporate Counsel)

http://www.myprogramminglab.com

16 Chapter 1 Introduction to Computers and Java

1.10 Describe the difference between a program line and a statement.

1.11 Why	are	variables	called	“variable”?

1.12	 What happens to a variable’s current contents when a new value is stored there?

1.13 What is a compiler?

1.14 What is a syntax error?

1.15 What is byte code?

1.16 What is the JVM?

1.6 The programming process

concepT: The programming process consists of several steps, which include design,
creation, testing, and debugging activities.

Now	that	you	have	been	introduced	to	what	a	program	is,	it’s	time	to	consider	the	process	
of creating a program. Quite often when inexperienced students are given programming
assignments, they have trouble getting started because they don’t know what to do first. If
you find yourself in this dilemma, the following steps may help.

 1. Clearly define what the program is to do.
	 2.	 Visualize the program running on the computer.
 3. Use	design	tools	to	create	a	model	of	the	program.
 4. Check the model for logical errors.
 5. Enter the code and compile it.
 6. Correct any errors found during compilation. Repeat Steps 5 and 6 as many times

as necessary.
 7. Run the program with test data for input.
 8. Correct any runtime errors found while running the program. Repeat Steps 5 through

8 as many times as necessary.
 9. Validate the results of the program.

These steps emphasize the importance of planning. Just as there are good ways and bad
ways to paint a house, there are good ways and bad ways to create a program. A good pro-
gram always begins with planning. With the pay-calculating algorithm that was presented
earlier in this chapter serving as our example, let’s look at each of the steps in more detail.

1. clearly define what the program is to do

This step commonly requires you to identify the purpose of the program, the data that is to
be input, the processing that is to take place, and the desired output. Let’s examine each of
these requirements for the pay-calculating algorithm.

 Purpose To calculate the user’s gross pay.

 Input	 Number	of	hours	worked,	hourly	pay	rate.

 Process Multiply number of hours worked by hourly pay rate. The result is the user’s
gross pay.

 Output Display a message indicating the user’s gross pay.

 1.6 The Programming Process 17

2. Visualize the program running on the computer

Before you create a program on the computer, you should first create it in your mind. Try to
imagine what the computer screen will look like while the program is running. If it helps,
draw pictures of the screen, with sample input and output, at various points in the program.
For instance, Figure 1-8 shows the screen we might want produced by a program that
implements the pay-calculating algorithm.

Figure 1-8 Screen produced by the pay-calculating algorithm

In this step, you must put yourself in the shoes of the user. What messages should the pro-
gram display? What questions should it ask? By addressing these concerns, you can deter-
mine most of the program’s output.

3. Use design tools to create a model of the program

While planning a program, the programmer uses one or more design tools to create a model
of the program. For example, pseudocode is a cross between human language and a pro-
gramming language and is especially helpful when designing an algorithm. Although the
computer can’t understand pseudocode, programmers often find it helpful to write an algo-
rithm	in	a	language	that’s	“almost”	a	programming	language,	but	still	very	similar	to	natu-
ral language. For example, here is pseudocode that describes the pay-calculating algorithm:

Get payroll data.
Calculate gross pay.
Display gross pay.

Although this pseudocode gives a broad view of the program, it doesn’t reveal all the pro-
gram’s details. A more detailed version of the pseudocode follows:

Display “How many hours did you work?”
Input hours.
Display “How much do you get paid per hour?”
Input rate.
Store the value of hours times rate in the pay variable.
Display the value in the pay variable.

Notice	that	the	pseudocode	uses	statements	that	look	more	like	commands	than	the	English	
statements that describe the algorithm in Section 1.4. The pseudocode even names variables
and describes mathematical operations.

4. check the model for logical errors

Logical	errors	are	mistakes	that	cause	the	program	to	produce	erroneous	results.	Once	a	
model of the program is assembled, it should be checked for these errors. For example, if
pseudocode is used, the programmer should trace through it, checking the logic of each
step. If an error is found, the model can be corrected before the next step is attempted.

18 Chapter 1 Introduction to Computers and Java

5. enter the code and compile it

Once	a	model	of	the	program	has	been	created,	checked,	and	corrected,	the	programmer	is	
ready to write source code on the computer. The programmer saves the source code to a file
and begins the process of compiling it. During this step the compiler will find any syntax
errors that may exist in the program.

6. correct any errors found during compilation. Repeat steps 5 and 6 as
many times as necessary

If the compiler reports any errors, they must be corrected. Steps 5 and 6 must be repeated
until the program is free of compile-time errors.

7. Run the program with test data for input

Once	an	executable	file	is	generated,	the	program	is	ready	to	be	tested	for	runtime	errors.	A	
runtime error is an error that occurs while the program is running. These are usually logical
errors, such as mathematical mistakes.

Testing for runtime errors requires that the program be executed with sample data or sam-
ple input. The sample data should be such that the correct output can be predicted. If the
program does not produce the correct output, a logical error is present in the program.

8. correct any runtime errors found while running the program. Repeat
steps 5 through 8 as many times as necessary

When runtime errors are found in a program, they must be corrected. You must identify the
step where the error occurred and determine the cause. If an error is a result of incorrect
logic	(such	as	an	improperly	stated	math	formula),	you	must	correct	the	statement	or	state-
ments involved in the logic. If an error is due to an incomplete understanding of the program
requirements, then you must restate the program purpose and modify the program model
and source code. The program must then be saved, recompiled, and retested. This means
Steps 5 though 8 must be repeated until the program reliably produces satisfactory results.

9. Validate the results of the program

When you believe you have corrected all the runtime errors, enter test data and determine
whether the program solves the original problem.

software engineering
The field of software engineering encompasses the whole process of crafting computer software.
It includes designing, writing, testing, debugging, documenting, modifying, and maintaining
complex software development projects. Like traditional engineers, software engineers use
a number of tools in their craft. Here are a few examples:

•	 Program	specifications
•	 Diagrams	of	screen	output
•	 Diagrams	representing	the	program	components	and	the	flow	of	data
•	 Pseudocode
•	 Examples	of	expected	input	and	desired	output
•	 Special	software	designed	for	testing	programs

 1.7 Object-Oriented Programming 19

Most	commercial	software	applications	are	large	and	complex.	Usually	a	team	of	programmers,	
not a single individual, develops them. It is important that the program requirements be
thoroughly analyzed and divided into subtasks that are handled by individual teams, or
individuals within a team.

checkpoint

www.myprogramminglab.com

1.17 What four items should you identify when defining what a program is to do?

1.18 What	does	it	mean	to	“visualize	a	program	running”?	What	is	the	value	of	such	
an activity?

1.19 What is pseudocode?

1.20	 Describe what a compiler does with a program’s source code.

1.21	 What is a runtime error?

1.22	 Is	a	syntax	error	(such	as	misspelling	a	key	word)	found	by	the	compiler	or	when	
the program is running?

1.23	 What is the purpose of testing a program with sample data or input?

1.7 object-oriented programming

concepT: Java is an object-oriented programming (OOP) language. OOP is a
method of software development that has its own practices, concepts,
and vocabulary.

There are primarily two methods of programming in use today: procedural and object-
oriented. The earliest programming languages were procedural, meaning a program was
made of one or more procedures. A procedure is a set of programming statements that,
together, perform a specific task. The statements might gather input from the user, manipu-
late data stored in the computer’s memory, and perform calculations or any other operation
necessary to complete the procedure’s task.

Procedures typically operate on data items that are separate from the procedures. In a pro-
cedural program, the data items are commonly passed from one procedure to another, as
shown in Figure 1-9.

Figure 1-9 Data is passed among procedures

http://www.myprogramminglab.com

20 Chapter 1 Introduction to Computers and Java

As you might imagine, the focus of procedural programming is on the creation of proce-
dures that operate on the program’s data. The separation of data and the code that operates
on the data often leads to problems, however. For example, the data is stored in a particular
format, which consists of variables and more complex structures that are created from vari-
ables. The procedures that operate on the data must be designed with that format in mind.
But, what happens if the format of the data is altered? Quite often, a program’s specifica-
tions change, resulting in a redesigned data format. When the structure of the data changes,
the code that operates on the data must also be changed to accept the new format. This
results in added work for programmers and a greater opportunity for bugs to appear in
the code.

This has helped influence the shift from procedural programming to object-oriented pro-
gramming	(OOP).	Whereas	procedural	programming	is	centered	on	creating	procedures,	
object-oriented programming is centered on creating objects. An object is a software entity
that contains data and procedures. The data contained in an object is known as the object’s
attributes. The procedures, or behaviors, that an object performs are known as the object’s
methods.	The	object	is,	conceptually,	a	self-contained	unit	consisting	of	data	(attributes)	
and	procedures	(methods).	This	is	illustrated	in	Figure	1-10.

OOP	addresses	the	problem	of	code/data	separation	through	encapsulation	and	data	hid-
ing. Encapsulation refers to the combining of data and code into a single object. Data hid-
ing	refers	to	an	object’s	ability	to	hide	its	data	from	code	that	is	outside	the	object.	Only	the	
object’s methods may then directly access and make changes to the object’s data. An object
typically hides its data, but allows outside code to access the methods that operate on the
data. As shown in Figure 1-11, the object’s methods provide programming statements out-
side the object with indirect access to the object’s data.

When an object’s internal data is hidden from outside code and access to that data is
restricted to the object’s methods, the data is protected from accidental corruption. In addi-
tion, the programming code outside the object does not need to know about the format or

Figure 1-10 An object contains data
and procedures

Figure 1-11 Code outside the object
interacts with the object’s methods

 Review Questions and Exercises 21

internal structure of the object’s data. The code only needs to interact with the object’s
methods. When a programmer changes the structure of an object’s internal data, he or she
also modifies the object’s methods so they may properly operate on the data. The way in
which outside code interacts with the methods, however, does not change.

These are just a few of the benefits of object-oriented programming. Because Java is fully
object-oriented,	you	will	learn	much	more	about	OOP	practices,	concepts,	and	terms	as	you	
progress through this book.

checkpoint

www.myprogramminglab.com

1.24	 In procedural programming, what two parts of a program are typically separated?

1.25	 What are an object’s attributes?

1.26	 What are an object’s methods?

1.27	 What is encapsulation?

1.28	 What is data hiding?

Review Questions and exercises
Multiple choice

 1. This part of the computer fetches instructions, carries out the operations commanded
by the instructions, and produces some outcome or resultant information.
a. memory
b.	CPU
c. secondary storage
d. input device

	 2.	 A	byte	is	made	up	of	eight
a.	 CPUs
b. addresses
c. variables
d. bits

 3. Each byte is assigned a unique
a. address
b.	CPU
c. bit
d. variable

 4. This type of memory can hold data for long periods of time—even when there is no
power to the computer.
a. RAM
b. primary storage
c. secondary storage
d.	CPU	storage

http://www.myprogramminglab.com

22 Chapter 1 Introduction to Computers and Java

 5. If you were to look at a machine language program, you would see _________.
a. Java source code
b. a stream of binary numbers
c. English words
d. circuits

 6. This type of program is designed to be transmitted over the Internet and run in a Web
browser.
a. application
b. applet
c. machine language
d. source code

 7. These are words that have a special meaning in the programming language.
a. punctuation
b. programmer-defined names
c. key words
d. operators

 8. These are symbols or words that perform operations on one or more operands.
a. punctuation
b. programmer-defined names
c. key words
d. operators

 9. These characters serve specific purposes, such as marking the beginning or ending of a
statement, or separating items in a list.
a. punctuation
b. programmer-defined names
c. key words
d. operators

 10. These are words or names that are used to identify storage locations in memory and
parts of the program that are created by the programmer.
a. punctuation
b. programmer-defined names
c. key words
d. operators

 11. These are the rules that must be followed when writing a program.
a. syntax
b. punctuation
c. key words
d. operators

	12.	 This	is	a	named	storage	location	in	the	computer’s	memory.
a. class
b. key word
c. variable
d. operator

 Review Questions and Exercises 23

 13. The Java compiler generates __________.
a. machine code
b. byte code
c. source code
d. HTML

 14. JVM stands for __________.
a. Java Variable Machine
b. Java Variable Method
c. Java Virtual Method
d. Java Virtual Machine

Find the error

 1. The following pseudocode algorithm has an error. The program is supposed to ask
the user for the length and width of a rectangular room, and then display the room’s
area. The program must multiply the width by the length to determine the area. Find
the error.

area 5 width 3 length
Display “What is the room’s width?”
Input width.
Display “What is the room’s length?”
Input length.
Display area.

Algorithm Workbench

Write pseudocode algorithms for the programs described as follows:

 1. Available Credit

 A program that calculates a customer’s available credit should ask the user for
the following:

•	 The	customer’s	maximum	amount	of	credit
•	 The	amount	of	credit	used	by	the	customer

	 	 Once	these	items	have	been	entered,	the	program	should	calculate	and	display	the	cus-
tomer’s available credit. You can calculate available credit by subtracting the amount
of credit used from the maximum amount of credit.

	 2.	 Sales Tax

 A program that calculates the total of a retail sale should ask the user for the following:

•	 The	retail	price	of	the	item	being	purchased
•	 The	sales	tax	rate

	 	 Once	 these	 items	 have	 been	 entered,	 the	 program	 should	 calculate	 and	 display	
the following:

•	 The	sales	tax	for	the	purchase
•	 The	total	of	the	sale

24 Chapter 1 Introduction to Computers and Java

 3. Account Balance

 A program that calculates the current balance in a savings account must ask the user
for the following:

•	 The	starting	balance
•	 The	total	dollar	amount	of	deposits	made
•	 The	total	dollar	amount	of	withdrawals	made
•	 The	monthly	interest	rate

	 	 Once	the	program	calculates	the	current	balance,	it	should	be	displayed	on	the	screen.

predict the Result

The following are programs expressed as English statements. What would each display on
the screen if they were actual programs?

 1. The variable x starts with the value 0.

The variable y starts with the value 5.
Add 1 to x.
Add 1 to y.
Add x and y, and store the result in y.
Display the value in y on the screen.

	 2.	 The	variable	a starts with the value 10.

The variable b	starts	with	the	value	2.

The variable c starts with the value 4.
Store the value of a times b in a.
Store the value of b times c in c.
Add a and c, and store the result in b.
Display the value in b on the screen.

short Answer

 1. Both main memory and secondary storage are types of memory. Describe the differ-
ence between the two.

	 2.	 What	type	of	memory	is	usually	volatile?

 3. What is the difference between operating system software and application software?

 4. Why must programs written in a high-level language be translated into machine lan-
guage before they can be run?

 5. Why is it easier to write a program in a high-level language than in machine language?

 6. What is a source file?

 7. What is the difference between a syntax error and a logical error?

 8. What is an algorithm?

 9. What is a compiler?

 10. What is the difference between an application and an applet?

 11. Why are Java applets safe to download and execute?

	12.	 What	must	a	computer	have	in	order	for	it	to	execute	Java	programs?

 13. What is the difference between machine language code and byte code?

 Programming Challenge 25

 14. Why does byte code make Java a portable language?

 15. Is encapsulation a characteristic of procedural or object-oriented programming?

 16. Why should an object hide its data?

 17. What part of an object forms an interface through which outside code may access the
object’s data?

 18. What type of program do you use to write Java source code?

 19. Will the Java compiler translate a source file that contains syntax errors?

	20.	 What	does	the	Java	compiler	translate	Java	source	code	to?

	21.	 Assuming	you	are	using	the	JDK,	what	command	would	you	type	at	 the	operating	
system command prompt to compile the program LabAssignment.java?

	22.	 Assuming	there	are	no	syntax	errors	in	the	LabAssignment.java program when it is
compiled, answer the following questions.

a. What file will be produced?
b. What will the file contain?
c. What command would you type at the operating system command prompt to run

the program?

programming challenge

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Your First Java program

This assignment will help you get acquainted with your Java development software. Here is
the Java program you will enter:

// This is my first Java program.
public class MyFirstProgram
{
 public static void main(String[] args)
 {
 System.out.println(“Hello World!”);
 }
}

if You Are Using the JDK at the command prompt:

	 1.	 Use	a	text	editor	to	type	the	source	code	exactly	as	it	is	shown.	Be	sure	to	place	all	the	
punctuation characters and be careful to match the case of the letters as they are
shown. Save it to a file named MyFirstProgram.java.

	 2.	 After	saving	the	program,	go	to	your	operating	system’s	command	prompt	and	change	
your current directory or folder to the one that contains the Java program you just
created. Then use the following command to compile the program:

javac MyFirstProgram.java

Your First Java
Program

VideoNote

http://www.myprogramminglab.com

26 Chapter 1 Introduction to Computers and Java

If you typed the contents of the file exactly as shown, you shouldn’t have any syntax
errors. If you see error messages, open the file in the editor and compare your code to
that shown. Correct any mistakes you have made, save the file, and run the compiler
again. If you see no error messages, the file was successfully compiled.

	 3.	 Next,	enter	the	following	command	to	run	the	program:

java MyFirstProgram

Be sure to use the capitalization of MyFirstProgram exactly as it is shown here. You
should	see	the	message	“Hello	World!”	displayed	on	the	screen.

if You Are Using an iDe:

Because there are many Java IDEs, we cannot include specific instructions for all of these.
The following are general steps that should apply to most of them. You will need to consult
your IDE’s documentation for specific instructions.

 1. Start your Java IDE and perform any necessary setup operations, such as starting a
new project and creating a new Java source file.

	 2.	 Use	the	IDE’s	text	editor	to	type	the	source	code	exactly	as	it	 is	shown.	Be	sure	to	
place all the punctuation characters and be careful to match the case of the letters as
they are shown. Save it to a file named MyFirstProgram.java.

 3. After saving the program, use your IDE’s command to compile the program. If you
typed the contents of the file exactly as shown, you shouldn’t have any syntax errors.
If you see error messages, compare your code to that shown. Correct any mistakes you
have made, save the file, and run the compiler again. If you see no error messages, the
file was successfully compiled.

Use	your	 IDE’s	 command	 to	 run	 the	program.	You	 should	 see	 the	message	“Hello	
World!”	displayed.

27

Java Fundamentals

C
H

A
P

T
E

R

2
Topics

 2.1 The Parts of a Java Program
 2.2 The print and println Methods, and

the Java API
 2.3 Variables and Literals
 2.4 Primitive Data Types
 2.5 Arithmetic Operators
 2.6 Combined Assignment Operators
 2.7 Conversion between Primitive Data

Types

 2.8 Creating Named Constants with final
 2.9 The String Class
 2.10 Scope
 2.11 Comments
 2.12 Programming Style
 2.13 Reading Keyboard Input
 2.14 Dialog Boxes
 2.15 Common Errors to Avoid

2.1 The parts of a Java program

concepT: A Java program has parts that serve specific purposes.

Java programs are made up of different parts. Your first step in learning Java is to learn what
the parts are. We will begin by looking at a simple example, shown in Code Listing 2-1.

code Listing 2-1 (Simple.java)

 1 // This is a simple Java program.
 2
 3 public class Simple
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.println("Programming is great fun!");
 8 }
 9 }

28 Chapter 2 Java Fundamentals

As mentioned in Chapter 1, the names of Java source code files end with .java. The program
shown in Code Listing 2-1 is named Simple.java. Using the Java compiler, this program may
be compiled with the following command:

javac Simple.java

The compiler will create another file named Simple.class, which contains the translated Java
byte code. This file can be executed with the following command:

java Simple

Tip: Remember, the line numbers shown in the program listings are not part of the pro-
gram. The numbers are shown so we can refer to specific lines in the programs.

Tip: Remember, you do not type the .class extension when using the java command.

The output of the program is as follows. This is what appears on the screen when the
 program runs.

program output

Programming is great fun!

Let’s examine the program line by line. Here’s the statement in line 1:

// This is a simple Java program.

Other than the two slash marks that begin this line, it looks pretty much like an ordinary
sentence. The // marks the beginning of a comment. The compiler ignores everything from
the double-slash to the end of the line. That means you can type anything you want on that
line and the compiler never complains. Although comments are not required, they are very
important to programmers. Most programs are much more complicated than this example,
and comments help explain what’s going on.

Line 2 is blank. Programmers often insert blank lines in programs to make them easier to
read. Line 3 reads:

public class Simple

This line is known as a class header, and it marks the beginning of a class definition. One of
the uses of a class is to serve as a container for an application. As you progress through this
book, you will learn more and more about classes. For now, just remember that a Java pro-
gram must have at least one class definition. This line of code consists of three words:
public, class, and Simple. Let’s take a closer look at each word.

•	 public is a Java key word, and it must be written in all lowercase letters. It is known
as an access specifier, and it controls where the class may be accessed from. The public
specifier means access to the class is unrestricted. (In other words, the class is “open to
the public.”)

•	 class, which must also be written in lowercase letters, is a Java key word that indi-
cates the beginning of a class definition.

 2.1 The Parts of a Java Program 29

•	 Simple is the class name. This name was made up by the programmer. The class
could have been called Pizza, or Dog, or anything else the programmer wanted.
Programmer-defined names may be written in lowercase letters, uppercase letters, or
a mixture of both.

In a nutshell, this line of code tells the compiler that a publicly accessible class named
Simple is being defined. Here are two more points to know about classes:

•	 You	may	create	more	than	one	class	in	a	file,	but	you	may	have	only	one	public class
per Java file.

•	 When	a	Java	file	has	a	public class, the name of the public class must be the same as the
name of the file (without the .java extension). For instance, the program in Code Listing 2-1
has a public class named Simple, so it is stored in a file named Simple.java.

noTe: Java is a case-sensitive language. That means it regards uppercase letters as
being entirely different characters than their lowercase counterparts. The word Public is
not the same as public, and Class is not the same as class. Some words in a Java pro-
gram must be entirely in lowercase, while other words may use a combination of lower
and uppercase characters. Later in this chapter, you will see a list of all the Java key
words, which must appear in lowercase.

Line 4 contains only a single character:

{

This is called a left brace, or an opening brace, and is associated with the beginning of the
class definition. All of the programming statements that are part of the class are enclosed
in a set of braces. If you glance at the last line in the program, line 9, you’ll see the closing
brace. Everything between the two braces is the body of the class named Simple. Here is
the program code again, this time the body of the class definition is shaded.

// This is a simple Java program.
public class Simple
{
 public static void main(String[] args)
 {
 System.out.println("Programming is great fun!");
 }
}

Warning! Make sure you have a closing brace for every opening brace in
your program!

Line 5 reads:

public static void main(String[] args)

This line is known as a method header. It marks the beginning of a method. A method can
be thought of as a group of one or more programming statements that collectively has a
name. When creating a method, you must tell the compiler several things about it. That is

30 Chapter 2 Java Fundamentals

why this line contains so many words. At this point, the only thing you should be concerned
about is that the name of the method is main, and the rest of the words are required for the
method to be properly defined. This is shown in Figure 2-1.

Recall from Chapter 1 that a stand-alone Java program that runs on your computer is
known as an application. Every Java application must have a method named main. The main
method is the starting point of an application.

Name of the Method

Figure 2-1 The main method header

Line 6 has another opening brace:

{

This opening brace belongs to the main method. Remember that braces enclose statements,
and every opening brace must have an accompanying closing brace. If you look at line 8
you will see the closing brace that corresponds with this opening brace. Everything between
these braces is the body of the main method.

Line 7 appears as follows:

System.out.println("Programming is great fun!");

To put it simply, this line displays a message on the screen. The message, “Programming is
great fun!” is printed without the quotation marks. In programming terms, the group of
characters inside the quotation marks is called a string literal.

noTe: For the time being, all the programs you will write will consist of a class with a
main method whose header looks exactly like the one shown in Code Listing 2-1. As you
progress through this book you will learn what public static void and (String[] args)
mean. For now, just assume that you are learning a “recipe” for assembling a Java program.

noTe: This is the only line in the program that causes anything to be printed on the screen.
The other lines, like public class Simple and public static void main(String[] args),
are necessary for the framework of your program, but they do not cause any screen out-
put. Remember, a program is a set of instructions for the computer. If something is to be
displayed on the screen, you must use a programming statement for that purpose.

At the end of the line is a semicolon. Just as a period marks the end of a sentence, a semico-
lon marks the end of a statement in Java. Not every line of code ends with a semicolon,
however. Here is a summary of where you do not place a semicolon:

 2.1 The Parts of a Java Program 31

•	 Comments	do	not	have	to	end	with	a	semicolon	because	they	are	ignored	by	the		compiler.
•	 Class	headers	and	method	headers	do	not	end	with	a	semicolon	because	they	are	

 terminated with a body of code inside braces.
•	 The	brace	characters,	{ and }, are not statements, so you do not place a semicolon

after them.

It might seem that the rules for where to put a semicolon are not clear at all. For now, just
concentrate on learning the parts of a program. You’ll soon get a feel for where you should
and should not use semicolons.

As has already been pointed out, lines 8 and 9 contain the closing braces for the main
method and the class definition:

 }
}

Before continuing, let’s review the points we just covered, including some of the more
 elusive rules.

•	 Java	is	a	case-sensitive	language.	It	does	not	regard	uppercase	letters	as	being	the	same	
character as their lowercase equivalents.

•	 All	Java	programs	must	be	stored	in	a	file	with	a	name	that	ends	with	.java.
•	 Comments	are	ignored	by	the	compiler.
•	 A	.java file may contain many classes, but may have only one public class. If a .java

file has a public class, the class must have the same name as the file. For instance, if
the file Pizza.java contains a public class, the class’s name would be Pizza.

•	 Every	Java	application	program	must	have	a	method	named	main.
•	 For	every	left	brace,	or	opening	brace,	there	must	be	a	corresponding	right	brace,	or	

closing brace.
•	 Statements	are	terminated	with	semicolons.	This	does	not	include	comments,	class	

headers, method headers, or braces.

In the sample program, you encountered several special characters. Table 2-1 summarizes
how they were used.

Table 2-1 Special characters

Characters Name Meaning

// Double slash Marks the beginning of a comment

() Opening and closing
parentheses

Used in a method header

{ } Opening and closing
braces

Encloses a group of statements, such as the contents
of a class or a method

" " Quotation marks Encloses a string of characters, such as a message
that is to be printed on the screen

; Semicolon Marks the end of a complete programming
 statement

32 Chapter 2 Java Fundamentals

checkpoint

www.myprogramminglab.com

2.1 The following program will not compile because the lines have been mixed up.

public static void main(String[] args)
}
// A crazy mixed up program
public class Columbus
{
System.out.println("In 1492 Columbus sailed the ocean blue.");
{
}

 When the lines are properly arranged, the program should display the following on
the screen:

In 1492 Columbus sailed the ocean blue.

 Rearrange the lines in the correct order. Test the program by entering it on the
 computer, compiling it, and running it.

2.2 When the program in Question 2.1 is saved to a file, what should the file be named?

2.3 Complete the following program skeleton so it displays the message “Hello World”
on the screen.

public class Hello
{
 public static void main(String[] args)
 {
 // Insert code here to complete the program
 }
}

2.4 On paper, write a program that will display your name on the screen. Place a com-
ment with today’s date at the top of the program. Test your program by entering,
compiling, and running it.

2.5 All Java source code filenames must end with __________.
a) a semicolon
b) .class
c) .java
d) none of the above

2.6 Every Java application program must have __________.
a) a method named main
b) more than one class definition
c) one or more comments

http://www.myprogramminglab.com

 2.2 The print and println Methods, and the Java API 33

2.2 The print and println Methods, and the Java api

concepT: The print and println methods are used to display text output. They
are part of the Java API, which is a collection of prewritten classes and
methods for performing specific operations.

In this section, you will learn how to write programs that produce output on the screen. The
simplest type of output that a program can display on the screen is console output. Console
output is merely plain text. When you display console output in a system that uses a graph-
ical user interface, such as Windows or Mac OS, the output usually appears in a window
similar to the one shown in Figure 2-2.

Figure 2-2 A console window (Microsoft Corporation)

The word console is an old computer term. It comes from the days when the operator of a
large computer system interacted with the system by typing on a terminal that consisted of
a simple screen and keyboard. This terminal was known as the console. The console screen,
which displayed only text, was known as the standard output device. Today, the term stan-
dard output device typically refers to the device that displays console output.

Performing output in Java, as well as many other tasks, is accomplished by using the Java
API. The term API stands for Application Programmer Interface. The API is a standard
library of prewritten classes for performing specific operations. These classes and their
methods are available to all Java programs. The print and println methods are part of the
API and provide ways for output to be displayed on the standard output device.

The program in Code Listing 2-1 (Simple.java) uses the following statement to print a
 message on the screen:

System.out.println("Programming is great fun!");

System is a class that is part of the Java API. The System class contains objects and methods
that perform system-level operations. One of the objects contained in the System class is
named out. The out object has methods, such as print and println, for performing output
on the system console, or standard output device. The hierarchical relationship among
System, out, print, and println is shown in Figure 2-3.

Displaying
Console Output

VideoNote

34 Chapter 2 Java Fundamentals

Here is a brief summary of how it all works together:

•	 The	System class is part of the Java API. It has member objects and methods for per-
forming system-level operations, such as sending output to the console.

•	 The	out object is a member of the System class. It provides methods for sending out-
put to the screen.

•	 The	print and println methods are members of the out object. They actually perform
the work of writing characters on the screen.

This hierarchy explains why the statement that executes println is so long. The sequence
System.out.println specifies that println is a member of out, which is a member of System.

Figure 2-3 Relationship among the System class, the out object, and the
print and println methods

noTe: The period that separates the names of the objects is pronounced “dot.”
System.out.println is pronounced “system dot out dot print line.”

The value that is to be displayed on the screen is placed inside the parentheses. This value is
known as an argument. For example, the following statement executes the println method
using the string "King Arthur" as its argument. This will print “King Arthur” on the screen.
(The quotation marks are not displayed.)

System.out.println("King Arthur");

An important thing to know about the println method is that after it displays its message,
it advances the cursor to the beginning of the next line. The next item printed on the screen
will begin in this position. For example, look at the program in Code Listing 2-2.

Because each string is printed with separate println statements in Code Listing 2-2, they
appear on separate lines in the Program Output.

 2.2 The print and println Methods, and the Java API 35

code Listing 2-2 (TwoLines.java)

 1 // This is another simple Java program.
 2
 3 public class TwoLines
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.println("Programming is great fun!");
 8 System.out.println("I can't get enough of it!");
 9 }
10 }

program output

Programming is great fun!
I can't get enough of it!

The print Method

The print method, which is also part of the System.out object, serves a purpose similar to
that of println—to display output on the screen. The print method, however, does not
advance the cursor to the next line after its message is displayed. Look at Code Listing 2-3.

code Listing 2-3 (GreatFun.java)

 1 // This is another simple Java program.
 2
 3 public class GreatFun
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.print("Programming is ");
 8 System.out.println("great fun!");
 9 }
10 }

program output

Programming is great fun!

An important concept to understand about Code Listing 2-3 is that, although the output is
broken up into two programming statements, this program will still display the message on
one line. The data that you send to the print method is displayed in a continuous stream.
Sometimes this can produce less-than-desirable results. The program in Code Listing 2-4 is
an example.

36 Chapter 2 Java Fundamentals

code Listing 2-4 (Unruly.java)

 1 // An unruly printing program
 2
 3 public class Unruly
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.print("These are our top sellers:");
 8 System.out.print("Computer games");
 9 System.out.print("Coffee");
10 System.out.println("Aspirin");
11 }
12 }

program output

These are our top sellers:Computer gamesCoffeeAspirin

The layout of the actual output looks nothing like the arrangement of the strings in the source
code. First, even though the output is broken up into four lines in the source code (lines 7
through 10), it comes out on the screen as one line. Second, notice that some of the words
that are displayed are not separated by spaces. The strings are displayed exactly as they are
sent to the print method. If spaces are to be displayed, they must appear in the strings.

There are two ways to fix this program. The most obvious way is to use println methods
instead of print methods. Another way is to use escape sequences to separate the output
into different lines. An escape sequence starts with the backslash character (\), and is fol-
lowed by one or more control characters. It allows you to control the way output is dis-
played by embedding commands within the string itself. The escape sequence that causes
the output cursor to go to the next line is \n. Code Listing 2-5 illustrates its use.

code Listing 2-5 (Adjusted.java)

 1 // A well adjusted printing program
 2
 3 public class Adjusted
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.print("These are our top sellers:\n");
 8 System.out.print("Computer games\nCoffee\n");
 9 System.out.println("Aspirin");
10 }
11 }

program output

These are our top sellers:
Computer games
Coffee
Aspirin

 2.2 The print and println Methods, and the Java API 37

The \n characters are called the newline escape sequence. When the print or println
method encounters \n in a string, it does not print the \n characters on the screen, but inter-
prets them as a special command to advance the output cursor to the next line. There are
several other escape sequences as well. For instance, \t is the tab escape sequence. When
print or println encounters it in a string, it causes the output cursor to advance to the next
tab position. Code Listing 2-6 shows it in use.

code Listing 2-6 (Tabs.java)

 1 // Another well-adjusted printing program
 2
 3 public class Tabs
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.print("These are our top sellers:\n");
 8 System.out.print("\tComputer games\n\tCoffee\n");
 9 System.out.println("\tAspirin");
10 }
11 }

program output

These are our top sellers:
 Computer games
 Coffee
 Aspirin

Table 2-2 Common escape sequences

Escape
Sequence Name Description

\n Newline Advances the cursor to the next line for subsequent printing

\t Horizontal tab Causes the cursor to skip over to the next tab stop

\b Backspace Causes the cursor to back up, or move left, one position

\r Return Causes the cursor to go to the beginning of the current line, not
the next line

\\ Backslash Causes a backslash to be printed

\' Single quote Causes a single quotation mark to be printed

\" Double quote Causes a double quotation mark to be printed

noTe: Although you have to type two characters to write an escape sequence, they are
stored in memory as a single character.

Table 2-2 lists the common escape sequences and describes them.

38 Chapter 2 Java Fundamentals

checkpoint

www.myprogramminglab.com

2.7 The following program will not compile because the lines have been mixed up.

System.out.print("Success\n");
}
public class Success
{
System.out.print("Success\n");
public static void main(String[] args)
System.out.print("Success ");
}
// It's a mad, mad program.
System.out.println("\nSuccess");
{

 When the lines are arranged properly, the program should display the following
output on the screen:

 Program Output

Success
Success Success

Success

 Rearrange the lines in the correct order. Test the program by entering it on the
 computer, compiling it, and running it.

2.8 Study the following program and show what it will print on the screen.

// The Works of Wolfgang
public class Wolfgang
{
 public static void main(String[] args)
 {
 System.out.print("The works of Wolfgang\ninclude ");
 System.out.print("the following");
 System.out.print("\nThe Turkish March ");
 System.out.print("and Symphony No. 40 ");
 System.out.println("in G minor.");
 }
}

2.9 On paper, write a program that will display your name on the first line; your street
address on the second line; your city, state, and ZIP code on the third line; and your
telephone number on the fourth line. Place a comment with today’s date at the top
of the program. Test your program by entering, compiling, and running it.

Warning! Do not confuse the backslash (\) with the forward slash (/). An escape
sequence will not work if you accidentally start it with a forward slash. Also, do not put
a space between the backslash and the control character.

http://www.myprogramminglab.com

 2.3 Variables and Literals 39

2.3 Variables and Literals

concepT: A variable is a named storage location in the computer’s memory. A literal
is a value that is written into the code of a program.

As you discovered in Chapter 1, variables allow you to store and work with data in the
computer’s memory. Part of the job of programming is to determine how many variables a
program will need and what types of data they will hold. The program in Code Listing 2-7
is an example of a Java program with a variable.

code Listing 2-7 (Variable.java)

 1 // This program has a variable.
 2
 3 public class Variable
 4 {
 5 public static void main(String[] args)
 6 {
 7 int value;
 8
 9 value = 5;
10 System.out.print("The value is ");
11 System.out.println(value);
12 }
13 }

program output

The value is 5

Let’s look more closely at this program. Here is line 7:

int value;

This is called a variable declaration. Variables must be declared before they can be used. A
variable declaration tells the compiler the variable’s name and the type of data it will hold.
This line indicates the variable’s name is value. The word int stands for integer, so value
will only be used to hold integer numbers. Notice that variable declarations end with a
semicolon. The next statement in this program appears in line 9:

value = 5;

This is called an assignment statement. The equal sign is an operator that stores the value
on its right (in this case 5) into the variable named on its left. After this line executes, the
value variable will contain the value 5.

noTe: This line does not print anything on the computer screen. It runs silently behind
the scenes.

Declaring
Variables

VideoNote

40 Chapter 2 Java Fundamentals

Now look at lines 10 and 11:

System.out.print("The value is ");
System.out.println(value);

The statement in line 10 sends the string literal “The value is ” to the print method. The
statement in line 11 sends the name of the value variable to the println method. When you
send a variable name to print or println, the variable’s contents are displayed. Notice there
are no quotation marks around value. Look at what happens in Code Listing 2-8.

code Listing 2-8 (Variable2.java)

 1 // This program has a variable.
 2
 3 public class Variable2
 4 {
 5 public static void main(String[] args)
 6 {
 7 int value;
 8
 9 value = 5;
10 System.out.print("The value is ");
11 System.out.println("value");
12 }
13 }

program output

The value is value

When double quotation marks are placed around the word value it becomes a string literal,
not a variable name. When string literals are sent to print or println, they are displayed
exactly as they appear inside the quotation marks.

Displaying Multiple items with the + operator
When the + operator is used with strings, it is known as the string concatenation operator.
To concatenate means to append, so the string concatenation operator appends one string
to another. For example, look at the following statement:

System.out.println("This is " + "one string.");

This statement will print:

This is one string.

The + operator produces a string that is the combination of the two strings used as its oper-
ands. You can also use the + operator to concatenate the contents of a variable to a string.
The following code shows an example:

number = 5;
System.out.println("The value is " + number);

 2.3 Variables and Literals 41

The second line uses the + operator to concatenate the contents of the number variable with
the string “The value is ”. Although number is not a string, the + operator converts its value
to a string and then concatenates that value with the first string. The output that will be
displayed is:

The value is 5

Sometimes the argument you use with print or println is too long to fit on one line in your
program code. However, a string literal cannot begin on one line and end on another. For
example, the following will cause an error:

// This is an error!
System.out.println("Enter a value that is greater than zero
 and less than 10.");

You can remedy this problem by breaking the argument up into smaller string literals, and
then using the string concatenation operator to spread them out over more than one line.
Here is an example:

System.out.println("Enter a value that is " +
 "greater than zero and less " +
 "than 10.");

In this statement, the argument is broken up into three strings and joined using the + opera-
tor. The following example shows the same technique used when the contents of a variable
are part of the concatenation:

sum = 249;
System.out.println("The sum of the three " +
 "numbers is " + sum);

Be careful with Quotation Marks
As shown in Code Listing 2-8, placing quotation marks around a variable name changes the
program’s results. In fact, placing double quotation marks around anything that is not
intended to be a string literal will create an error of some type. For example, in Code
 Listings 2-7 and 2-8, the number 5 was assigned to the variable value. It would have been
an error to perform the assignment this way:

value = "5"; // Error!

In this statement, 5 is no longer an integer, but a string literal. Because value was declared
as an integer variable, you can only store integers in it. In other words, 5 and “5” are not the
same thing.

The fact that numbers can be represented as strings frequently confuses students who are
new to programming. Just remember that strings are intended for humans to read. They are
to be printed on computer screens or paper. Numbers, however, are intended primarily for
mathematical operations. You cannot perform math on strings, and before numbers can be
displayed on the screen, first they must be converted to strings. (Fortunately, print and
println handle the conversion automatically when you send numbers to them.) Don’t fret
if this still bothers you. Later in this chapter, we will shed more light on the differences
among numbers, characters, and strings by discussing their internal storage.

42 Chapter 2 Java Fundamentals

More about Literals
A literal is a value that is written in the code of a program. Literals are commonly assigned
to variables or displayed. Code Listing 2-9 contains both literals and a variable.

code Listing 2-9 (Literals.java)

 1 // This program has literals and a variable.
 2
 3 public class Literals
 4 {
 5 public static void main(String[] args)
 6 {
 7 int apples;
 8
 9 apples = 20;
10 System.out.println("Today we sold " + apples +
11 " bushels of apples.");
12 }
13 }

program output

Today we sold 20 bushels of apples.

Of course, the variable in this program is apples. It is declared as an integer. Table 2-3
shows a list of the literals found in the program.

Table 2-3 Literals

Literal Type of Literal

20 Integer literal

“Today we sold ” String literal

“ bushels of apples.” String literal

identifiers
An identifier is a programmer-defined name that represents some element of a program.
Variable names and class names are examples of identifiers. You may choose your own vari-
able names and class names in Java, as long as you do not use any of the Java key words.
The key words make up the core of the language and each has a specific purpose. Table 1-3
in Chapter 1 and Appendix D (available on the book’s companion Web site) show a
 complete list of Java key words.

You should always choose names for your variables that give an indication of what they are
used for. You may be tempted to declare variables with names like this:

int x;

 2.3 Variables and Literals 43

The rather nondescript name, x, gives no clue as to what the variable’s purpose is. Here is a
better example.

int itemsOrdered;

The name itemsOrdered gives anyone reading the program an idea of what the variable is
used for. This method of coding helps produce self-documenting programs, which means
you get an understanding of what the program is doing just by reading its code. Because
real-world programs usually have thousands of lines of code, it is important that they be as
self-documenting as possible.

You have probably noticed the mixture of uppercase and lowercase letters in the name
itemsOrdered. Although all of Java’s key words must be written in lowercase, you may use
uppercase letters in variable names. The reason the O in itemsOrdered is capitalized is to
improve readability. Normally “items ordered” is used as two words. Variable names can-
not contain spaces, however, so the two words must be combined. When “items” and
“ordered” are stuck together, you get a variable declaration like this:

int itemsordered;

Capitalization of the letter O makes itemsOrdered easier to read. Typically, variable names
begin with a lowercase letter, and after that, the first letter of each individual word that
makes up the variable name is capitalized.

The following are some specific rules that must be followed with all identifiers:

•	 The	first	character	must	be	one	of	the	letters	a–z	or	A–Z,	an	underscore	(_),	or	a	dollar	
sign ($).

•	 After	the	first	character,	you	may	use	the	letters	a–z	or	A–Z,	the	digits	0–9,	under-
scores (_), or dollar signs ($).

•	 Uppercase	and	lowercase	characters	are	distinct.	This	means	itemsOrdered is not the
same as itemsordered.

•	 Identifiers	cannot	include	spaces.

Table 2-4 Some variable names

Variable Name Legal or Illegal?

dayOfWeek Legal

3dGraph Illegal because identifiers cannot begin with a digit

june1997 Legal

mixture#3 Illegal because identifiers may use only alphabetic letters, digits,
underscores, or dollar signs

week day Illegal because identifiers cannot contain spaces

noTe: Although the $ is a legal identifier character, it is normally used for special pur-
poses. So, don’t use it in your variable names.

Table 2-4 shows a list of variable names and tells whether each is legal or illegal in Java.

44 Chapter 2 Java Fundamentals

class names
As mentioned before, it is standard practice to begin variable names with a lowercase letter,
and then capitalize the first letter of each subsequent word that makes up the name. It is
also a standard practice to capitalize the first letter of a class name, as well as the first letter
of each subsequent word it contains. This helps differentiate the names of variables from
the names of classes. For example, payRate would be a variable name, and Employee would
be a class name.

checkpoint

www.myprogramminglab.com

2.10 Examine the following program.

// This program uses variables and literals.

public class BigLittle
{
 public static void main(String[] args)
 {
 int little;
 int big;

 little = 2;
 big = 2000;
 System.out.println("The little number is " + little);
 System.out.println("The big number is " + big);
 }
}

 List the variables and literals found in the program.

2.11 What will the following program display on the screen?

public class CheckPoint
{
 public static void main(String[] args)
 {
 int number;

 number = 712;
 System.out.println("The value is " + "number");
 }
}

2.4 primitive Data Types

concepT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of data that may be stored
in them.

http://www.myprogramminglab.com

 2.4 Primitive Data Types 45

Computer programs collect pieces of data from the real world and manipulate them in
various ways. There are many different types of data. In the realm of numeric data, for
example, there are whole and fractional numbers, negative and positive numbers, and num-
bers so large and others so small that they don’t even have a name. Then there is textual
information. Names and addresses, for instance, are stored as strings of characters. When
you write a program you must determine what types of data it is likely to encounter.

Each variable has a data type, which is the type of data that the variable can hold. Selecting
the proper data type is important because a variable’s data type determines the amount of
memory the variable uses, and the way the variable formats and stores data. It is important
to select a data type that is appropriate for the type of data that your program will work
with. If you are writing a program to calculate the number of miles to a distant star, you need
variables that can hold very large numbers. If you are designing software to record micro-
scopic dimensions, you need variables that store very small and precise numbers. If you are
writing a program that must perform thousands of intensive calculations, you want variables
that can be processed quickly. The data type of a variable determines all of these factors.

Table 2-5 shows all of the Java primitive data types for holding numeric data.

The words listed in the left column of Table 2-5 are the key words that you use in variable
declarations. A variable declaration takes the following general format:

DataType VariableName;

Table 2-5 Primitive data types for numeric data

Data Type Size Range

byte 1 byte Integers in the range of −128 to +127

short 2 bytes Integers in the range of −32,768 to +32,767

int 4 bytes Integers in the range of −2,147,483,648 to +2,147,483,647

long 8 bytes Integers in the range of −9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float 4 bytes Floating-point numbers in the range of ±3.4 × 10−38 to ±3.4 × 1038,
with 7 digits of accuracy

double 8 bytes Floating-point numbers in the range of ±1.7 × 10−308 to ±1.7 × 10308,
with 15 digits of accuracy

DataType is the name of the data type and VariableName is the name of the variable.
Here are some examples of variable declarations:

byte inches;
int speed;
short month;
float salesCommission;
double distance;

The size column in Table 2-5 shows the number of bytes that a variable of each of the data
types uses. For example, an int variable uses 4 bytes, and a double variable uses 8 bytes.

46 Chapter 2 Java Fundamentals

The range column shows the ranges of numbers that may be stored in variables of each data
type. For example, an int variable can hold numbers from −2,147,483,648 up to
+2,147,483,647. One of the appealing characteristics of the Java language is that the sizes
and ranges of all the primitive data types are the same on all computers.

noTe: These data types are called “primitive” because you cannot use them to create
objects. Recall from Chapter 1’s discussion on object-oriented programming that an
object has attributes and methods. With the primitive data types, you can only create
variables, and a variable can only be used to hold a single value. Such variables do not
have attributes or methods.

The integer Data Types
The first four data types listed in Table 2-5, byte, int, short, and long, are all integer data
types. An integer variable can hold whole numbers such as 7, 125, −14, and 6928. The program
in Code Listing 2-10 shows several variables of different integer data types being used.

code Listing 2-10 (IntegerVariables.java)

 1 // This program has variables of several of the integer types.
 2
 3 public class IntegerVariables
 4 {
 5 public static void main(String[] args)
 6 {
 7 int checking; // Declare an int variable named checking.
 8 byte miles; // Declare a byte variable named miles.
 9 short minutes; // Declare a short variable named minutes.
10 long days; // Declare a long variable named days.
11
12 checking = -20;
13 miles = 105;
14 minutes = 120;
15 days = 189000;
16 System.out.println("We have made a journey of " + miles +
17 " miles.");
18 System.out.println("It took us " + minutes + " minutes.");
19 System.out.println("Our account balance is $" + checking);
20 System.out.println("About " + days + " days ago Columbus " +
21 "stood on this spot.");
22 }
23 }

program output

We have made a journey of 105 miles.
It took us 120 minutes.
Our account balance is $-20
About 189000 days ago Columbus stood on this spot.

 2.4 Primitive Data Types 47

In most programs you will need more than one variable of any given data type. If a program
uses three integers, length, width, and area, they could be declared separately, as follows:

int length;
int width;
int area;

It is easier, however, to combine the three variable declarations:

int length, width, area;

You can declare several variables of the same type, simply by separating their names
with commas.

integer Literals

When you write an integer literal in your program code, Java assumes it to be of the int
data type. For example, in Code Listing 2-10, the literals −20, 105, 120, and 189000 are all
treated as int values. You can force an integer literal to be treated as a long, however, by
suffixing it with the letter L. For example, the value 57L would be treated as a long.
Although you can use either an uppercase or a lowercase L, it is advisable to use the upper-
case L because the lowercase l looks too much like the number 1.

Warning! You cannot embed commas in numeric literals. For example, the follow-
ing statement will cause an error:

number = 1,257,649; // ERROR!

This statement must be written as:

number = 1257649; // Correct.

Floating-point Data Types
Whole numbers are not adequate for many jobs. If you are writing a program that works
with dollar amounts or precise measurements, you need a data type that allows fractional
values. In programming terms, these are called floating-point numbers. Values such as 1.7
and −45.316 are floating-point numbers.

In Java there are two data types that can represent floating-point numbers. They are float
and double. The float data type is considered a single precision data type. It can store a
floating-point number with 7 digits of accuracy. The double data type is considered a dou-
ble precision data type. It can store a floating-point number with 15 digits of accuracy. The
double data type uses twice as much memory as the float data type, however. A float vari-
able occupies 4 bytes of memory, whereas a double variable uses 8 bytes.

Code Listing 2-11 shows a program that uses three double variables.

code Listing 2-11 (Sale.java)

 1 // This program demonstrates the double data type.
 2
 3 public class Sale
 4 {

48 Chapter 2 Java Fundamentals

 5 public static void main(String[] args)
 6 {
 7 double price, tax, total;
 8
 9 price = 29.75;
10 tax = 1.76;
11 total = 31.51;
12 System.out.println("The price of the item " +
13 "is " + price);
14 System.out.println("The tax is " + tax);
15 System.out.println("The total is " + total);
16 }
17 }

program output

The price of the item is 29.75
The tax is 1.76
The total is 31.51

Floating-point Literals

When you write a floating-point literal in your program code, Java assumes it to be of the
double data type. For example, in Code Listing 2-11, the literals 29.75, 1.76, and 31.51
are all treated as double values. Because of this, a problem can arise when assigning a
floating-point literal to a float variable. Java is a strongly typed language, which means
that it only allows you to store values of compatible data types in variables. A double
value is not compatible with a float variable because a double can be much larger or
much smaller than the allowable range for a float. As a result, code such as the following
will cause an error:

float number;
number = 23.5; // Error!

You can force a double literal to be treated as a float, however, by suffixing it with the letter
F or f. The preceding code can be rewritten in the following manner to prevent an error:

float number;
number = 23.5F; // This will work.

Warning! If you are working with literals that represent dollar amounts, remember
that you cannot embed currency symbols (such as $) or commas in the literal. For exam-
ple, the following statement will cause an error:

grossPay = $1,257.00; // ERROR!

This statement must be written as:

grossPay = 1257.00; // Correct.

 2.4 Primitive Data Types 49

scientific and e notation

Floating-point literals can be represented in scientific notation. Take the number 47,281.97.
In scientific notation this number is 4.728197 × 104. (104 is equal to 10,000, and 4.728197
× 10,000 is 47,281.97.)

Java uses E notation to represent values in scientific notation. In E notation, the number
4.728197 × 104 would be 4.728197E4. Table 2-6 shows other numbers represented in
 scientific and E notation.

Table 2-6 Floating-point representations

Decimal Notation Scientific Notation E Notation

247.91 2.4791 × 102 2.4791E2

0.00072 7.2 × 10−4 7.2E–4

2,900,000 2.9 × 106 2.9E6

noTe: The E can be uppercase or lowercase.

code Listing 2-12 (SunFacts.java)

 1 // This program uses E notation.
 2
 3 public class SunFacts
 4 {
 5 public static void main(String[] args)
 6 {
 7 double distance, mass;
 8
 9 distance = 1.495979E11;
10 mass = 1.989E30;
11 System.out.println("The sun is " + distance +
12 " meters away.");
13 System.out.println("The sun's mass is " + mass +
14 " kilograms.");
15 }
16 }

program output

The sun is 1.495979E11 meters away.
The sun's mass is 1.989E30 kilograms.

Code Listing 2-12 demonstrates the use of floating-point literals expressed in E notation.

50 Chapter 2 Java Fundamentals

The boolean Data Type
The boolean data type allows you to create variables that may hold one of two possible
values: true or false. Code Listing 2-13 demonstrates the declaration and assignment of a
boolean variable.

code Listing 2-13 (TrueFalse.java)

 1 // A program for demonstrating boolean variables
 2
 3 public class TrueFalse
 4 {
 5 public static void main(String[] args)
 6 {
 7 boolean bool;
 8
 9 bool = true;
10 System.out.println(bool);
11 bool = false;
12 System.out.println(bool);
13 }
14 }

program output

true
false

Variables of the boolean data type are useful for evaluating conditions that are either true
or false. You will not be using them until Chapter 3, however, so for now just remember the
following things:

•	 boolean variables may hold only the value true or false.
•	 The	contents	of	a	boolean variable may not be copied to a variable of any type other

than boolean.

The char Data Type
The char data type is used to store characters. A variable of the char data type can hold one
character at a time. Character literals are enclosed in single quotation marks. The program
in Code Listing 2-14 uses a char variable. The character literals ‘A’ and ‘B’ are assigned to
the variable.

code Listing 2-14 (Letters.java)

 1 // This program demonstrates the char data type.
 2
 3 public class Letters
 4 {
 5 public static void main(String[] args)

 2.4 Primitive Data Types 51

 6 {
 7 char letter;
 8
 9 letter = 'A';
10 System.out.println(letter);
11 letter = 'B';
12 System.out.println(letter);
13 }
14 }

program output

A
B

It is important that you do not confuse character literals with string literals, which are
enclosed in double quotation marks. String literals cannot be assigned to char variables.

Unicode

Characters are internally represented by numbers. Each printable character, as well as many
non-printable characters, is assigned a unique number. Java uses Unicode, which is a set of
numbers that are used as codes for representing characters. Each Unicode number requires
two bytes of memory, so char variables occupy two bytes. When a character is stored in
memory, it is actually the numeric code that is stored. When the computer is instructed to
print the value on the screen, it displays the character that corresponds with the numeric code.

You may want to refer to Appendix B, available on the book’s companion Web site (at
www.pearsonhighered.com/gaddis), which shows a portion of the Unicode character
set. Notice that the number 65 is the code for A, 66 is the code for B, and so on. Code
Listing 2-15 demonstrates that when you work with characters, you are actually working
with numbers.

code Listing 2-15 (Letters2.java)

 1 // This program demonstrates the close relationship between
 2 // characters and integers.
 3
 4 public class Letters2
 5 {
 6 public static void main(String[] args)
 7 {
 8 char letter;
 9
10 letter = 65;
11 System.out.println(letter);
12 letter = 66;
13 System.out.println(letter);
14 }
15 }

http://www.pearsonhighered.com/gaddis

52 Chapter 2 Java Fundamentals

program output

A
B

Figure 2-4 illustrates that when you think of the characters A, B, and C being stored in
memory, it is really the numbers 65, 66, and 67 that are stored.

Figure 2-4 Characters and how they are stored in memory

Variable assignment and initialization
As you have already seen in several examples, a value is put into a variable with an assign-
ment statement. For example, the following statement assigns the value 12 to the variable
unitsSold:

unitsSold = 12;

The = symbol is called the assignment operator. Operators perform operations on data. The
data that operators work with are called operands. The assignment operator has two oper-
ands. In the statement above, the operands are unitsSold and 12.

In an assignment statement, the name of the variable receiving the assignment must appear
on the left side of the operator, and the value being assigned must appear on the right side.
The following statement is incorrect:

12 = unitsSold; // ERROR!

The operand on the left side of the = operator must be a variable name. The operand on the
right side of the = symbol must be an expression that has a value. The assignment operator
takes the value of the right operand and puts it in the variable identified by the left operand.
Assuming that length and width are both int variables, the following code illustrates that
the assignment operator’s right operand may be a literal or a variable:

length = 20;
width = length;

It is important to note that the assignment operator only changes the contents of its left
operand. The second statement assigns the value of the length variable to the width vari-
able. After the statement has executed, length still has the same value, 20.

You may also assign values to variables as part of the declaration statement. This is known
as initialization. Code Listing 2-16 shows how it is done.

The variable declaration statement in this program is in line 7:

int month = 2, days = 28;

 2.4 Primitive Data Types 53

code Listing 2-16 (Initialize.java)

 1 // This program shows variable initialization.
 2
 3 public class Initialize
 4 {
 5 public static void main(String[] args)
 6 {
 7 int month = 2, days = 28;
 8
 9 System.out.println("Month " + month + " has " +
10 days + " days.");
11 }
12 }

program output

Month 2 has 28 days.

This statement declares the month variable and initializes it with the value 2, and declares
the days variable and initializes it with the value 28. As you can see, this simplifies the pro-
gram and reduces the number of statements that must be typed by the programmer. Here
are examples of other declaration statements that perform initialization:

double payRate = 25.52;
float interestRate = 12.9F;
char stockCode = 'D';
int customerNum = 459;

Of course, there are always variations on a theme. Java allows you to declare several vari-
ables and initialize only some of them. Here is an example of such a declaration:

int flightNum = 89, travelTime, departure = 10, distance;

The variable flightNum is initialized to 89 and departure is initialized to 10. The travelTime
and distance variables remain uninitialized.

Warning! When a variable is declared inside a method, it must have a value stored
in it before it can be used. If the compiler determines that the program might be using
such a variable before a value has been stored in it, an error will occur. You can avoid this
type of error by initializing the variable with a value.

Variables Hold only one Value at a Time
Remember, a variable can hold only one value at a time. When you assign a new value to a
variable, the new value takes the place of the variable’s previous contents. For example,
look at the following code.

int x = 5;
System.out.println(x);
x = 99;
System.out.println(x);

54 Chapter 2 Java Fundamentals

In this code, the variable x is initialized with the value 5 and its contents are displayed. Then
the variable is assigned the value 99. This value overwrites the value 5 that was previously
stored there. The code will produce the following output:

5
99

checkpoint

www.myprogramminglab.com

2.12 Which of the following are illegal variable names and why?

x
99bottles
july97
theSalesFigureForFiscalYear98
r&d
grade_report

2.13 Is the variable name Sales the same as sales? Why or why not?

2.14 Refer to the Java primitive data types listed in Table 2-5 for this question.
a) If a variable needs to hold whole numbers in the range 32 to 6,000, what prim-

itive data type would be best?
b) If a variable needs to hold whole numbers in the range −40,000 to +40,000,

what primitive data type would be best?
c) Which of the following literals use more memory? 22.1 or 22.1F?

2.15 How would the number 6.31 × 1017 be represented in E notation?

2.16 A program declares a float variable named number, and the following statement
causes an error. What can be done to fix the error?

number = 7.4;

2.17 What values can boolean variables hold?

2.18 Write statements that do the following:
a) Declare a char variable named letter.
b) Assign the letter A to the letter variable.
c) Display the contents of the letter variable.

2.19 What are the Unicode codes for the characters ‘C’, ‘F’, and ‘W’? (You may need to
refer to Appendix B on the book’s companion Web site, at www.pearsonhighered.
com/gaddis.)

2.20 Which is a character literal, 'B' or "B"?

2.21 What is wrong with the following statement?

char letter = "Z";

2.5 arithmetic operators

concepT: There are many operators for manipulating numeric values and
performing arithmetic operations.

http://www.pearsonhighered.com/gaddis
http://www.myprogramminglab.com
http://www.pearsonhighered.com/gaddis

 2.5 Arithmetic Operators 55

Java offers a multitude of operators for manipulating data. Generally, there are three types
of operators: unary, binary, and ternary. These terms reflect the number of operands an
operator requires.

Unary operators require only a single operand. For example, consider the following expression:

-5

Of course, we understand this represents the value negative five. We can also apply the
operator to a variable, as follows:

-number

This expression gives the negative of the value stored in number. The minus sign, when
used this way, is called the negation operator. Because it requires only one operand, it is a
unary operator.

Binary operators work with two operands. The assignment operator is in this category.
Ternary operators, as you may have guessed, require three operands. Java has only one ter-
nary operator, which is discussed in Chapter 3.

Arithmetic operations are very common in programming. Table 2-7 shows the arithmetic
operators in Java.

Table 2-7 Arithmetic operators

Operator Meaning Type Example

+ Addition Binary total = cost + tax;

− Subtraction Binary cost = total − tax;

* Multiplication Binary tax = cost * rate;

/ Division Binary salePrice = original / 2;

% Modulus Binary remainder = value % 3;

Each of these operators works as you probably expect. The addition operator returns the
sum of its two operands. Here are some example statements that use the addition operator:

amount = 4 + 8; // Assigns 12 to amount
total = price + tax; // Assigns price + tax to total
number = number + 1; // Assigns number + 1 to number

The subtraction operator returns the value of its right operand subtracted from its left oper-
and. Here are some examples:

temperature = 112 - 14; // Assigns 98 to temperature
sale = price - discount; // Assigns price - discount to sale
number = number - 1; // Assigns number - 1 to number

The multiplication operator returns the product of its two operands. Here are some examples:

markUp = 12 * 0.25; // Assigns 3 to markUp
commission = sales * percent; // Assigns sales * percent to commission
population = population * 2; // Assigns population * 2 to population

Simple Math
Expressions

VideoNote

56 Chapter 2 Java Fundamentals

The division operator returns the quotient of its left operand divided by its right operand.
Here are some examples:

points = 100 / 20; // Assigns 5 to points
teams = players / maxEach; // Assigns players / maxEach to teams
half = number / 2; // Assigns number / 2 to half

The modulus operator returns the remainder of a division operation involving two integers.
The following statement assigns 2 to leftOver:

leftOver = 17 % 3;

Situations arise where you need to get the remainder of a division. Computations that detect
odd numbers or are required to determine how many items are left over after division use
the modulus operator.

The program in Code Listing 2-17 demonstrates some of these operators used in a simple
payroll calculation.

code Listing 2-17 (Wages.java)

 1 // This program calculates hourly wages plus overtime.
 2
 3 public class Wages
 4 {
 5 public static void main(String[] args)
 6 {
 7 double regularWages; // The calculated regular wages.
 8 double basePay = 25; // The base pay rate.
 9 double regularHours = 40; // The hours worked less overtime.
10 double overtimeWages; // Overtime wages
11 double overtimePay = 37.5; // Overtime pay rate
12 double overtimeHours = 10; // Overtime hours worked
13 double totalWages; // Total wages
14
15 regularWages = basePay * regularHours;
16 overtimeWages = overtimePay * overtimeHours;
17 totalWages = regularWages + overtimeWages;
18 System.out.println("Wages for this week are $" +
19 totalWages);
20 }
21 }

program output

Wages for this week are $1375.0

Code Listing 2-17 calculates the total wages an hourly paid worker earned in one week. As
mentioned in the comments, there are variables for regular wages, base pay rate, regular
hours worked, overtime wages, overtime pay rate, overtime hours worked, and total wages.

 2.5 Arithmetic Operators 57

Line 15 in the program multiplies basePay times regularHours and stores the result, which
is 1000, in regularWages:

regularWages = basePay * regularHours;

Line 16 multiplies overtimePay times overtimeHours and stores the result, which is 375, in
overtimeWages:

overtimeWages = overtimePay * overtimeHours;

Line 17 adds the regular wages and the overtime wages and stores the result, 1375, in
totalWages:

totalWages = regularWages + overtimeWages;

The println statement in lines 18 and 19 displays the message on the screen reporting the
week’s wages.

integer Division
When both operands of the division operator are integers, the operator will perform integer
division. This means the result of the division will be an integer as well. If there is a remain-
der, it will be discarded. For example, look at the following code:

double number;
number = 5 / 2;

This code divides 5 by 2 and assigns the result to the number variable. What value will be
stored in number? You would probably assume that 2.5 would be stored in number because
that is the result your calculator shows when you divide 5 by 2; however, that is not what
happens when the previous Java code is executed. Because the numbers 5 and 2 are both
integers, the fractional part of the result will be thrown away, or truncated. As a result, the
value 2 will be assigned to the number variable.

In the previous code, it doesn’t matter that number is declared as a double because the frac-
tional part of the result is discarded before the assignment takes place. In order for a divi-
sion operation to return a floating-point value, one of the operands must be of a
floating-point data type. For example, the previous code could be written as follows:

double number;
number = 5.0 / 2;

In this code, 5.0 is treated as a floating-point number, so the division operation will return
a floating-point number. The result of the division is 2.5.

operator precedence
It is possible to build mathematical expressions with several operators. The following state-
ment assigns the sum of 17, x, 21, and y to the variable answer:

answer = 17 + x + 21 + y;

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12 + 6 / 3;

58 Chapter 2 Java Fundamentals

What value will be stored in outcome? The 6 is used as an operand for both the addition and
division operators. The outcome variable could be assigned either 6 or 14, depending on
when the division takes place. The answer is 14 because the division operator has higher
precedence than the addition operator.

Mathematical expressions are evaluated from left to right. When two operators share an
 operand, the operator with the highest precedence works first. Multiplication and division
have higher precedence than addition and subtraction, so the statement above works like this:

 1. 6 is divided by 3, yielding a result of 2
 2. 12 is added to 2, yielding a result of 14

It could be diagrammed as shown in Figure 2-5.

Table 2-8 Precedence of arithmetic operators (highest to lowest)

Highest Precedence → - (unary negation)

* / %

Lowest Precedence → + −

Table 2-9 Associativity of arithmetic operators

Operator Associativity

- (unary negation) Right to left

* / % Left to right

+ − Left to right

Figure 2-5 Precedence illustrated

Table 2-8 shows the precedence of the arithmetic operators. The operators at the top of the
table have higher precedence than the ones below them.

The multiplication, division, and modulus operators have the same precedence. The addition
and subtraction operators have the same precedence. If two operators sharing an operand
have the same precedence, they work according to their associativity. Associativity is either
left to right or right to left. Table 2-9 shows the arithmetic operators and their associativity.

 2.5 Arithmetic Operators 59

grouping with parentheses
Parts of a mathematical expression may be grouped with parentheses to force some operations
to be performed before others. In the statement below, the sum of a, b, c, and d is divided by 4.0.

average = (a + b + c + d) / 4.0;

Without the parentheses, however, d would be divided by 4 and the result added to a, b,
and c. Table 2-11 shows more expressions and their values.

Table 2-10 Some expressions and their values

Expression Value

5 + 2 * 4 13

10 / 2 - 3 2

8 + 12 * 2 - 4 28

4 + 17 % 2 - 1 4

6 - 3 * 2 + 7 - 1 6

Table 2-11 More expressions and their values

Expression Value

(5 + 2) * 4 28

10 / (5 − 3) 5

8 + 12 * (6 − 2) 56

(4 + 17) % 2 − 1 0

(6 − 3) * (2 + 7) / 3 9

Table 2-10 shows some expressions and their values.

in the spotlight:
Calculating Percentages and Discounts
Determining percentages is a common calculation in computer programming. Although
the % symbol is used in general mathematics to indicate a percentage, most programming
languages (including Java) do not use the % symbol for this purpose. In a program, you
have to convert a percentage to a floating-point number, just as you would if you were
using a calculator. For example, 50 percent would be written as 0.5 and 2 percent would
be written as 0.02.

Let’s look at an example. Suppose you earn $6,000 per month and you are allowed to
 contribute a portion of your gross monthly pay to a retirement plan. You want to determine
the amount of your pay that will go into the plan if you contribute 5 percent, 8 percent, or
10 percent of your gross wages. To make this determination you write a program like the
one shown in Code Listing 2-18.

code Listing 2-18 (Contribution.java)

 1 // This program calculates the amount of pay that
 2 // will be contributed to a retirement plan if 5%,
 3 // 8%, or 10% of monthly pay is withheld.
 4
 5 public class Contribution
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Variables to hold the monthly pay and
10 // the amount of contribution.
11 double monthlyPay = 6000.0;
12 double contribution;
13
14 // Calculate and display a 5% contribution.
15 contribution = monthlyPay * 0.05;
16 System.out.println("5 percent is $" +
17 contribution +
18 " per month.");
19
20 // Calculate and display an 8% contribution.
21 contribution = monthlyPay * 0.08;
22 System.out.println("8 percent is $" +
23 contribution +
24 " per month.");
25
26 // Calculate and display a 10% contribution.
27 contribution = monthlyPay * 0.1;
28 System.out.println("10 percent is $" +
29 contribution +
30 " per month.");
31 }
32 }

program output

5 percent is $300.0 per month.
8 percent is $480.0 per month.
10 percent is $600.0 per month.

Lines 11 and 12 declare two variables: monthlyPay and contribution. The monthlyPay vari-
able, which is initialized with the value 6000.0, holds the amount of your monthly pay. The
contribution variable will hold the amount of a contribution to the retirement plan.

The statements in lines 15 through 18 calculate and display 5 percent of the monthly pay.
The calculation is done in line 15, where the monthlyPay variable is multiplied by 0.05. The
result is assigned to the contribution variable, which is then displayed by the statement in
lines 16 through 18.

60 Chapter 2 Java Fundamentals

 2.5 Arithmetic Operators 61

Similar steps are taken in lines 21 through 24, which calculate and display 8 percent of the
monthly pay, and lines 27 through 30, which calculate and display 10 percent of the
monthly pay.

calculating a percentage Discount

Another common calculation is determining a percentage discount. For example, suppose a
retail business sells an item that is regularly priced at $59, and is planning to have a sale
where the item’s price will be reduced by 20 percent. You have been asked to write a pro-
gram to calculate the sale price of the item.

To determine the sale price you perform two calculations:

•	 First,	you	get	the	amount	of	the	discount,	which	is	20	percent	of	the	item’s	regular	price.
•	 Second,	you	subtract	the	discount	amount	from	the	item’s	regular	price.	This	gives	you	

the sale price.

Code Listing 2-19 shows how this is done in Java.

code Listing 2-19 (Discount.java)

 1 // This program calculates the sale price of an
 2 // item that is regularly priced at $59, with
 3 // a 20 percent discount subtracted.
 4
 5 public class Discount
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Variables to hold the regular price, the
10 // amount of a discount, and the sale price.
11 double regularPrice = 59.0;
12 double discount;
13 double salePrice;
14
15 // Calculate the amount of a 20% discount.
16 discount = regularPrice * 0.2;
17
18 // Calculate the sale price by subtracting
19 // the discount from the regular price.
20 salePrice = regularPrice - discount;
21
22 // Display the results.
23 System.out.println("Regular price: $" + regularPrice);
24 System.out.println("Discount amount $" + discount);
25 System.out.println("Sale price: $" + salePrice);
26 }
27 }

program output

Regular price: $59.0
Discount amount $11.8
Sale price: $47.2

Lines 11 through 13 declare three variables. The regularPrice variable holds the item’s regu-
lar price, and is initialized with the value 59.0. The discount variable will hold the amount of
the discount once it is calculated. The salePrice variable will hold the item’s sale price.

Line 16 calculates the amount of the 20 percent discount by multiplying regularPrice by
0.2. The result is stored in the discount variable. Line 20 calculates the sale price by sub-
tracting discount from regularPrice. The result is stored in the salePrice variable. The
statements in lines 23 through 25 display the item’s regular price, the amount of the dis-
count, and the sale price.

62 Chapter 2 Java Fundamentals

The Math class
The Java API provides a class named Math, which contains numerous methods that are use-
ful for performing complex mathematical operations. In this section we will briefly look at
the Math.pow and Math.sqrt methods.

The Math.pow Method

In Java, raising a number to a power requires the Math.pow method. Here is an example of
how the Math.pow method is used:

result = Math.pow(4.0, 2.0);

The method takes two double arguments. It raises the first argument to the power of the
second argument, and returns the result as a double. In this example, 4.0 is raised to the
power of 2.0. This statement is equivalent to the following algebraic statement:

result = 42

Here is another example of a statement using the Math.pow method. It assigns 3 times 63 to x:

x = 3 * Math.pow(6.0, 3.0);

And the following statement displays the value of 5 raised to the power of 4:

System.out.println(Math.pow(5.0, 4.0));

The Math.sqrt Method

The Math.sqrt method accepts a double value as its argument and returns the square root
of the value. Here is an example of how the method is used:

result = Math.sqrt(9.0);

In this example the value 9.0 is passed as an argument to the Math.sqrt method. The method
will return the square root of 9.0, which is assigned to the result variable. The following
statement shows another example. In this statement the square root of 25.0 (which is 5.0)
is displayed on the screen:

System.out.println(Math.sqrt(25.0));

 2.6 Combined Assignment Operators 63

For more information about the Math class, see Appendix G, available on the book’s com-
panion Web site at www.pearsonhighered.com/gaddis.

Expression Value

6 + 3 * 5 ______

12 / 2 - 4 ______

9 + 14 * 2 - 6 ______

5 + 19 % 3 - 1 ______

(6 + 2) * 3 ______

14 / (11 - 4) ______

9 + 12 * (8 - 3) ______

2.23 Is the division statement in the following code an example of integer division or
floating-point division? What value will be stored in portion?

double portion;
portion = 70 / 3;

2.6 combined assignment operators

concepT: The combined assignment operators combine the assignment operator
with the arithmetic operators.

Quite often, programs have assignment statements of the following form:

x = x + 1;

On the right side of the assignment operator, 1 is added to x. The result is then assigned to
x, replacing the value that was previously there. Effectively, this statement adds 1 to x. Here
is another example:

balance = balance + deposit;

Assuming that balance and deposit are variables, this statement assigns the value of
balance + deposit to balance. The effect of this statement is that deposit is added to the
value stored in balance. Here is another example:

balance = balance - withdrawal;

Assuming that balance and withdrawal are variables, this statement assigns the value of
balance - withdrawal to balance. The effect of this statement is that withdrawal is sub-
tracted from the value stored in balance.

checkpoint

www.myprogramminglab.com

2.22 Complete the following table by writing the value of each expression in the Value
column.

http://www.myprogramminglab.com
http://www.pearsonhighered.com/gaddis

64 Chapter 2 Java Fundamentals

If you have not seen these types of statements before, they might cause some initial confu-
sion because the same variable name appears on both sides of the assignment operator.
Table 2-12 shows other examples of statements written this way.

Table 2-12 Various assignment statements (assume x = 6 in each statement)

Statement What It Does Value of x after the Statement

x = x + 4; Adds 4 to x 10

x = x − 3; Subtracts 3 from x 3

x = x * 10; Multiplies x by 10 60

x = x / 2; Divides x by 2 3

x = x % 4 Assigns the remainder of x / 4 to x. 2

Table 2-13 Combined assignment operators

Operator Example Usage Equivalent To

+= x += 5; x = x + 5;

−= y −= 2; y = y − 2;

*= z *= 10; z = z * 10;

/= a /= b; a = a / b;

%= c %= 3; c = c % 3;

These types of operations are common in programming. For convenience, Java offers a spe-
cial set of operators designed specifically for these jobs. Table 2-13 shows the combined
assignment operators, also known as compound operators.

As you can see, the combined assignment operators do not require the programmer to type
the variable name twice. The following statement:

balance = balance + deposit;

could be rewritten as

balance += deposit;

Similarly, the statement

balance = balance - withdrawal;

could be rewritten as

balance -= withdrawal;

checkpoint

www.myprogramminglab.com

2.24 Write statements using combined assignment operators to perform the following:
a) Add 6 to x
b) Subtract 4 from amount

http://www.myprogramminglab.com

 2.7 Conversion between Primitive Data Types 65

c) Multiply y by 4
d) Divide total by 27
e) Store in x the remainder of x divided by 7

2.7 conversion between primitive Data Types

concepT: Before a value can be stored in a variable, the value’s data type must be
compatible with the variable’s data type. Java performs some conversions
between data types automatically, but does not automatically perform any
conversion that can result in the loss of data. Java also follows a set of
rules when evaluating arithmetic expressions containing mixed data types.

Java is a strongly typed language. This means that before a value is assigned to a variable,
Java checks the data types of the variable and the value being assigned to it to determine
whether they are compatible. For example, look at the following statements:

int x;
double y = 2.5;
x = y;

The assignment statement is attempting to store a double value (2.5) in an int variable.
When the Java compiler encounters this line of code, it will respond with an error message.
(The JDK displays the message “possible loss of precision.”)

Not all assignment statements that mix data types are rejected by the compiler, however.
For instance, look at the following program segment:

int x;
short y = 2;
x = y;

This assignment statement, which stores a short in an int, will work with no problems. So
why does Java permit a short to be stored in an int, but does not permit a double to be
stored in an int? The obvious reason is that a double can store fractional numbers and can
hold values much larger than an int can hold. If Java were to permit a double to be assigned
to an int, a loss of data would be likely.

Just like officers in the military, the primitive data types are ranked. One data type outranks
another if it can hold a larger number. For example, a float outranks an int, and an int
outranks a short. Figure 2-6 shows the numeric data types in order of their rank. The
higher a data type appears in the list, the higher is its rank.

Figure 2-6 Primitive data type ranking

66 Chapter 2 Java Fundamentals

In assignment statements where values of lower-ranked data types are stored in variables of
higher-ranked data types, Java automatically converts the lower-ranked value to the higher-
ranked type. This is called a widening conversion. For example, the following code demonstrates
a widening conversion, which takes place when an int value is stored in a double variable:

double x;
int y = 10;
x = y; // Performs a widening conversion

A narrowing conversion is the conversion of a value to a lower-ranked type. For example,
converting a double to an int would be a narrowing conversion. Because narrowing con-
versions can potentially cause a loss of data, Java does not automatically perform them.

cast operators

The cast operator lets you manually convert a value, even if it means that a narrowing
conversion will take place. Cast operators are unary operators that appear as a data type
name enclosed in a set of parentheses. The operator precedes the value being converted.
Here is an example:

x = (int)number;

The cast operator in this statement is the word int inside the parentheses. It returns the
value in number, converted to an int. This converted value is then stored in x. If number
were a floating-point variable, such as a float or a double, the value that is returned would
be truncated, which means the fractional part of the number is lost. The original value in
the number variable is not changed, however.

Table 2-14 shows several statements using cast operators.

Table 2-14 Example uses of cast operators

Statement Description

littleNum = (short)bigNum; The cast operator returns the value in bigNum, converted to a
short. The converted value is assigned to the variable littleNum.

x = (long)3.7; The cast operator is applied to the expression 3.7. The operator
returns the value 3, which is assigned to the variable x.

number = (int)72.567; The cast operator is applied to the expression 72.567. The opera-
tor returns 72, which is used to initialize the variable number.

value = (float)x; The cast operator returns the value in x, converted to a float.
The converted value is assigned to the variable value.

value = (byte)number; The cast operator returns the value in number, converted to a
byte. The converted value is assigned to the variable value.

Note that when a cast operator is applied to a variable, it does not change the contents of the
variable. It only returns the value stored in the variable, converted to the specified data type.

Recall from our earlier discussion that when both operands of a division are integers, the
operation will result in integer division. This means that the result of the division will be

 2.7 Conversion between Primitive Data Types 67

an integer, with any fractional part of the result thrown away. For example, look at the
following code:

int pies = 10, people = 4;
double piesPerPerson;
piesPerPerson = pies / people;

Although 10 divided by 4 is 2.5, this code will store 2 in the piesPerPerson variable. Because
both pies and people are int variables, the result will be an int, and the fractional part will
be thrown away. We can modify the code with a cast operator, however, so it gives the cor-
rect result as a floating-point value:

piesPerPerson = (double)pies / people;

The variable pies is an int and holds the value 10. The expression (double)pies returns the
value in pies converted to a double. This means that one of the division operator’s operands
is a double, so the result of the division will be a double. The statement could also have been
written as follows:

piesPerPerson = pies / (double)people;

In this statement, the cast operator returns the value of the people variable converted to a
double. In either statement, the result of the division is a double.

Warning! The cast operator can be applied to an entire expression enclosed in
parentheses. For example, look at the following statement:

piesPerPerson = (double)(pies / people);

This statement does not convert the value in pies or people to a double, but converts the
result of the expression pies / people. If this statement were used, an integer division opera-
tion would still have been performed. Here’s why: The result of the expression pies / people
is 2 (because integer division takes place). The value 2 converted to a double is 2.0. To prevent
the integer division from taking place, one of the operands must be converted to a double.

Mixed integer operations
One of the nuances of the Java language is the way it internally handles arithmetic opera-
tions on int, byte, and short variables. When values of the byte or short data types are used
in arithmetic expressions, they are temporarily converted to int values. The result of an
arithmetic operation using only a mixture of byte, short, or int values will always be an int.

For example, assume that b and c in the following expression are short variables:

b + c

Although both b and c are short variables, the result of the expression b + c is an int. This
means that when the result of such an expression is stored in a variable, the variable must
be an int or higher data type. For example, look at the following code:

short firstNumber = 10,
 secondNumber = 20,
 thirdNumber;

68 Chapter 2 Java Fundamentals

// The following statement causes an error!
thirdNumber = firstNumber + secondNumber;

When this code is compiled, the following statement causes an error:

thirdNumber = firstNumber + secondNumber;

The error results from the fact that thirdNumber is a short. Although firstNumber and
secondNumber are also short variables, the expression firstNumber + secondNumber results
in an int value. The program can be corrected if thirdNumber is declared as an int, or if a
cast operator is used in the assignment statement, as shown here:

thirdNumber = (short)(firstNumber + secondNumber);

other Mixed Mathematical expressions
In situations where a mathematical expression has one or more values of the double, float,
or long data types, Java strives to convert all of the operands in the expression to the same
data type. Let’s look at the specific rules that govern evaluation of these types of expressions.

 1. If one of an operator’s operands is a double, the value of the other operand will be
converted to a double. The result of the expression will be a double. For example, in the
following statement assume that b is a double and c is an int:

a = b + c;

The value in c will be converted to a double prior to the addition. The result of the
addition will be a double, so the variable a must also be a double.

 2. If one of an operator’s operands is a float, the value of the other operand will be con-
verted to a float. The result of the expression will be a float. For example, in the
following statement assume that x is a short and y is a float:

z = x * y;

The value in x will be converted to a float prior to the multiplication. The result of the
multiplication will be a float, so the variable z must also be either a double or a float.

 3. If one of an operator’s operands is a long, the value of the other operand will be con-
verted to a long. The result of the expression will be a long. For example, in the fol-
lowing statement assume that a is a long and b is a short:

c = a - b;

The variable b will be converted to a long prior to the subtraction. The result of the
subtraction will be a long, so the variable c must also be a long, float, or double.

checkpoint

www.myprogramminglab.com

2.25 The following declaration appears in a program:

short totalPay, basePay = 500, bonus = 1000;

 The following statement appears in the same program:

totalPay = basePay + bonus;

a) Will the statement compile properly or cause an error?
b) If the statement causes an error, why? How can you fix it?

http://www.myprogramminglab.com

 2.8 Creating Named Constants with final 69

2.26 The variable a is a float and the variable b is a double. Write a statement that will
assign the value of b to a without causing an error when the program is compiled.

2.8 creating named constants with final

concepT: The final key word can be used in a variable declaration to make the
variable a named constant. Named constants are initialized with a value,
and that value cannot change during the execution of the program.

Assume that the following statement appears in a banking program that calculates data
pertaining to loans:

amount = balance * 0.069;

In such a program, two potential problems arise. First, it is not clear to anyone other than
the original programmer what 0.069 is. It appears to be an interest rate, but in some situa-
tions there are fees associated with loan payments. How can the purpose of this statement
be determined without painstakingly checking the rest of the program?

The second problem occurs if this number is used in other calculations throughout the pro-
gram and must be changed periodically. Assuming the number is an interest rate, what if the
rate changes from 6.9 percent to 8.2 percent? The programmer would have to search
through the source code for every occurrence of the number.

Both of these problems can be addressed by using named constants. A named constant is a
variable whose value is read only and cannot be changed during the program’s execution.
You can create such a variable in Java by using the final key word in the variable declara-
tion. The word final is written just before the data type. Here is an example:

final double INTEREST_RATE = 0.069;

This statement looks just like a regular variable declaration except that the word final
appears before the data type, and the variable name is written in all uppercase letters. It is
not required that the variable name appear in all uppercase letters, but many programmers
prefer to write them this way so they are easily distinguishable from regular variable names.

An initialization value must be given when declaring a variable with the final modifier, or
an error will result when the program is compiled. A compiler error will also result if there
are any statements in the program that attempt to change the value of a final variable.

An advantage of using named constants is that they make programs more self-documenting.
The following statement:

amount = balance * 0.069;

can be changed to read

amount = balance * INTEREST_RATE;

A new programmer can read the second statement and know what is happening. It is evident
that balance is being multiplied by the interest rate. Another advantage to this approach is that
widespread changes can easily be made to the program. Let’s say the interest rate appears in a
dozen different statements throughout the program. When the rate changes, the initialization

70 Chapter 2 Java Fundamentals

value in the definition of the named constant is the only value that needs to be modified. If the
rate increases to 8.2 percent, the declaration can be changed to the following:

final double INTEREST_RATE = 0.082;

The program is then ready to be recompiled. Every statement that uses INTEREST_RATE will
use the new value.

The Math.PI named constant

The Math class, which is part of the Java API, provides a predefined named constant,
Math.PI. This constant is assigned the value 3.14159265358979323846, which is an
approximation of the mathematical value pi. For example, look at the following statement:

area = Math.PI * radius * radius;

Assuming the radius variable holds the radius of a circle, this statement uses the Math.PI
constant to calculate the area of the circle.

For more information about the Math class, see Appendix F, available on the book’s com-
panion Web site at www.pearsonhighered.com/gaddis.

2.9 The String class

concepT: The String class allows you to create objects for holding strings. It also
has various methods that allow you to work with strings.

You have already encountered strings and examined programs that display them on the
screen, but let’s take a moment to make sure you understand what a string is. A string is a
sequence of characters. It can be used to represent any type of data that contains text, such
as names, addresses, warning messages, and so forth. String literals are enclosed in double-
quotation marks, such as the following:

"Hello World"
"Joe Mahoney"

Although programs commonly encounter strings and must perform a variety of tasks with
them, Java does not have a primitive data type for storing them in memory. Instead, the Java
API provides a class for handling strings. You use this class to create objects that are capable
of storing strings and performing operations on them. Before discussing this class, let’s
briefly discuss how classes and objects are related.

objects are created from classes
Chapter 1 introduced you to objects as software entities that can contain attributes and
methods. An object’s attributes are data values that are stored in the object. An object’s meth-
ods are procedures that perform operations on the object’s attributes. Before an object can be
created, however, it must be designed by a programmer. The programmer determines the
attributes and methods that are necessary, and then creates a class that describes the object.

You have already seen classes used as containers for applications. A class can also be used to
specify the attributes and methods that a particular type of object may have. Think of a class

http://www.pearsonhighered.com/gaddis

 2.9 The String Class 71

as a “blueprint” that objects may be created from. So a class is not an object, but a description
of an object. When the program is running, it can use the class to create, in memory, as many
objects as needed. Each object that is created from a class is called an instance of the class.

Tip: Don’t worry if these concepts seem a little fuzzy to you. As you progress through
this book, the concepts of classes and objects will be reinforced again and again.

The String class
The class that is provided by the Java API for handling strings is named String. The first
step in using the String class is to declare a variable of the String class data type. Here is
an example of a String variable declaration:

String name;

Tip: The S in String is written in an uppercase letter. By convention, the first character
of a class name is always written in an uppercase letter.

This statement declares name as a String variable. Remember that String is a class, not a
primitive data type. Let’s briefly look at the difference between primitive type variables and
class type variables.

primitive Type Variables and class Type Variables
A variable of any type can be associated with an item of data. Primitive type variables hold
the actual data items with which they are associated. For example, assume that number is an
int variable. The following statement stores the value 25 in the variable:

number = 25;

This is illustrated in Figure 2-7.

The number variable holds
the actual data with which
it is associated.

Figure 2-7 A primitive type variable holds the data with which it is associated

A class type variable does not hold the actual data item that it is associated with, but holds
the memory address of the data item it is associated with. If name is a String class variable,
then name can hold the memory address of a String object. This is illustrated in Figure 2-8.

Figure 2-8 A String class variable can hold the address of a String object

72 Chapter 2 Java Fundamentals

When a class type variable holds the address of an object, it is said that the variable references
the object. For this reason, class type variables are commonly known as reference variables.

creating a String object
Any time you write a string literal in your program, Java will create a String object in
memory to hold it. You can create a String object in memory and store its address in a
String variable with a simple assignment statement. Here is an example:

name = "Joe Mahoney";

Here, the string literal causes a String object to be created in memory with the value “Joe
Mahoney” stored in it. Then the assignment operator stores the address of that object in the
name variable. After this statement executes, it is said that the name variable references a
String object. This is illustrated in Figure 2-9.

You can also use the = operator to initialize a String variable, as shown here:

String name = "Joe Mahoney";

This statement declares name as a String variable, creates a String object with the value
“Joe Mahoney” stored in it, and assigns the object’s memory address to the name variable.
Code Listing 2-20 shows String variables being declared, initialized, and then used in a
println statement.

code Listing 2-20 (StringDemo.java)

 1 // A simple program demonstrating String objects.
 2
 3 public class StringDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 String greeting = "Good morning, ";
 8 String name = "Herman";
 9
10 System.out.println(greeting + name);
11 }
12 }

program output

Good morning, Herman

Figure 2-9 The name variable holds the address of a String object

 2.9 The String Class 73

Because the String type is a class instead of a primitive data type, it provides numerous
methods for working with strings. For example, the String class has a method named
length that returns the length of the string stored in an object. Assuming the name variable
references a String object, the following statement stores the length of its string in the vari-
able stringSize (assume that stringSize is an int variable):

stringSize = name.length();

This statement calls the length method of the object that name refers to. To call a method
means to execute it. The general form of a method call is as follows:

referenceVariable.method(arguments. . .)

referenceVariable is the name of a variable that references an object, method is the
name of a method, and arguments. . . is zero or more arguments that are passed to the
method. If no arguments are passed to the method, as is the case with the length method, a
set of empty parentheses must follow the name of the method.

The String class’s length method returns an int value. This means that the method sends an
int value back to the statement that called it. This value can be stored in a variable, displayed
on the screen, or used in calculations. Code Listing 2-21 demonstrates the length method.

code Listing 2-21 (StringLength.java)

 1 // This program demonstrates the String class's length method.
 2
 3 public class StringLength
 4 {
 5 public static void main(String[] args)
 6 {
 7 String name = "Herman";
 8 int stringSize;
 9
10 stringSize = name.length();
11 System.out.println(name + " has " + stringSize +
12 " characters.");
13 }
14 }

program output

Herman has 6 characters.

You will study the String class methods in detail in Chapter 9, but let’s look at a few more
examples now. In addition to length, Table 2-15 describes the charAt, toLowerCase, and
toUpperCase methods.

noTe: The String class’s length method returns the number of characters in the string,
including spaces.

74 Chapter 2 Java Fundamentals

The program in Code Listing 2-22 demonstrates these methods.

code Listing 2-22 (StringMethods.java)

 1 // This program demonstrates a few of the String methods.
 2
 3 public class StringMethods
 4 {
 5 public static void main(String[] args)
 6 {
 7 String message = "Java is Great Fun!";
 8 String upper = message.toUpperCase();

Table 2-15 A few String class methods

Method Description and Example

charAt(index) The argument index is an int value and specifies a character position in the
string. The first character is at position 0, the second character is at position
1, and so forth. The method returns the character at the specified position.
The return value is of the type char.
Example:
 char letter;
 String name = "Herman";
 letter = name.charAt(3);
After this code executes, the variable letter will hold the character ‘m’.

length() This method returns the number of characters in the string. The return value
is of the type int.
Example:
 int stringSize;
 String name = "Herman";
 stringSize = name.length();
After this code executes, the stringSize variable will hold the value 6.

toLowerCase() This method returns a new string that is the lowercase equivalent of the
string contained in the calling object.
Example:
 String bigName = "HERMAN";
 String littleName = bigName.toLowerCase();
After this code executes, the object referenced by littleName will hold the
string “herman”.

toUpperCase() This method returns a new string that is the uppercase equivalent of the
string contained in the calling object.
Example:
 String littleName = "herman";
 String bigName = littleName.toUpperCase();
After this code executes, the object referenced by bigName will hold the string
“HERMAN”.

 2.10 Scope 75

 9 String lower = message.toLowerCase();
10 char letter = message.charAt(2);
11 int stringSize = message.length();
12
13 System.out.println(message);
14 System.out.println(upper);
15 System.out.println(lower);
16 System.out.println(letter);
17 System.out.println(stringSize);
18 }
19 }

program output

Java is Great Fun!
JAVA IS GREAT FUN!
java is great fun!
v
18

checkpoint

www.myprogramminglab.com

2.27 Write a statement that declares a String variable named city. The variable should
be initialized so it references an object with the string “San Francisco”.

2.28 Assume that stringLength is an int variable. Write a statement that stores the
length of the string referenced by the city variable (declared in Checkpoint 2.27)
in stringLength.

2.29 Assume that oneChar is a char variable. Write a statement that stores the first char-
acter in the string referenced by the city variable (declared in Checkpoint 2.27) in
oneChar.

2.30 Assume that upperCity is a String reference variable. Write a statement that stores
the uppercase equivalent of the string referenced by the city variable (declared in
Checkpoint 2.27) in upperCity.

2.31 Assume that lowerCity is a String reference variable. Write a statement that stores
the lowercase equivalent of the string referenced by the city variable (declared in
Checkpoint 2.27) in lowerCity.

2.10 scope

concepT: A variable’s scope is the part of the program that has access to the variable.

Every variable has a scope. The scope of a variable is the part of the program where the
variable may be accessed by its name. A variable is visible only to statements inside the
variable’s scope. The rules that define a variable’s scope are complex, and you are only

http://www.myprogramminglab.com

76 Chapter 2 Java Fundamentals

introduced to the concept here. In other chapters of the book we revisit this topic and
expand on it.

So far, you have only seen variables declared inside the main method. Variables that are
declared inside a method are called local variables. Later you will learn about variables
that are declared outside a method, but for now, let’s focus on the use of local variables.

A local variable’s scope begins at the variable’s declaration and ends at the end of the
method in which the variable is declared. The variable cannot be accessed by statements
that are outside this region. This means that a local variable cannot be accessed by code that
is outside the method, or inside the method but before the variable’s declaration. The pro-
gram in Code Listing 2-23 shows an example.

code Listing 2-23 (Scope.java)

 1 // This program can't find its variable.
 2
 3 public class Scope
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.println(value); // ERROR!
 8 int value = 100;
 9 }
10 }

The program does not compile because it attempts to send the contents of the variable
value to println before the variable is declared. It is important to remember that the com-
piler reads your program from top to bottom. If it encounters a statement that uses a vari-
able before the variable is declared, an error will result. To correct the program, the variable
declaration must be written before any statement that uses it.

Another rule that you must remember about local variables is that you cannot have two local
variables with the same name in the same scope. For example, look at the following method.

public static void main(String[] args)
{
 // Declare a variable named number and
 // display its value.
 int number = 7;
 System.out.println(number);

noTe: If you compile this program, the compiler will display an error message such
as “cannot resolve symbol.” This means that the compiler has encountered a name for
which it cannot determine a meaning.

 2.11 Comments 77

 // Declare another variable named number and
 // display its value.
 int number = 100; // ERROR!!!
 System.out.println(number); // ERROR!!!
}

This method declares a variable named number and initializes it with the value 7. The vari-
able’s scope begins at the declaration statement and extends to the end of the method.
Inside the variable’s scope a statement appears that declares another variable named number.
This statement will cause an error because you cannot have two local variables with the
same name in the same scope.

2.11 comments

concepT: Comments are notes of explanation that document lines or sections
of a program. Comments are part of the program, but the compiler
ignores them. They are intended for people who may be reading the
source code.

Comments are short notes that are placed in different parts of a program, explaining how
those parts of the program work. Comments are not intended for the compiler. They are
intended for programmers to read, to help them understand the code. The compiler skips all
of the comments that appear in a program.

As a beginning programmer, you might resist the idea of writing a lot of comments in
your programs. After all, it’s a lot more fun to write code that actually does something!
However, it’s crucial that you take the extra time to write comments. They will almost
certainly save you time in the future when you have to modify or debug the program.
Even large and complex programs can be made easy to read and understand if they are
properly commented.

In Java there are three types of comments: single-line comments, multiline comments, and
documentation comments. Let’s briefly discuss each type.

single-Line comments

You have already seen the first way to write comments in a Java program. You simply place
two forward slashes (//) where you want the comment to begin. The compiler ignores
everything from that point to the end of the line. Code Listing 2-24 shows that comments
may be placed liberally throughout a program.

code Listing 2-24 (Comment1.java)

 1 // PROGRAM: Comment1.java
 2 // Written by Herbert Dorfmann
 3 // This program calculates company payroll
 4
 5 public class Comment1

78 Chapter 2 Java Fundamentals

 6 {
 7 public static void main(String[] args)
 8 {
 9 double payRate; // Holds the hourly pay rate
10 double hours; // Holds the hours worked
11 int employeeNumber; // Holds the employee number
12
13 // The Remainder of This Program is Omitted.
14 }
15 }

In addition to telling who wrote the program and describing the purpose of variables, com-
ments can also be used to explain complex procedures in your code.

Multi-Line comments

The second type of comment in Java is the multi-line comment. Multi-line comments start
with /* (a forward slash followed by an asterisk) and end with */ (an asterisk followed by
a forward slash). Everything between these markers is ignored. Code Listing 2-25 illustrates
how multi-line comments may be used.

code Listing 2-25 (Comment2.java)

 1 /*
 2 PROGRAM: Comment2.java
 3 Written by Herbert Dorfmann
 4 This program calculates company payroll
 5 */
 6
 7 public class Comment2
 8 {
 9 public static void main(String[] args)
10 {
11 double payRate; // Holds the hourly pay rate
12 double hours; // Holds the hours worked
13 int employeeNumber; // Holds the employee number
14
15 // The Remainder of This Program is Omitted.
16 }
17 }

Unlike a comment started with //, a multi-line comment can span several lines. This
makes it more convenient to write large blocks of comments because you do not have to

 2.11 Comments 79

mark every line. Consequently, the multi-line comment is inconvenient for writing single-
line comments because you must type both a beginning and an ending comment symbol.

Remember the following advice when using multi-line comments:

•	 Be	careful	not	to	reverse	the	beginning	symbol	with	the	ending	symbol.
•	 Be	sure	not	to	forget	the	ending	symbol.

Many programmers use asterisks or other characters to draw borders or boxes around their
comments. This helps to visually separate the comments from surrounding code. These are
called block comments. Table 2-16 shows four examples of block comments.

Table 2-16 Block comments

/*

 * This program demonstrates the

 * way to write comments.

 */

//***********************************

// This program demonstrates the *

// way to write comments. *

//***********************************

////////////////////////////////////

// This program demonstrates the

// way to write comments.

////////////////////////////////////

//-----------------------------------

// This program demonstrates the

// way to write comments.

//-----------------------------------

Documentation comments

The third type of comment is known as a documentation comment. Documentation com-
ments can be read and processed by a program named javadoc, which comes with the JDK.
The purpose of the javadoc program is to read Java source code files and generate attrac-
tively formatted HTML files that document the source code. If the source code files contain
any documentation comments, the information in the comments becomes part of the HTML
documentation. The HTML documentation files may be viewed in a Web browser.

Any comment that starts with /** and ends with */ is considered a documentation com-
ment. Normally you write a documentation comment just before a class header, giving a
brief description of the class. You also write a documentation comment just before each
method header, giving a brief description of the method. For example, Code Listing 2-26
shows a program with documentation comments. This program has a documentation com-
ment just before the class header, and just before the main method header.

80 Chapter 2 Java Fundamentals

code Listing 2-26 (Comment3.java)

 1 /**
 2 This class creates a program that calculates company payroll.
 3 */
 4
 5 public class Comment3
 6 {
 7 /**
 8 The main method is the program's starting point.
 9 */
10
11 public static void main(String[] args)
12 {
13 double payRate; // Holds the hourly pay rate
14 double hours; // Holds the hours worked
15 int employeeNumber; // Holds the employee number
16
17 // The Remainder of This Program is Omitted.
18 }
19 }

You run the javadoc program from the operating system command prompt. Here is the
general format of the javadoc command:

javadoc SourceFile.java

SourceFile.java is the name of a Java source code file, including the .java extension. The
file will be read by javadoc and documentation will be produced for it. For example, the
following command will produce documentation for the Comment3.java source code file,
which is shown in Code Listing 2-26:

javadoc Comment3.java

After this command executes, several documentation files will be created in the same direc-
tory as the source code file. One of these files will be named index.html. Figure 2-10 shows
the index.html file being viewed in a Web browser. Notice that the text that was written in
the documentation comments appears in the file.

Tip: When you write a documentation comment for a method, the HTML documenta-
tion file that is produced by javadoc will have two sections for the method: a summary
section and a detail section. The first sentence in the method’s documentation comment is
used as the summary of the method. Note that javadoc considers the end of the sentence
as a period followed by a whitespace character. For this reason, when a method descrip-
tion contains more than one sentence, you should always end the first sentence with a
period followed by a whitespace character. The method’s detail section will contain all of
the description that appears in the documentation comment.

 2.11 Comments 81

If you look at the JDK documentation, which are HTML files that you view in a Web
browser, you will see that they are formatted in the same way as the files generated by
javadoc. A benefit of using javadoc to document your source code is that your documen-
tation will have the same professional look and feel as the standard Java documentation.

From this point forward in the book, we will use documentation comments in the example
source code. As we progress through various topics, you will see additional uses of docu-
mentation comments and the javadoc program.

checkpoint

www.myprogramminglab.com

2.32 How do you write a single line comment? How do you write a multi-line comment?
How do you write a documentation comment?

2.33 How are documentation comments different from other types of comments?

Figure 2-10 Documentation generated by javadoc (Google Inc.)

http://www.myprogramminglab.com

82 Chapter 2 Java Fundamentals

2.12 programming style

concepT: Programming style refers to the way a programmer uses spaces,
indentations, blank lines, and punctuation characters to visually arrange a
program’s source code.

In Chapter 1, you learned that syntax rules govern the way a language may be used. The
syntax rules of Java dictate how and where to place key words, semicolons, commas, braces,
and other elements of the language. The compiler checks for syntax errors, and if there are
none, generates byte code.

When the compiler reads a program it processes it as one long stream of characters. The
compiler doesn’t care that each statement is on a separate line, or that spaces separate
operators from operands. Humans, on the other hand, find it difficult to read programs that
aren’t written in a visually pleasing manner. Consider Code Listing 2-27 for example.

code Listing 2-27 (Compact.java)

 1 public class Compact {public static void main(String [] args){int
 2 shares=220; double averagePrice=14.67; System.out.println(
 3 "There were "+shares+" shares sold at $"+averagePrice+
 4 " per share.");}}

program output

There were 220 shares sold at $14.67 per share.

Although the program is syntactically correct (it doesn’t violate any rules of Java), it is very
difficult to read. The same program is shown in Code Listing 2-28, written in a more under-
standable style.

code Listing 2-28 (Readable.java)

 1 /**
 2 This example is much more readable than Compact.java.
 3 */
 4
 5 public class Readable
 6 {
 7 public static void main(String[] args)
 8 {
 9 int shares = 220;
10 double averagePrice = 14.67;
11
12 System.out.println("There were " + shares +
13 " shares sold at $" +
14 averagePrice + " per share.");

 2.12 Programming Style 83

15 }
16 }

program output

There were 220 shares sold at $14.67 per share.

The term programming style usually refers to the way source code is visually arranged. It
includes techniques for consistently putting spaces and indentations in a program so
visual cues are created. These cues quickly tell a programmer important information
about a program.

For example, notice in Code Listing 2-28 that inside the class’s braces each line is indented,
and inside the main method’s braces each line is indented again. It is a common program-
ming style to indent all the lines inside a set of braces, as shown in Figure 2-11.

Figure 2-11 Indentation

Another aspect of programming style is how to handle statements that are too long to fit on
one line. Notice that the println statement is spread out over three lines. Extra spaces are
inserted at the beginning of the statement’s second and third lines, which indicate that they
are continuations.

When declaring multiple variables of the same type with a single statement, it is a common
practice to write each variable name on a separate line with a comment explaining the
variable’s purpose. Here is an example:

int fahrenheit, // To hold the Fahrenheit temperature
 celsius, // To hold the Celsius temperature
 kelvin; // To hold the Kelvin temperature

You may have noticed in the example programs that a blank line is inserted between the
variable declarations and the statements that follow them. This is intended to separate the
declarations visually from the executable statements.

There are many other issues related to programming style. They will be presented through-
out the book.

84 Chapter 2 Java Fundamentals

2.13 reading Keyboard input

concepT: Objects of the Scanner class can be used to read input from the keyboard.

Previously we discussed the System.out object, and how it refers to the standard output
device. The Java API has another object, System.in, which refers to the standard input
device. The standard input device is normally the keyboard. You can use the System.in
object to read keystrokes that have been typed at the keyboard. However, using System.in
is not as simple and straightforward as using System.out because the System.in object
reads input only as byte values. This isn’t very useful because programs normally require
values of other data types as input. To work around this, you can use the System.in object
in conjunction with an object of the Scanner class. The Scanner class is designed to read
input from a source (such as System.in), and it, provides methods that you can use to retrieve
the input formatted as primitive values or strings.

First, you create a Scanner object and connect it to the System.in object. Here is an example
of a statement that does just that:

Scanner keyboard = new Scanner(System.in);

Let’s dissect the statement into two parts. The first part of the statement,

Scanner keyboard

declares a variable named keyboard. The data type of the variable is Scanner. Because
Scanner is a class, the keyboard variable is a class type variable. Recall from our discussion
on String objects that a class type variable holds the memory address of an object.
Therefore, the keyboard variable will be used to hold the address of a Scanner object. The
second part of the statement is as follows:

= new Scanner(System.in);

The first thing we see in this part of the statement is the assignment operator (=). The
assignment operator will assign something to the keyboard variable. After the assignment
operator we see the word new, which is a Java key word. The purpose of the new key word
is to create an object in memory. The type of object that will be created is listed next. In this
case, we see Scanner(System.in) listed after the new key word. This specifies that a Scanner
object should be created, and it should be connected to the System.in object. The memory
address of the object is assigned (by the = operator) to the variable keyboard. After the state-
ment executes, the keyboard variable will reference the Scanner object that was created
in memory.

Figure 2-12 points out the purpose of each part of this statement. Figure 2-13 illustrates
how the keyboard variable references an object of the Scanner class.

 2.13 Reading Keyboard Input 85

The Scanner class has methods for reading strings, bytes, integers, long integers, short
integers, floats, and doubles. For example, the following code uses an object of the Scanner
class to read an int value from the keyboard and assign the value to the number variable.

int number;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter an integer value: ");
number = keyboard.nextInt();

The last statement shown here calls the Scanner class’s nextInt method. The nextInt
method formats an input value as an int, and then returns that value. Therefore, this state-
ment formats the input that was entered at the keyboard as an int, and then returns it. The
value is assigned to the number variable.

Table 2-17 lists several of the Scanner class’s methods and describes their use.

Scanner keyboard = new Scanner(System.in);

This declares a variable
named keyboard. The
variable can reference

an object of the Scanner
class.

This creates a Scanner
object in memory. The

object will read input from
System.in.

The = operator assigns the address
of the Scanner object to the

keyboard variable.

Figure 2-12 The parts of the statement

The keyboard variable
can hold the address
of a Scanner object.

A Scanner object

*This Scanner object
is configured to read
input from System.in.

Figure 2-13 The keyboard variable references a Scanner object

noTe: In the preceding code, we chose keyboard as the variable name. There is nothing
special about the name keyboard. We simply chose that name because we will use the
variable to read input from the keyboard.

86 Chapter 2 Java Fundamentals

Table 2-17 Some of the Scanner class methods

Method Example and Description
nextByte Example Usage:

 byte x;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a byte value: ");

 x = keyboard.nextByte();

Description: Returns input as a byte.
nextDouble Example Usage:

 double number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a double value: ");
 number = keyboard.nextDouble();

Description: Returns input as a double.
nextFloat Example Usage:

 float number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a float value: ");
 number = keyboard.nextFloat();

Description: Returns input as a float.
nextInt Example Usage:

 int number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter an integer value: ");
 number = keyboard.nextInt();

Description: Returns input as an int.
nextLine Example Usage:

 String name;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter your name: ");
 name = keyboard.nextLine();

Description: Returns input as a String.
 nextLong Example Usage:

 long number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a long value: ");
 number = keyboard.nextLong();

Description: Returns input as a long.
nextShort Example Usage:

 short number;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter a short value: ");
 number = keyboard.nextShort();

Description: Returns input as a short.

 2.13 Reading Keyboard Input 87

Using the import statement

There is one last detail about the Scanner class that you must know before you will be ready
to use it. The Scanner class is not automatically available to your Java programs. Any pro-
gram that uses the Scanner class should have the following statement near the beginning of
the file, before any class definition:

import java.util.Scanner;

This statement tells the Java compiler where in the Java library to find the Scanner class,
and makes it available to your program.

Code Listing 2-29 shows the Scanner class being used to read a String, an int, and a
double.

code Listing 2-29 (Payroll.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program demonstrates the Scanner class.
 5 */
 6
 7 public class Payroll
 8 {
 9 public static void main(String[] args)
10 {
11 String name; // To hold a name
12 int hours; // Hours worked
13 double payRate; // Hourly pay rate
14 double grossPay; // Gross pay
15
16 // Create a Scanner object to read input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Get the user's name.
20 System.out.print("What is your name? ");
21 name = keyboard.nextLine();
22
23 // Get the number of hours worked this week.
24 System.out.print("How many hours did you work this week? ");
25 hours = keyboard.nextInt();
26
27 // Get the user's hourly pay rate.
28 System.out.print("What is your hourly pay rate? ");
29 payRate = keyboard.nextDouble();
30
31 // Calculate the gross pay.
32 grossPay = hours * payRate;
33

88 Chapter 2 Java Fundamentals

34 // Display the resulting information.
35 System.out.println("Hello, " + name);
36 System.out.println("Your gross pay is $" + grossPay);
37 }
38 }

program output with example input shown in Bold

What is your name? Joe Mahoney [enter]
How many hours did you work this week? 40 [enter]
What is your hourly pay rate? 20 [enter]
Hello, Joe Mahoney
Your gross pay is $800.0

noTe: Notice that each Scanner class method that we used waits for the user to press
the e key before it returns a value. When the e key is pressed, the cursor auto-
matically moves to the next line for subsequent output operations.

reading a character
Sometimes you will want to read a single character from the keyboard. For example, your
program might ask the user a yes/no question, and specify that he or she type Y for yes or
N for no. The Scanner class does not have a method for reading a single character, however.
The approach that we will use in this book for reading a character is to use the Scanner
class’s nextLine method to read a string from the keyboard, and then use the String class’s
charAt method to extract the first character of the string. This will be the character that the
user entered at the keyboard. Here is an example:

String input; // To hold a line of input
char answer; // To hold a single character

// Create a Scanner object for keyboard input.
Scanner keyboard = new Scanner(System.in);

// Ask the user a question.
System.out.print("Are you having fun? (Y=yes, N=no) ");
input = keyboard.nextLine(); // Get a line of input.
answer = input.charAt(0); // Get the first character.

The input variable references a String object. The last statement in this code calls the
String class’s charAt method to retrieve the character at position 0, which is the first char-
acter in the string. After this statement executes, the answer variable will hold the character
that the user typed at the keyboard.

Mixing calls to nextLine with calls to other
Scanner Methods
When you call one of the Scanner class’s methods to read a primitive value, such as nextInt
or nextDouble, and then call the nextLine method to read a string, an annoying and hard-
to-find problem can occur. For example, look at the program in Code Listing 2-30.

 2.13 Reading Keyboard Input 89

code Listing 2-30 (InputProblem.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /*
 4 This program has a problem reading input.
 5 */
 6
 7 public class InputProblem
 8 {
 9 public static void main(String[] args)
10 {
11 String name; // To hold the user's name
12 int age; // To hold the user's age
13 double income; // To hold the user's income
14
15 // Create a Scanner object to read input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Get the user's age.
19 System.out.print("What is your age? ");
20 age = keyboard.nextInt();
21
22 // Get the user's income
23 System.out.print("What is your annual income? ");
24 income = keyboard.nextDouble();
25
26 // Get the user's name.
27 System.out.print("What is your name? ");
28 name = keyboard.nextLine();
29
30 // Display the information back to the user.
31 System.out.println("Hello, " + name + ". Your age is " +
32 age + " and your income is $" +
33 income);
34 }
35 }

program output with example input shown in Bold

What is your age? 24 [enter]
What is your annual income? 50000.00 [enter]
What is your name? Hello, . Your age is 24 and your income is $50000.0

Notice in the example output that the program first allows the user to enter his or her age.
The statement in line 20 reads an int from the keyboard and stores the value in the age
variable. Next, the user enters his or her income. The statement in line 24 reads a double
from the keyboard and stores the value in the income variable. Then the user is asked to

90 Chapter 2 Java Fundamentals

enter his or her name, but it appears that the statement in line 28 is skipped. The name is
never read from the keyboard. This happens because of a slight difference in behavior
between the nextLine method and the other Scanner class methods.

When the user types keystrokes at the keyboard, those keystrokes are stored in an area of
memory that is sometimes called the keyboard buffer. Pressing the e key causes a new-
line character to be stored in the keyboard buffer. In the example running of the program in
Code Listing 2-30, the user was asked to enter his or her age, and the statement in line 20
called the nextInt method to read an integer from the keyboard buffer. Notice that the user
typed 24 and then pressed the e key. The nextInt method read the value 24 from the
keyboard buffer, and then stopped when it encountered the newline character. So the value
24 was read from the keyboard buffer, but the newline character was not read. The newline
character remained in the keyboard buffer.

Next, the user was asked to enter his or her annual income. The user typed 50000.00 and
then pressed the e key. When the nextDouble method in line 24 executed, it first encoun-
tered the newline character that was left behind by the nextInt method. This does not cause
a problem because the nextDouble method is designed to skip any leading newline charac-
ters it encounters. It skips over the initial newline, reads the value 50000.00 from the key-
board buffer, and stops reading when it encounters the next newline character. This newline
character is then left in the keyboard buffer.

Next, the user is asked to enter his or her name. In line 28 the nextLine method is called.
The nextLine method, however, is not designed to skip over an initial newline character.
If a newline character is the first character that the nextLine method encounters, then
nothing will be read. Because the nextDouble method, back in line 24, left a newline char-
acter in the keyboard buffer, the nextLine method will not read any input. Instead, it will
immediately terminate and the user will not be given a chance to enter his or her name.

Although the details of this problem might seem confusing, the solution is easy. The program
in Code Listing 2-31 is a modification of Code Listing 2-30, with the input problem fixed.

code Listing 2-31 (CorrectedInputProblem.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /*
 4 This program correctly reads numeric and string input.
 5 */
 6
 7 public class CorrectedInputProblem
 8 {
 9 public static void main(String[] args)
10 {
11 String name; // To hold the user's name

 2.13 Reading Keyboard Input 91

12 int age; // To hold the user's age
13 double income; // To hold the user's income
14
15 // Create a Scanner object to read input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Get the user's age.
19 System.out.print("What is your age? ");
20 age = keyboard.nextInt();
21
22 // Get the user's income
23 System.out.print("What is your annual income? ");
24 income = keyboard.nextDouble();
25
26 // Consume the remaining newline.
27 keyboard.nextLine();
28
29 // Get the user's name.
30 System.out.print("What is your name? ");
31 name = keyboard.nextLine();
32
33 // Display the information back to the user.
34 System.out.println("Hello, " + name + ". Your age is " +
35 age + " and your income is $" +
36 income);
37 }
38 }

program output with example input shown in Bold

What is your age? 24 [enter]
What is your annual income? 50000.00 [enter]
What is your name? Mary simpson [enter]
Hello, Mary Simpson. Your age is 24 and your income is $50000.0

Notice that after the user’s income is read by the nextDouble method in line 24, the nextLine
method is called in line 27. The purpose of this call is to consume, or remove, the newline
character that remains in the keyboard buffer. Then, in line 31, the nextLine method is
called again. This time it correctly reads the user’s name.

noTe: Notice that in line 27, where we consume the remaining newline character, we
do not assign the method’s return value to any variable. This is because we are simply
calling the method to remove the newline character, and we do not need to keep the
method’s return value.

92 Chapter 2 Java Fundamentals

2.14 Dialog Boxes

concepT: The JOptionPane class allows you to quickly display a dialog box, which
is a small graphical window displaying a message or requesting input.

A dialog box is a small graphical window that displays a message to the user or requests
input. You can quickly display dialog boxes with the JOptionPane class. In this section we
will discuss the following types of dialog boxes and how you can display them using
JOptionPane:

•	 Message	Dialog	 	A	dialog	box	that	displays	a	message;	an	OK	button	is	also	dis-
played

•	 Input	Dialog	 	A	dialog	box	that	prompts	the	user	for	input	and	provides	a	text	
field where input is typed; an OK button and a Cancel button are
also displayed

Figure 2-14 shows an example of each type of dialog box.

Message dialog

Input dialog

Figure 2-14 A message dialog and an input dialog

The JOptionPane class is not automatically available to your Java programs. Any program
that uses the JOptionPane class must have the following statement near the beginning of
the file:

import javax.swing.JOptionPane;

This statement tells the compiler where to find the JOptionPane class and makes it available
to your program.

Displaying Message Dialogs
The showMessageDialog method is used to display a message dialog. Here is a statement
that calls the method:

JOptionPane.showMessageDialog(null, "Hello World");

 2.14 Dialog Boxes 93

The first argument is only important in programs that display other graphical windows.
You will learn more about this in Chapter 12. Until then, we will always pass the key word
null as the first argument. This causes the dialog box to be displayed in the center of the
screen. The second argument is the message that we wish to display in the dialog box. This
code will cause the dialog box in Figure 2-15 to appear. When the user clicks the OK but-
ton, the dialog box will close.

Figure 2-15 Message dialog

Figure 2-16 Input dialog

Displaying input Dialogs
An input dialog is a quick and simple way to ask the user to enter data. You use the
JOptionPane class’s showInputDialog method to display an input dialog. The following code
calls the method:

String name;
name = JOptionPane.showInputDialog("Enter your name.");

The argument passed to the method is a message to display in the dialog box. This state-
ment will cause the dialog box shown in Figure 2-16 to be displayed in the center of the
screen. If the user clicks the OK button, name will reference the string value entered by the
user into the text field. If the user clicks the Cancel button, name will reference the special
value null.

an example program
The program in Code Listing 2-32 demonstrates how to use both types of dialog boxes.
This program uses input dialogs to ask the user to enter his or her first, middle, and last
names, and then displays a greeting with a message dialog. When this program executes, the
dialog boxes shown in Figure 2-17 will be displayed, one at a time.

94 Chapter 2 Java Fundamentals

code Listing 2-32 (NamesDialog.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates using dialogs with
 5 JOptionPane.
 6 */
 7
 8 public class NamesDialog
 9 {
10 public static void main(String[] args)
11 {
12 String firstName; // The user's first name
13 String middleName; // The user's middle name
14 String lastName; // The user's last name
15
16 // Get the user's first name.
17 firstName =
18 JOptionPane.showInputDialog("What is " +
19 "your first name? ");
20
21 // Get the user's middle name.
22 middleName =
23 JOptionPane.showInputDialog("What is " +
24 "your middle name? ");
25
26 // Get the user's last name.
27 lastName =
28 JOptionPane.showInputDialog("What is " +
29 "your last name? ");
30
31 // Display a greeting
32 JOptionPane.showMessageDialog(null, "Hello " +
33 firstName + " " + middleName +
34 " " + lastName);
35 System.exit(0);
36 }
37 }

Notice the last statement in the main method:

System.exit(0);

This statement causes the program to end, and is required if you use the JOptionPane class
to display dialog boxes. Unlike a console program, a program that uses JOptionPane does
not automatically stop executing when the end of the main method is reached, because the
JOptionPane class causes an additional task to run in the JVM. If the System.exit method

 2.14 Dialog Boxes 95

is not called, this task, also known as a thread, will continue to execute, even after the end
of the main method has been reached.

The System.exit method requires an integer argument. This argument is an exit code that
is passed back to the operating system. Although this code is usually ignored, it can be used
outside the program to indicate whether the program ended successfully or as the result of
a failure. The value 0 traditionally indicates that the program ended successfully.

converting string input to numbers
Unlike the Scanner class, the JOptionPane class does not have different methods for reading
values of different data types as input. The showInputDialog method always returns the

The first dialog box appears as shown here.
The user types Joe and clicks OK.

The second dialog box appears, as shown here. In
this example the user types Clondike and clicks OK.

The third dialog box appears, as shown here. In
this example the user types Mahoney and clicks OK.

The fourth dialog box appears, as
shown here, displaying a greeting.

Figure 2-17 Dialog boxes displayed by the NamesDialog program

96 Chapter 2 Java Fundamentals

user’s input as a String, even if the user enters numeric data. For example, if the user enters
the number 72 into an input dialog, the showInputDialog method will return the string
"72". This can be a problem if you wish to use the user’s input in a math operation because,
as you know, you cannot perform math on strings. In such a case, you must convert the
input to a numeric value. To convert a string value to a numeric value, you use one of the
methods listed in Table 2-18.

Table 2-18 Methods for converting strings to numbers

Method Use This Method To . . . Example Code

Byte.parseByte Convert a string to a byte. byte num;
num = Byte.parseByte(str);

Double.parseDouble Convert a string to a double. double num;
num = Double.parseDouble(str);

Float.parseFloat Convert a string to a float. float num;
num = Float.parseFloat(str);

Integer.parseInt Convert a string to an int. int num;
num = Integer.parseInt(str);

Long.parseLong Convert a string to a long. long num;
num = Long.parseLong(str);

Short.parseShort Convert a string to a short. short num;
num = Short.parseShort(str);

Here is an example of how you would use the Integer.parseInt method to convert the
value returned from the JOptionPane.showInputDialog method to an int:

int number;
String str;
str = JOptionPane.showInputDialog("Enter a number.");
number = Integer.parseInt(str);

After this code executes, the number variable will hold the value entered by the user, con-
verted to an int. Here is an example of how you would use the Double.parseDouble method
to convert the user’s input to a double:

double price;
String str;
str = JOptionPane.showInputDialog("Enter the retail price.");
price = Double.parseDouble(str);

After this code executes, the price variable will hold the value entered by the user, con-
verted to a double. Code Listing 2-33 shows a complete program. This is a modification of
the Payroll.java program in Code Listing 2-29. When this program executes, the dialog
boxes shown in Figure 2-18 will be displayed, one at a time.

noTe: The methods in Table 2-18 are part of Java’s wrapper classes, which you will
learn more about in Chapter 9.

 2.14 Dialog Boxes 97

code Listing 2-33 (PayrollDialog.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates using dialogs with
 5 JOptionPane.
 6 */
 7
 8 public class PayrollDialog
 9 {
10 public static void main(String[] args)
11 {
12 String inputString; // For reading input
13 String name; // The user's name
14 int hours; // The number of hours worked
15 double payRate; // The user's hourly pay rate
16 double grossPay; // The user's gross pay
17
18 // Get the user's name.
19 name = JOptionPane.showInputDialog("What is " +
20 "your name? ");
21
22 // Get the hours worked.
23 inputString =
24 JOptionPane.showInputDialog("How many hours " +
25 "did you work this week? ");
26
27 // Convert the input to an int.
28 hours = Integer.parseInt(inputString);
29
30 // Get the hourly pay rate.
31 inputString =
32 JOptionPane.showInputDialog("What is your " +
33 "hourly pay rate? ");
34
35 // Convert the input to a double.
36 payRate = Double.parseDouble(inputString);
37
38 // Calculate the gross pay.
39 grossPay = hours * payRate;
40
41 // Display the results.
42 JOptionPane.showMessageDialog(null, "Hello " +
43 name + ". Your gross pay is $" +
44 grossPay);
45
46 // End the program.
47 System.exit(0);
48 }
49 }

98 Chapter 2 Java Fundamentals

checkpoint

www.myprogramminglab.com

2.34 What is the purpose of the following types of dialog boxes?

 Message dialog

 Input dialog

2.35 Write code that will display each of the dialog boxes shown in Figure 2-19.

The first dialog box appears as shown here. The user
enters his or her name and then clicks OK.

The second dialog box appears, as shown here. The user
enters the number of hours workded and then clicks OK.

The third dialog box appears, as shown here. The user
enters his or her hourly pay rate and then clicks OK.

The fourth dialog box appears, as shown here.

Figure 2-18 Dialog boxes displayed by PayrollDialog.java

b)a)

Figure 2-19 Dialog boxes

http://www.myprogramminglab.com

 2.15 Common Errors to Avoid 99

2.36 Write code that displays an input dialog asking the user to enter his or her age.
Convert the input value to an int and store it in an int variable named age.

2.37 What import statement do you write in a program that uses the JOptionPane class?

2.15 common errors to avoid
•	 Mismatched braces, quotation marks, or parentheses. In this chapter you saw that the

statements making up a class definition are enclosed in a set of braces. Also, you saw
that the statements in a method are also enclosed in a set of braces. For every opening
brace, there must be a closing brace in the proper location. The same is true of double-
quotation marks that enclose string literals and single-quotation marks that enclose
character literals. Also, in a statement that uses parentheses, such as a mathematical
expression, you must have a closing parenthesis for every opening parenthesis.

•	 Misspelling key words. Java will not recognize a key word that has been misspelled.
•	 Using capital letters in key words. Remember that Java is a case-sensitive language,

and all key words are written in lowercase. Using an uppercase letter in a key word is
the same as misspelling the key word.

•	 Using a key word as a variable name. The key words are reserved for special uses; they
cannot be used for any other purpose.

•	 Using inconsistent spelling of variable names. Each time you use a variable name, it
must be spelled exactly as it appears in its declaration statement.

•	 Using inconsistent case of letters in variable names. Because Java is a case-sensitive lan-
guage, it distinguishes between uppercase and lowercase letters. Java will not recognize a
variable name that is not written exactly as it appears in its declaration statement.

•	 Inserting a space in a variable name. Spaces are not allowed in variable names. Instead
of using a two-word name such as gross pay, use one word, such as grossPay.

•	 Forgetting the semicolon at the end of a statement. A semicolon appears at the end of
each complete statement in Java.

•	 Assigning a double literal to a float variable. Java is a strongly typed language,
which means that it only allows you to store values of compatible data types in vari-
ables. All floating-point literals are treated as doubles, and a double value is not com-
patible with a float variable. A floating-point literal must end with the letter f or F in
order to be stored in a float variable.

•	 Using commas or other currency symbols in numeric literals. Numeric literals cannot
contain commas or currency symbols, such as the dollar sign.

•	 Unintentionally performing integer division. When both operands of a division state-
ment are integers, the statement will result in an integer. If there is a remainder, it will
be discarded.

•	 Forgetting to group parts of a mathematical expression. If you use more than one
operator in a mathematical expression, the expression will be evaluated according to
the order of operations. If you wish to change the order in which the operators are
used, you must use parentheses to group part of the expression.

•	 Inserting a space in a combined assignment operator. A space cannot appear between
the two operators that make a combined assignment operator.

•	 Using a variable to receive the result of a calculation when the variable’s data type is
incompatible with the data type of the result. A variable that receives the result of a
calculation must be of a data type that is compatible with the data type of the result.

100 Chapter 2 Java Fundamentals

•	 Incorrectly terminating a multi-line comment or a documentation comment. Multi-
line comments and documentation comments are terminated by the */ characters.
Forgetting to place these characters at a comment’s desired ending point, or acciden-
tally switching the * and the /, will cause the comment not to have an ending point.

•	 Forgetting to use the correct import statement in a program that uses the Scanner
class or the JOptionPane class. In order for the Scanner class to be available to your
program, you must have the import java.util.Scanner; statement near the top of
your program file. In order for the JOptionPane class to be available to your program,
you must have the import javax.swing.JOptionPane; statement near the top of the
program file.

•	 When using an input dialog to read numeric input, not converting the showInput-
Dialog method’s return value to a number. The showInputDialog method always
returns the user’s input as a string. If the user enters a numeric value, it must be con-
verted to a number before it can be used in a math statement.

review Questions and exercises
Multiple choice and True/False

 1. Every complete statement ends with a __________.
a. period
b. parenthesis
c. semicolon
d. ending brace

 2. The following data

 72
 'A'
 "Hello World"
 2.8712

 are all examples of __________.
a. variables
b. literals
c. strings
d. none of these

 3. A group of statements, such as the contents of a class or a method, are enclosed in
__________.
a. braces {}
b. parentheses ()
c. brackets []
d. any of these will do

 4. Which of the following are not valid assignment statements? (Indicate all that apply.)
a. total = 9;
b. 72 = amount;
c. profit = 129
d. letter = 'W';

 Review Questions and Exercises 101

 5. Which of the following are not valid println statements? (Indicate all that apply.)
a. System.out.println + "Hello World";
b. System.out.println("Have a nice day");
c. out.System.println(value);
d. println.out(Programming is great fun);

 6. The negation operator is __________.
a. unary
b. binary
c. ternary
d. none of these

 7. This key word is used to declare a named constant.
a. constant
b. namedConstant
c. final
d. concrete

 8. These characters mark the beginning of a multi-line comment.
a. //
b. /*
c. */
d. /**

 9. These characters mark the beginning of a single-line comment.
a. //
b. /*
c. */
d. /**

 10. These characters mark the beginning of a documentation comment.
a. //
b. /*
c. */
d. /**

 11. Which Scanner class method would you use to read a string as input?
a. nextString
b. nextLine
c. readString
d. getLine

 12. Which Scanner class method would you use to read a double as input?
a. nextDouble
b. getDouble
c. readDouble
d. None of these; you cannot read a double with the Scanner class

 13. You can use this class to display dialog boxes.
a. JOptionPane
b. BufferedReader
c. InputStreamReader
d. DialogBox

102 Chapter 2 Java Fundamentals

 14. When Java converts a lower-ranked value to a higher-ranked type, it is called a(n)
__________.
a. 4-bit conversion
b. escalating conversion
c. widening conversion
d. narrowing conversion

 15. This type of operator lets you manually convert a value, even if it means that a nar-
rowing conversion will take place.
a. cast
b. binary
c. uploading
d. dot

 16. True or False: A left brace in a Java program is always followed by a right brace later
in the program.

 17. True or False: A variable must be declared before it can be used.

 18. True or False: Variable names may begin with a number.

 19. True or False: You cannot change the value of a variable whose declaration uses the
final key word.

 20. True or False: Comments that begin with // can be processed by javadoc.

 21. True or False: If one of an operator’s operands is a double, and the other operand is an
int, Java will automatically convert the value of the double to an int.

predict the output

What will the following code segments print on the screen?

 1. int freeze = 32, boil = 212;
freeze = 0;
boil = 100;
System.out.println(freeze + "\n"+ boil + "\n");

 2. int x = 0, y = 2;
x = y * 4;
System.out.println(x + "\n" + y + "\n");

 3. System.out.print("I am the incredible");
System.out.print("computing\nmachine");
System.out.print("\nand I will\namaze\n)";
System.out.println("you.");

 4. System.out.print("Be careful\n)";
System.out.print("This might/n be a trick ");
System.out.println("question.");

 5. int a, x = 23;
a = x % 2;
System.out.println(x + "\n" + a);

Find the error

There are a number of syntax errors in the following program. Locate as many
as you can.

 Review Questions and Exercises 103

/ What's wrong with this program? /
public MyProgram
{
 public static void main(String[] args);
 }
 int a, b, c \\ Three integers
 a = 3
 b = 4
 c = a + b
 System.out.println('The value of c is' + C);
 {

algorithm Workbench

 1. Show how the double variables temp, weight, and age can be declared in one statement.

 2. Show how the int variables months, days, and years may be declared in one state-
ment, with months initialized to 2 and years initialized to 3.

 3. Write assignment statements that perform the following operations with the variables
a, b, and c.
a. Adds 2 to a and stores the result in b
b. Multiplies b times 4 and stores the result in a
c. Divides a by 3.14 and stores the result in b
d. Subtracts 8 from b and stores the result in a
e. Stores the character ‘K’ in c
f. Stores the Unicode code for ‘B’ in c

 4. Assume the variables result, w, x, y, and z are all integers, and that w = 5, x = 4,
y = 8, and z = 2. What value will be stored in result in each of the following statements?
a. result = x + y;
b. result = z * 2;
c. result = y / x;
d. result = y − z;
e. result = w % 2;

 5. How would each of the following numbers be represented in E notation?
a. 3.287 × 106

b. −9.7865 × 1012

c. 7.65491 × 10−3

 6. Modify the following program so it prints two blank lines between each line of text.

public class
{
 public static void main(String[] args)
 {
 System.out.print("Hearing in the distance");
 System.out.print("Two mandolins like creatures in the");
 System.out.print("dark");
 System.out.print("Creating the agony of ecstasy.");
 System.out.println(" - George Barker");
 }
}

104 Chapter 2 Java Fundamentals

 7. What will the following code output?

int apples = 0, bananas = 2, pears = 10;
apples += 10;
bananas *= 10;
pears /= 10;
System.out.println(apples + " " +
 bananas + " " +
 pears);

 8. What will the following code output?

double d = 12.9;
int i = (int)d;
System.out.println(i);

 9. What will the following code output?

String message = "Have a great day!";
System.out.println(message.charAt(5));

 10. What will the following code output?

String message = "Have a great day!";
System.out.println(message.toUpperCase());
System.out.println(message);

 11. Convert the following pseudocode to Java code. Be sure to declare the appropriate variables.

Store 20 in the speed variable.
Store 10 in the time variable.
Multiply speed by time and store the result in the distance variable.
Display the contents of the distance variable.

 12. Convert the following pseudocode to Java code. Be sure to declare the appropriate variables.

Store 172.5 in the force variable.
Store 27.5 in the area variable.
Divide area by force and store the result in the pressure variable.
Display the contents of the pressure variable.

 13. Write the code to set up all the necessary objects for reading keyboard input. Then
write code that asks the user to enter his or her desired annual income. Store the input
in a double variable.

 14. Write the code to display a dialog box that asks the user to enter his or her desired
annual income. Store the input in a double variable.

 15. A program has a float variable named total and a double variable named number.
Write a statement that assigns number to total without causing an error when compiled.

short answer

 1. Is the following comment a single-line style comment or a multi-line style comment?
/* This program was written by M. A. Codewriter */

 2. Is the following comment a single-line style comment or a multi-line style comment?
// This program was written by M. A. Codewriter

 3. Describe what the phrase “self-documenting program” means.

 Programming Challenges 105

 4. What is meant by “case-sensitive”? Why is it important for a programmer to know
that Java is a case-sensitive language?

 5. Briefly explain how the print and println methods are related to the System class and
the out object.

 6. What does a variable declaration tell the Java compiler about a variable?

 7. Why are variable names like x not recommended?

 8. What things must be considered when deciding on a data type to use for a variable?

 9. Briefly describe the difference between variable assignment and variable initialization.

 10. What is the difference between comments that start with the // characters and com-
ments that start with the /* characters?

 11. Briefly describe what programming style means. Why should your programming style
be consistent?

 12. Assume that a program uses the named constant PI to represent the value 3.14. The
program uses the named constant in several statements. What is the advantage of
using the named constant instead of the actual value 3.14 in each statement?

 13. Assume the file SalesAverage.java is a Java source file that contains documentation
comments. Assuming you are in the same folder or directory as the source code file,
what command would you enter at the operating system command prompt to gener-
ate the HTML documentation files?

 14. An expression adds a byte variable and a short variable. Of what data type will the
result be?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. name, age, and annual income

Write a program that declares the following:

•	 a	String variable named name
•	 an	int variable named age
•	 a	double variable named annualPay

Store your age, name, and desired annual income as literals in these variables. The program
should display these values on the screen in a manner similar to the following:

My name is Joe Mahoney, my age is 26 and
I hope to earn $100000.0 per year.

2. name and initials

Write a program that has the following String variables: firstName, middleName, and
lastName. Initialize these with your first, middle, and last names. The program should also
have the following char variables: firstInitial, middleInitial, and lastInitial. Store
your first, middle, and last initials in these variables. The program should display the con-
tents of these variables on the screen.

http://www.myprogramminglab.com

106 Chapter 2 Java Fundamentals

3. personal information

Write a program that displays the following information, each on a separate line:

•	 Your	name
•	 Your	address,	with	city,	state,	and	ZIP
•	 Your	telephone	number
•	 Your	college	major

Although these items should be displayed on separate output lines, use only a single println
statement in your program.

4. star pattern

Write a program that displays the following pattern:

 *

 *

5. sales prediction

The East Coast sales division of a company generates 62 percent of total sales. Based on
that percentage, write a program that will predict how much the East Coast division will
generate if the company has $4.6 million in sales this year. Hint: Use the value 0.62 to
 represent 62 percent.

6. Land calculation

One acre of land is equivalent to 43,560 square feet. Write a program that calculates the
number of acres in a tract of land with 389,767 square feet. Hint: Divide the size of the
tract of land by the size of an acre to get the number of acres.

7. sales Tax

Write a program that will ask the user to enter the amount of a purchase. The program
should then compute the state and county sales tax. Assume the state sales tax is 4 percent
and the county sales tax is 2 percent. The program should display the amount of the pur-
chase, the state sales tax, the county sales tax, the total sales tax, and the total of the sale
(which is the sum of the amount of purchase plus the total sales tax). Hint: Use the value
0.02 to represent 2 percent, and 0.04 to represent 4 percent.

8. cookie calories

A bag of cookies holds 40 cookies. The calorie information on the bag claims that there are
10 servings in the bag and that a serving equals 300 calories. Write a program that lets the
user enter the number of cookies he or she actually ate and then reports the number of total
calories consumed.

9. Miles-per-gallon

A car’s miles-per-gallon (MPG) can be calculated with the following formula:

MPG = Miles driven / Gallons of gas used

The Miles-per-
Gallon Problem

VideoNote

 Programming Challenges 107

Write a program that asks the user for the number of miles driven and the gallons of gas
used. It should calculate the car’s miles-per-gallon and display the result on the screen.

10. Test average

Write a program that asks the user to enter three test scores. The program should display
each test score, as well as the average of the scores.

11. circuit Board profit

An electronics company sells circuit boards at a 40 percent profit. If you know the retail
price of a circuit board, you can calculate its profit with the following formula:

Profit = Retail price × 0.4

Write a program that asks the user for the retail price of a circuit board, calculates the
amount of profit earned for that product, and displays the results on the screen.

12. string Manipulator

Write a program that asks the user to enter the name of his or her favorite city. Use a String
variable to store the input. The program should display the following:

•	 The	number	of	characters	in	the	city	name
•	 The	name	of	the	city	in	all	uppercase	letters
•	 The	name	of	the	city	in	all	lowercase	letters
•	 The	first	character	in	the	name	of	the	city

13. restaurant Bill

Write a program that computes the tax and tip on a restaurant bill. The program should ask
the user to enter the charge for the meal. The tax should be 6.75 percent of the meal charge.
The tip should be 20 percent of the total after adding the tax. Display the meal charge, tax
amount, tip amount, and total bill on the screen.

14. Male and Female percentages

Write a program that asks the user for the number of males and the number of females regis-
tered in a class. The program should display the percentage of males and females in the class.

Hint: Suppose there are 8 males and 12 females in a class. There are 20 students in the class.
The percentage of males can be calculated as 8 4 20 5 0.4, or 40%. The percentage of
females can be calculated as 12 4 20 5 0.6, or 60%.

15. stock commission

Kathryn bought 600 shares of stock at a price of $21.77 per share. She must pay her stock-
broker a 2 percent commission for the transaction. Write a program that calculates and
displays the following:

•	 The	amount	paid	for	the	stock	alone	(without	the	commission)
•	 The	amount	of	the	commission
•	 The	total	amount	paid	(for	the	stock	plus	the	commission)

16. energy Drink consumption

A soft drink company recently surveyed 12,467 of its customers and found that approxi-
mately 14 percent of those surveyed purchase one or more energy drinks per week. Of those

108 Chapter 2 Java Fundamentals

customers who purchase energy drinks, approximately 64 percent of them prefer citrus-
flavored energy drinks. Write a program that displays the following:

•	 The	approximate	number	of	 customers	 in	 the	 survey	who	purchase	one	or	more	
energy drinks per week

•	 The	approximate	number	of	 customers	 in	 the	 survey	who	prefer	 citrus-flavored	
energy drinks

17. ingredient adjuster

A cookie recipe calls for the following ingredients:

•	 1.5	cups	of	sugar
•	 1	cup	of	butter
•	 2.75	cups	of	flour

The recipe produces 48 cookies with these amounts of the ingredients. Write a program
that asks the user how many cookies he or she wants to make, and then displays the num-
ber of cups of each ingredient needed for the specified number of cookies.

18. Word game

Write a program that plays a word game with the user. The program should ask the user to
enter the following:

•	 His	or	her	name
•	 His	or	her	age
•	 The	name	of	a	city
•	 The	name	of	a	college
•	 A	profession
•	 A	type	of	animal
•	 A	pet’s	name

After the user has entered these items, the program should display the following story,
inserting the user’s input into the appropriate locations:

There once was a person named NAME who lived in CITY. At the age of AGE,
NAME went to college at COLLEGE. NAME graduated and went to work as a
PROFESSION. Then, NAME adopted a(n) ANIMAL named PETNAME. They both lived
happily ever after!

19. stock Transaction program

Last month Joe purchased some stock in Acme Software, Inc. Here are the details of
the purchase:

•	 The	number	of	shares	that	Joe	purchased	was	1,000.
•	 When	Joe	purchased	the	stock,	he	paid	$32.87	per	share.
•	 Joe	paid	his	stockbroker	a	commission	that	amounted	to	2%	of	the	amount	he	paid	

for the stock.

Two weeks later Joe sold the stock. Here are the details of the sale:

•	 The	number	of	shares	that	Joe	sold	was	1,000.
•	 He	sold	the	stock	for	$33.92	per	share.

•	 He	paid	his	stockbroker	another	commission	that	amounted	to	2%	of	the	amount	he	
received for the stock.

Write a program that displays the following information:

•	 The	amount	of	money	Joe	paid	for	the	stock.
•	 The	amount	of	commission	Joe	paid	his	broker	when	he	bought	the	stock.
•	 The	amount	that	Joe	sold	the	stock	for.
•	 The	amount	of	commission	Joe	paid	his	broker	when	he	sold	the	stock.
•	 Display	the	amount	of	profit	that	Joe	made	after	selling	his	stock	and	paying	the	two	

commissions to his broker. (If the amount of profit that your program displays is a
negative number, then Joe lost money on the transaction.)

 Programming Challenges 109

This page intentionally left blank

3.1 The if Statement

ConCepT: The if statement is used to create a decision structure, which allows a
program to have more than one path of execution. The if statement
causes one or more statements to execute only when a boolean expression
is true.

In all the programs you have written so far, the statements are executed one after the other,
in the order they appear. You might think of sequentially executed statements as the steps
you take as you walk down a road. To complete the journey, you must start at the beginning
and take each step, one after the other, until you reach your destination. This is illustrated
in Figure 3-1.

111

Decision Structures

C
H

A
P

T
E

R

3
TopICS

 3.1 The if Statement
 3.2 The if-else Statement
 3.3 Nested if Statements
 3.4 The if-else-if Statement
 3.5 Logical Operators
 3.6 Comparing String Objects
 3.7 More about Variable Declaration and

Scope

 3.8 The Conditional Operator (Optional)
 3.9 The switch Statement
 3.10 Displaying Formatted Output with

System.out.printf and
String.format

 3.11 Common Errors to Avoid
 On the Web: Case Study—Calculating

Sales Commission

The if
Statement

VideoNote

112 Chapter 3 Decision Structures

The type of code shown in Figure 3-1 is called a sequence structure, because the statements
are executed in sequence, without branching off in another direction. Programs often need
more than one path of execution, however. Many algorithms require a program to execute
some statements only under certain circumstances. This can be accomplished with a deci-
sion structure.

In a decision structure’s simplest form, a specific action is taken only when a condition
exists. If the condition does not exist, the action is not performed. The flowchart in Figure 3-2
shows the logic of a decision structure. The diamond symbol represents a yes/no question or
a true/false condition. If the answer to the question is yes (or if the condition is true), the
program flow follows one path, which leads to an action being performed. If the answer to
the question is no (or the condition is false), the program flow follows another path, which
skips the action.

Figure 3-1 Sequence structure

Figure 3-2 Simple decision structure logic

In the flowchart, the action “Wear a coat” is performed only when it is cold outside. If it is
not cold outside, the action is skipped. The action is conditionally executed because it is
performed only when a certain condition (cold outside) exists. Figure 3-3 shows a more
elaborate flowchart, where three actions are taken only when it is cold outside.

 3.1 The if Statement 113

One way to code a decision structure in Java is with the if statement. Here is the general
format of the if statement:

if (BooleanExpression)
 statement;

The if statement is simple in the way it works: The BooleanExpression that appears inside
the parentheses must be a boolean expression. A boolean expression is one that is either
true or false. If the boolean expression is true, the very next statement is executed.
Otherwise, it is skipped. The statement is conditionally executed because it executes only
under the condition that the expression in the parentheses is true.

Using Relational operators to Form Conditions
Typically, the boolean expression that is tested by an if statement is formed with a rela-
tional operator. A relational operator determines whether a specific relationship exists
between two values. For example, the greater than operator (>) determines whether one
value is greater than another. The equal to operator (==) determines whether two values are
equal. Table 3-1 lists all of the Java relational operators.

Figure 3-3 Three-action decision structure logic

Table 3-1 Relational operators

Relational Operators
(in Order of Precedence)

Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

114 Chapter 3 Decision Structures

Table 3-2 boolean expressions using relational operators

Expression Meaning

x > y Is x greater than y?

x < y Is x less than y?

x >= y Is x greater than or equal to y?

x <= y Is x less than or equal to y?

x == y Is x equal to y?

x != y Is x not equal to y?

All of the relational operators are binary, which means they use two operands. Here is an
example of an expression using the greater than operator:

length > width

This expression determines whether length is greater than width. If length is greater than
width, the value of the expression is true. Otherwise, the value of the expression is false.
Because the expression can be only true or false, it is a boolean expression. The following
expression uses the less than operator to determine whether length is less than width:

length < width

Table 3-2 shows examples of several boolean expressions that compare the variables x and y.

Two of the operators, >= and <=, test for more than one relationship. The >= operator deter-
mines whether the operand on its left is greater than or equal to the operand on its right.
Assuming that a is 4, b is 6, and c is 4, both of the expressions b >= a and a >= c are true,
but a >= 5 is false. When using this operator, the > symbol must precede the = symbol, and
there is no space between them. The <= operator determines whether the operand on its left
is less than or equal to the operand on its right. Once again, assuming that a is 4, b is 6, and
c is 4, both a <= c and b <= 10 are true, but b <= a is false. When using this operator, the
< symbol must precede the = symbol, and there is no space between them.

The == operator determines whether the operand on its left is equal to the operand on its right. If
both operands have the same value, the expression is true. Assuming that a is 4, the expression
a == 4 is true and the expression a == 2 is false. Notice the equality operator is two = symbols
together. Don’t confuse this operator with the assignment operator, which is one = symbol.

The != operator is the not equal operator. It determines whether the operand on its left is
not equal to the operand on its right, which is the opposite of the == operator. As before,
assuming a is 4, b is 6, and c is 4, both a != b and b != c are true because a is not equal to
b and b is not equal to c. However, a != c is false because a is equal to c.

putting It All Together
Let’s look at an example of the if statement:

if (sales > 50000)
 bonus = 500.0;

 3.1 The if Statement 115

This statement uses the > operator to determine whether sales is greater than 50,000. If the
expression sales > 50000 is true, the variable bonus is assigned 500.0. If the expression is
false, however, the assignment statement is skipped. The program in Code Listing 3-1
shows another example. The user enters three test scores and the program calculates their
average. If the average is greater than 95, the program congratulates the user on obtaining
a high score.

Code Listing 3-1 (AverageScore.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane
 2
 3 /**
 4 This program demonstrates the if statement.
 5 */
 6
 7 public class AverageScore
 8 {
 9 public static void main(String[] args)
10 {
11 double score1; // To hold score #1
12 double score2; // To hold score #2
13 double score3; // To hold score #3
14 double average; // To hold the average score
15 String input; // To hold the user's input
16
17 // Get the first test score.
18 input = JOptionPane.showInputDialog("Enter score #1:");
19 score1 = Double.parseDouble(input);
20
21 // Get the second score.
22 input = JOptionPane.showInputDialog("Enter score #2:");
23 score2 = Double.parseDouble(input);
24
25 // Get the third test score.
26 input = JOptionPane.showInputDialog("Enter score #3:");
27 score3 = Double.parseDouble(input);
28
29 // Calculate the average score.
30 average = (score1 + score2 + score3) / 3.0;
31
32 // Display the average score.
33 JOptionPane.showMessageDialog(null,
34 "The average is " + average);
35
36 // If the score was greater than 95, let the user know
37 // that's a great score.
38 if (average > 95)

116 Chapter 3 Decision Structures

39 JOptionPane.showMessageDialog(null,
40 "That's a great score!");
41
42 System.exit(0);
43 }
44 }

Figures 3-4 and 3-5 show examples of interaction with this program. In Figure 3-4 the aver-
age of the test scores is not greater than 95. In Figure 3-5 the average is greater than 95.

Figure 3-4 Interaction with the AverageScore program

This input dialog box appears first.
The user enters 82 and then clicks on
the OK button.

This input dialog box appears next.
The user enters 76 and then clicks on
the OK button.

This input dialog box appears next.
The user enters 91 and then clicks on
the OK button.

This message dialog box appears
next. The average of the three test
scores is displayed.

 3.1 The if Statement 117

The code in lines 38 through 40 causes the congratulatory message to be printed:

if (average > 95)
 JOptionPane.showMessageDialog(null,
 "That's a great score!");

Figure 3-6 shows the logic of this if statement.

Table 3-3 shows other examples of if statements and their outcomes.

Figure 3-5 Interaction with the AverageScore program

This input dialog box appears first.
The user enters 92 and then clicks on
the OK button.

This input dialog box appears next.
The user enters 98 and then clicks on
the OK button.

This input dialog box appears next.
The user enters 100 and then clicks on
the OK button.

This message dialog box appears
next. The average of the three test
scores is displayed. The user clicks
on the OK button.

This message dialog box appears next
because the average is greater than
95.

118 Chapter 3 Decision Structures

programming Style and the if Statement
Even though an if statement usually spans more than one line, it is really one long state-
ment. For instance, the following if statements are identical except for the style in which
they are written:

if (value > 32)
System.out.println("Invalid number.");

if (value > 32) System.out.println("Invalid number.");

In both of these examples, the compiler considers the if statement and the conditionally
executed statement as one unit, with a semicolon properly placed at the end. Indentions and
spacing are for the human readers of a program, not the compiler. Here are two important
style rules you should adopt for writing if statements:

•	 The	conditionally	executed	statement	should	appear	on	the	line	after	the	if statement.
•	 The	conditionally	executed	statement	should	be	indented	one	level	from	the	if statement.

In most editors, each time you press the tab key, you are indenting one level. By indenting
the conditionally executed statement, you are causing it to stand out visually. This is so you
can tell at a glance what part of the program the if statement executes. This is a standard
way of writing if statements and is the method you should use.

Figure 3-6 Logic of the if statement

Average

Table 3-3 Other examples of if statements

Statement Outcome
if (hours > 40)
 overTime = true;

If hours is greater than 40, assigns true to the
boolean variable overTime.

if (value < 32)
 System.out.println("Invalid number");

If value is less than 32, displays the message
"Invalid number".

 3.1 The if Statement 119

Be Careful with Semicolons
You do not put a semicolon after the if (expression) portion of an if statement, as illus-
trated in Figure 3-7. This is because the if statement isn’t complete without its condition-
ally executed statement.

Figure 3-7 Do not prematurely terminate an if statement with a semicolon

If you prematurely terminate an if statement with a semicolon, the compiler will not dis-
play an error message, but will assume that you are placing a null statement there. The null
statement, which is an empty statement that does nothing, will become the conditionally
executed statement. The statement that you intended to be conditionally executed will be
disconnected from the if statement and will always execute.

For example, look at the following code:

int x = 0, y = 10;

// The following if statement is prematurely
// terminated with a semicolon.
if (x > y);
 System.out.println(x + " is greater than " + y);

The if statement in this code is prematurely terminated with a semicolon. Because the
println statement is not connected to the if statement, it will always execute.

Having Multiple Conditionally executed Statements
The previous examples of the if statement conditionally execute a single statement. The if
statement can also conditionally execute a group of statements, as long as they are enclosed
in a set of braces. Enclosing a group of statements inside braces creates a block of state-
ments. Here is an example:

if (sales > 50000)
{
 bonus = 500.0;
 commissionRate = 0.12;
 daysOff += 1;
}

If sales is greater than 50,000, this code will execute all three of the statements inside the
braces, in the order they appear. If the braces are accidentally left out, however, the if state-
ment conditionally executes only the very next statement. Figure 3-8 illustrates this.

120 Chapter 3 Decision Structures

Flags
A flag is a boolean variable that signals when some condition exists in the program. When
the flag variable is set to false, it indicates the condition does not yet exist. When the flag
variable is set to true, it means the condition does exist.

For example, suppose a program similar to the previous test averaging program has a
boolean variable named highScore. The variable might be used to signal that a high score
has been achieved by the following code:

if (average > 95)
 highScore = true;

Later, the same program might use code similar to the following to test the highScore vari-
able, in order to determine whether a high score has been achieved:

if (highScore)
 System.out.println("That's a high score!");

You will find flag variables useful in many circumstances, and we will come back to them in
future chapters.

Comparing Characters
You can use the relational operators to test character data as well as numbers. For example,
assuming that ch is a char variable, the following code segment uses the == operator to
compare it to the character ‘A’:

if (ch == 'A')
 System.out.println("The letter is A.");

The != operator can also be used with characters to test for inequality. For example, the fol-
lowing statement determines whether the char variable ch is not equal to the letter ‘A’:

if (ch != 'A')
 System.out.println("Not the letter A.");

You can also use the >, <, >=, and <= operators to compare characters. Computers do not
actually store characters, such as A, B, C, and so forth, in memory. Instead, they store
numeric codes that represent the characters. Recall from Chapter 2 that Java uses Unicode,
which is a set of numbers that represents all the letters of the alphabet (both lowercase and
uppercase), the printable digits 0 through 9, punctuation symbols, and special characters.
When a character is stored in memory, it is actually the Unicode number that is stored.
When the computer is instructed to print the value on the screen, it displays the character
that corresponds with the numeric code.

Figure 3-8 An if statement missing its braces

 3.2 The if-else Statement 121

In Unicode, letters are arranged in alphabetic order. Because ‘A’ comes before ‘B’, the numeric
code for the character ‘A’ is less than the code for the character ‘B’. (The code for ‘A’ is 65
and the code for ‘B’ is 66. Appendix B, available for download from this book’s companion
Web site, lists the codes for all of the printable English characters.) In the following if state-
ment, the boolean expression 'A' < 'B' is true:

if ('A' < 'B')
 System.out.println("A is less than B.");

In Unicode, the uppercase letters come before the lowercase letters, so the numeric code for
‘A’ (65) is less than the numeric code for ‘a’ (97). In addition, the space character (code 32)
comes before all the alphabetic characters.

Checkpoint

www.myprogramminglab.com

3.1 Write an if statement that assigns 0 to x when y is equal to 20.

3.2 Write an if statement that multiplies payRate by 1.5 if hours is greater than 40.

3.3 Write an if statement that assigns 0.2 to commission if sales is greater than or
equal to 10000.

3.4 Write an if statement that sets the variable fees to 50 if the boolean variable max
is true.

3.5 Write an if statement that assigns 20 to the variable y and assigns 40 to the vari-
able z if the variable x is greater than 100.

3.6 Write an if statement that assigns 0 to the variable b and assigns 1 to the variable c
if the variable a is less than 10.

3.7 Write an if statement that displays “Goodbye” if the variable myCharacter contains
the character 'D'.

3.2 The if-else Statement

ConCepT: The if-else statement will execute one group of statements if its boolean
expression is true, or another group if its boolean expression is false.

The if-else statement is an expansion of the if statement. Here is its format:

if (BooleanExpression)
 statement or block
else
 statement or block

Like the if statement, a boolean expression is evaluated. If the expression is true, a statement
or block of statements is executed. If the expression is false, however, a separate group

noTe: Unicode is an international encoding system that is extensive enough to repre-
sent all the characters of all the world’s alphabets.

The if-else
Statement

VideoNote

http://www.myprogramminglab.com

122 Chapter 3 Decision Structures

of statements is executed. The program in Code Listing 3-2 uses the if-else statement to
handle a classic programming problem: division by zero. In Java, a program crashes when
it divides an integer by 0. When a floating-point value is divided by 0, the program doesn’t
crash. Instead, the special value Infinity is produced as the result of the division.

Code Listing 3-2 (Division.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program demonstrates the if-else statement.
 5 */
 6
 7 public class Division
 8 {
 9 public static void main(String[] args)
10 {
11 double number1, number2; // Division operands
12 double quotient; // Result of division
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Get the first number.
18 System.out.print("Enter a number: ");
19 number1 = keyboard.nextDouble();
20
21 // Get the second number.
22 System.out.print("Enter another number: ");
23 number2 = keyboard.nextDouble();
24
25 if (number2 == 0)
26 {
27 System.out.println("Division by zero is not possible.");
28 System.out.println("Please run the program again and ");
29 System.out.println("enter a number other than zero.");
30 }
31 else
32 {
33 quotient = number1 / number2;
34 System.out.print("The quotient of " + number1);
35 System.out.print(" divided by " + number2);
36 System.out.println(" is " + quotient);
37 }
38 }
39 }

 3.2 The if-else Statement 123

program output with example Input Shown in Bold

Enter a number: 10 [enter]
Enter another number: 0 [enter]
Division by zero is not possible.
Please run the program again and
enter a number other than zero.

program output with example Input Shown in Bold

Enter a number: 10 [enter]
Enter another number: 5 [enter]
The quotient of 10 divided by 5 is 2.0

The value of number2 is tested before the division is performed. If the user enters 0, the block
of statements controlled by the if clause executes, displaying a message that indicates the
program cannot perform division by zero. Otherwise, the else clause takes control, which
divides number1 by number2 and displays the result. Figure 3-9 shows the logic of the if-
else statement.

Figure 3-9 Logic of the if-else statement

Checkpoint

www.myprogramminglab.com

3.8 Write an if-else statement that assigns 20 to the variable y if the variable x is
greater than 100. Otherwise, it should assign 0 to the variable y.

3.9 Write an if-else statement that assigns 1 to x when y is equal to 100. Otherwise, it
should assign 0 to x.

3.10 Write an if-else statement that assigns 0.10 to commission unless sales is greater
than or equal to 50000.0, in which case it assigns 0.2 to commission.

3.11 Write an if-else statement that assigns 0 to the variable b and assigns 1 to the vari-
able c if the variable a is less than 10. Otherwise, it should assign –99 to the vari-
able b and assign 0 to the variable c.

http://www.myprogramminglab.com

124 Chapter 3 Decision Structures

3.3 nested if Statements

ConCepT: To test more than one condition, an if statement can be nested inside
another if statement.

Sometimes an if statement must be nested inside another if statement. For example, consider
a banking program that determines whether a bank customer qualifies for a special, low inter-
est rate on a loan. To qualify, two conditions must exist: (1) the customer’s salary must be at
least $30,000, and (2) the customer must have held his or her current job for at least two
years. Figure 3-10 shows a flowchart for an algorithm that could be used in such a program.

Figure 3-10 Logic of nested if statements

If we follow the flow of execution in the flowchart, we see that the expression salary >= 30000
is tested. If this expression is false, there is no need to perform further tests; we know that
the customer does not qualify for the special interest rate. If the expression is true, however,
we need to test the second condition. This is done with a nested decision structure that tests
the expression yearsOnJob >= 2. If this expression is true, then the customer qualifies for
the special interest rate. If this expression is false, then the customer does not qualify. Code
Listing 3-3 shows the complete program. Figures 3-11, 3-12, and 3-13 show what happens
during three different sessions with the program.

Code Listing 3-3 (LoanQualifier.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane class
 2
 3 /**

 3.3 Nested if Statements 125

 4 This program demonstrates a nested if statement.
 5 */
 6
 7 public class LoanQualifier
 8 {
 9 public static void main(String[] args)
10 {
11 double salary; // Annual salary
12 double yearsOnJob; // Years at current job
13 String input; // To hold string input
14
15 // Get the user's annual salary.
16 input = JOptionPane.showInputDialog("Enter your " +
17 "annual salary.");
18 salary = Double.parseDouble(input);
19
20 // Get the number of years at the current job.
21 input = JOptionPane.showInputDialog("Enter the number of " +
22 "years at your current job.");
23 yearsOnJob = Double.parseDouble(input);
24
25 // Determine whether the user qualifies for the loan.
26 if (salary >= 30000)
27 {
28 if (yearsOnJob >= 2)
29 {
30 JOptionPane.showMessageDialog(null, "You qualify " +
31 "for the loan.");
32 }
33 else
34 {
35 JOptionPane.showMessageDialog(null, "You must have " +
36 "been on your current job for at least " +
37 "two years to qualify.");
38 }
39 }
40 else
41 {
42 JOptionPane.showMessageDialog(null, "You must earn " +
43 "at least $30,000 per year to qualify.");
44 }
45
46 System.exit(0);
47 }
48 }

126 Chapter 3 Decision Structures

Figure 3-11 Interaction with the LoanQualifier program

This input dialog box appears first.
The user enters 35000 and clicks on
the OK button.

This input dialog box appears next.
The user enters 1 and clicks on the
OK button.

This message dialog box appears
next.

Figure 3-12 Interaction with the LoanQualifier program

This input dialog box appears first.
The user enters 25000 and clicks on
the OK button.

This input dialog box appears next.
The user enters 5 and clicks on the
OK button.

This message dialog box appears
next.

 3.3 Nested if Statements 127

The first if statement (which begins in line 26) conditionally executes the second one
(which begins in line 28). The only way the program will execute the second if statement is
for the salary variable to contain a value that is greater than or equal to 30,000. When this
is the case, the second if statement will test the yearsOnJob variable. If it contains a value
that is greater than or equal to 2, a dialog box will be displayed informing the user that he
or she qualifies for the loan.

It should be noted that the braces used in the if statements in this program are not required.
They could have been written as follows:

if (salary >= 30000)
 if (yearsOnJob >= 2)
 JOptionPane.showMessageDialog(null, "You qualify " +
 "for the loan.");
 else
 JOptionPane.showMessageDialog(null, "You must have " +
 "been on your current job for at least " +
 "two years to qualify.");
else
 JOptionPane.showMessageDialog(null, "You must earn " +
 "at least $30,000 per year to qualify.");

Not only do the braces make the statements easier to read, but they also help in debugging
code. When debugging a program with nested if-else statements, it’s important to know
which if clause each else clause belongs to. The rule for matching else clauses with if
clauses is this: An else clause goes with the closest previous if clause that doesn’t already
have its own else clause. This is easy to see when the conditionally executed statements are
enclosed in braces and are properly indented, as shown in Figure 3-14. Each else clause
lines up with the if clause it belongs to. These visual cues are important because nested if
statements can be very long and complex.

Figure 3-13 Interaction with the LoanQualifier program

This input dialog box appears first.
The user enters 35000 and clicks on
the OK button.

This input dialog box appears next.
The user enters 5 and clicks on the
OK button.

This message dialog box appears
next.

128 Chapter 3 Decision Structures

Testing a Series of Conditions

In the previous example, you saw how a program can use nested decision structures to
test more than one condition. It is not uncommon for a program to have a series of condi-
tions to test, and then perform an action depending on which condition is true. One way
to accomplish this it to have a decision structure with numerous other decision structures
nested inside it. For example, consider the program presented in the following In the
Spotlight section.

Figure 3-14 Alignment of if and else clauses

In the Spotlight:
Multiple Nested Decision Structures
Suppose one of your professors uses the following 10-point grading scale for exams:

Test Score Grade

90 and above A

80–89 B

70–79 C

60–69 D

Below 60 F

Your professor has asked you to write a program that will allow a student to enter a test
score and then display the grade for that score. Here is the algorithm that you will use:

Ask the user to enter a test score.
Determine the grade in the following manner:
If the score is less than 60, then the grade is F.
 Otherwise, if the score is less than 70, then the grade is D.
 Otherwise, if the score is less than 80, then the grade is C.
 Otherwise, if the score is less than 90, then the grade is B.
 Otherwise, the grade is A.

 3.3 Nested if Statements 129

You decide that the process of determining the grade will require several nested decision
structures, as shown in Figure 3-15. Code Listing 3-4 shows the complete program. The
code for the nested decision structures is in lines 23 through 51. Figures 3-16 and 3-17
show what happens in two different sessions with the program.

Figure 3-15 Nested decision structure to determine a grade

TrueFalse
score
< 60

TrueFalse
score
< 70

TrueFalse
score
< 80

TrueFalse
score
< 90

Display "Your
grade is A."

Display "Your
grade is B."

Display "Your
grade is C."

Display "Your
grade is D."

Display "Your
grade is F."

Code Listing 3-4 (nestedDecision.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane
 2
 3 /**
 4 This program asks the user to enter a numeric test
 5 score and displays a letter grade for the score. The
 6 program uses nested decision structures
 7 to determine the grade.
 8 */
 9
10 public class NestedDecision
11 {

130 Chapter 3 Decision Structures

12 public static void main(String[] args)
13 {
14 int testScore; // Numeric test score
15 String input; // To hold the user's input
16
17 // Get the numeric test score.
18 input = JOptionPane.showInputDialog("Enter your numeric " +
19 "test score and I will tell you the grade: ");
20 testScore = Integer.parseInt(input);
21
22 // Display the grade.
23 if (testScore < 60)
24 {
25 JOptionPane.showMessageDialog(null, "Your grade is F.");
26 }
27 else
28 {
29 if (testScore < 70)
30 {
31 JOptionPane.showMessageDialog(null, "Your grade is D.");
32 }
33 else
34 {
35 if (testScore < 80)
36 {
37 JOptionPane.showMessageDialog(null, "Your grade is C.");
38 }
39 else
40 {
41 if (testScore < 90)
42 {
43 JOptionPane.showMessageDialog(null, "Your grade is B.");
44 }
45 else
46 {
47 JOptionPane.showMessageDialog(null, "Your grade is A.");
48 }
49 }
50 }
51 }
52
53 System.exit(0);
54 }
55 }

 3.4 The if-else-if Statement 131

Figure 3-16 Interaction with the NestedDecision program

This input dialog box appears
first. The user enters 80 and
then clicks the OK button.

This message dialog box
appears next.

Figure 3-17 Interaction with the NestedDecision program

This input dialog box appears
first. The user enters 72 and
then clicks the OK button.

This message dialog box
appears next.

Checkpoint

www.myprogramminglab.com

3.12 Write nested if statements that perform the following test: If amount1 is greater
than 10 and amount2 is less than 100, display the greater of the two.

3.13 Write code that tests the variable x to determine whether it is greater than 0. If x is
greater than 0, the code should test the variable y to determine whether it is less
than 20. If y is less than 20, the code should assign 1 to the variable z. If y is not
less than 20, the code should assign 0 to the variable z.

3.4 The if-else-if Statement

ConCepT: The if-else-if statement tests a series of conditions. It is often simpler
to test a series of conditions with the if-else-if statement than with a
set of nested if-else statements.

Even though Code Listing 3-4 is a simple example, the logic of the nested decision structure
is fairly complex. You can alternatively test a series of conditions using the if-else-if

http://www.myprogramminglab.com

132 Chapter 3 Decision Structures

statement. The if-else-if statement makes certain types of nested decision logic simpler to
write. Here is the general format of the if-else-if statement:

if (expression_1)
{
 statement If expression_1 is true these
 statement statements are executed, and the rest
 etc. of the structure is ignored.
}
else if (expression_2)
{
 statement Otherwise, if expression_2 is true
 statement these statements are executed, and
 etc. the rest of the structure is ignored.
}
Insert as many else if clauses as necessary
else
{
 statement These statements are executed if none
 statement of the expressions above are true.
 etc.
}

When the statement executes, expression_1 is tested. If expression_1 is true, the block
of statements that immediately follows is executed, and the rest of the structure is ignored.
If expression_1 is false, however, the program jumps to the next else if clause and tests
expression_2. If it is true, the block of statements that immediately follows is executed,
and then the rest of the structure is ignored. This process continues, from the top of the
structure to the bottom, until one of the expressions is found to be true. If none of the
expressions are true, the last else clause takes over and the block of statements immedi-
ately following it is executed.

The last else clause, which does not have an if statement following it, is referred to as the
trailing else. The trailing else is optional, but in most cases you will use it.

}

}

}

The if-
else-if

Statement

VideoNote

noTe: The general format shows braces surrounding each block of conditionally exe-
cuted statements. As with other forms of the if statement, the braces are required only
when more than one statement is conditionally executed.

Code Listing 3-5 shows an example of the if-else-if statement. This program is a modifi-
cation of Code Listing 3-4, which appears in the previous In the Spotlight section. The
output of this program is the same as Code Listing 3-4.

 3.4 The if-else-if Statement 133

Code Listing 3-5 (TestResults.Java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane
 2
 3 /**
 4 This program asks the user to enter a numeric test
 5 score and displays a letter grade for the score. The
 6 program uses an if-else-if statement to determine
 7 the letter grade.
 8 */
 9
10 public class TestResults
11 {
12 public static void main(String[] args)
13 {
14 int testScore; // Numeric test score
15 String input; // To hold the user's input
16
17 // Get the numeric test score.
18 input = JOptionPane.showInputDialog("Enter your numeric " +
19 "test score and I will tell you the grade: ");
20 testScore = Integer.parseInt(input);
21
22 // Display the grade.
23 if (testScore < 60)
24 JOptionPane.showMessageDialog(null, "Your grade is F.");
25 else if (testScore < 70)
26 JOptionPane.showMessageDialog(null, "Your grade is D.");
27 else if (testScore < 80)
28 JOptionPane.showMessageDialog(null, "Your grade is C.");
29 else if (testScore < 90)
30 JOptionPane.showMessageDialog(null, "Your grade is B.");
31 else
32 JOptionPane.showMessageDialog(null, "Your grade is A.");
33
34 System.exit(0);
35 }
36 }

Let’s analyze how the if-else-if statement in lines 23 through 32 works. First, the expres-
sion testScore < 60 is tested in line 23:

→ if (testScore < 60)
 JOptionPane.showMessageDialog(null, "Your grade is F.");
 else if (testScore < 70)
 JOptionPane.showMessageDialog(null, "Your grade is D.");
 else if (testScore < 80)

134 Chapter 3 Decision Structures

 JOptionPane.showMessageDialog(null, "Your grade is C.");
 else if (testScore < 90)
 JOptionPane.showMessageDialog(null, "Your grade is B.");
 else
 JOptionPane.showMessageDialog(null, "Your grade is A.");

If testScore is less than 60, the message "Your grade is F." is displayed and the rest
of the if-else-if statement is skipped. If testScore is not less than 60, the else clause
in line 25 takes over and causes the next if statement to be executed:

if (testScore < 60)
 JOptionPane.showMessageDialog(null, "Your grade is F.");

→ else if (testScore < 70)
 JOptionPane.showMessageDialog(null, "Your grade is D.");
else if (testScore < 80)
 JOptionPane.showMessageDialog(null, "Your grade is C.");
else if (testScore < 90)
 JOptionPane.showMessageDialog(null, "Your grade is B.");
else
 JOptionPane.showMessageDialog(null, "Your grade is A.");

The first if statement handled all of the grades less than 60, so when this if statement
executes, testScore will have a value of 60 or greater. If testScore is less than 70, the
 message "Your grade is D." is displayed and the rest of the if-else-if statement is
skipped. This chain of events continues until one of the expressions is found to be true, or
the last else clause at the end of the statement is encountered.

Notice the alignment and indentation that are used with the if-else-if statement: The
starting if clause, the else if clauses, and the trailing else clause are all aligned, and the
conditionally executed statements are indented.

Using the Trailing else to Catch errors

The trailing else clause, which appears at the end of the if-else-if statement, is optional,
but in many situations you will use it to catch errors. For example, Code Listing 3-5 will
assign the grade 'A' to any test score that is 90 or greater. What if the highest possible test
score is 100? We can modify the code as shown in Code Listing 3-6 so the trailing else
clause catches any value greater than 100 and displays an error message. Figure 3-18 shows
what happens when the user enters a test score that is greater than 100.

Code Listing 3-6 (TrailingElse.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane
 2
 3 /**
 4 This program asks the user to enter a numeric test
 5 score and displays a letter grade for the score. The
 6 program displays an error message if an invalid
 7 numeric score is entered.
 8 */
 9

 3.4 The if-else-if Statement 135

10 public class TrailingElse
11 {
12 public static void main(String[] args)
13 {
14 int testScore; // Numeric test score
15 String input; // To hold the user's input
16
17 // Get the numeric test score.
18 input = JOptionPane.showInputDialog("Enter your numeric " +
19 "test score and I will tell you the grade: ");
20 testScore = Integer.parseInt(input);
21
22 // Display the grade.
23 if (testScore < 60)
24 JOptionPane.showMessageDialog(null, "Your grade is F.");
25 else if (testScore < 70)
26 JOptionPane.showMessageDialog(null, "Your grade is D.");
27 else if (testScore < 80)
28 JOptionPane.showMessageDialog(null, "Your grade is C.");
29 else if (testScore < 90)
30 JOptionPane.showMessageDialog(null, "Your grade is B.");
31 else if (testScore <= 100)
32 JOptionPane.showMessageDialog(null, "Your grade is A.");
33 else
34 JOptionPane.showMessageDialog(null, "Invalid score.");
35
36 System.exit(0);
37 }
38 }

This input dialog box appears
first. The user enters 105 and
then clicks the OK button.

This message dialog box
appears next.

Figure 3-18 Interaction with the NestedDecision program

The if-else-if Statement Compared to a nested Decision Structure

You never have to use the if-else-if statement because its logic can be coded with nested
if-else statements. However, a long series of nested if-else statements has two particular
disadvantages when you are debugging code:

•	 The	code	can	grow	complex	and	become	difficult	to	understand.

136 Chapter 3 Decision Structures

•	 Because	indenting	is	important	in	nested	statements,	a	long	series	of	nested	if-else
statements can become too long to be displayed on the computer screen without hori-
zontal scrolling. Also, long statements tend to “wrap around” when printed on paper,
making the code even more difficult to read.

The logic of an if-else-if statement is usually easier to follow than that of a long series of
nested if-else statements. And, because all of the clauses are aligned in an if-else-if
statement, the lengths of the lines in the statement tend to be shorter.

Checkpoint

www.myprogramminglab.com

3.14 What will the following program display?

public class CheckPoint
{
 public static void main(String[] args)
 {
 int funny = 7, serious = 15;
 funny = serious % 2;
 if (funny != 1)
 {
 funny = 0;
 serious = 0;
 }
 else if (funny == 2)
 {
 funny = 10;
 serious = 10;
 }
 else
 {
 funny = 1;
 serious = 1;
 }
 System.out.println(funny + " " + serious);
 }
}

3.15 The following program is used in a bookstore to determine how many discount
coupons a customer gets. Complete the table that appears after the program.

import javax.swing.JOptionPane;
public class CheckPoint
{
 public static void main(String[] args)
 {
 int books, coupons;
 String input;
 input = JOptionPane.showInputDialog("How many books " +
 "are being purchased? ");
 books = Integer.parseInt(input);

http://www.myprogramminglab.com

 3.5 Logical Operators 137

 if (books < 1)
 coupons = 0;
 else if (books < 3)
 coupons = 1;
 else if (books < 5)
 coupons = 2;
 else
 coupons = 3;
 JOptionPane.showMessageDialog(null,
 "The number of coupons to give is " +
 coupons);
 System.exit(0);
 }
}

If the customer purchases
this many books . . .

this many coupons
are given.

 1 _____

 2 _____

 3 _____

 4 _____

 5 _____

10 _____

3.5 Logical operators

ConCepT: Logical operators connect two or more relational expressions into one or
reverse the logic of an expression.

Java provides two binary logical operators, && and ||, which are used to combine two
boolean expressions into a single expression. It also provides the unary ! operator, which
reverses the truth of a boolean expression. Table 3-4 describes these logical operators.

Table 3-4 Logical operators

Operator Meaning Effect

&& AND Connects two boolean expressions into one. Both expressions must
be true for the overall expression to be true.

|| OR Connects two boolean expressions into one. One or both expres-
sions must be true for the overall expression to be true. It is only
necessary for one to be true, and it does not matter which one.

! NOT The ! operator reverses the truth of a boolean expression. If it is
applied to an expression that is true, the operator returns false. If it
is applied to an expression that is false, the operator returns true.

138 Chapter 3 Decision Structures

Table 3-5 shows examples of several boolean expressions that use logical operators.

Table 3-5 boolean expressions using logical operators

Expression Meaning

x > y && a < b Is x greater than y AND is a less than b?

x == y || x == z Is x equal to y OR is x equal to z?

!(x > y) Is the expression x > y NOT true?

Table 3-6 Truth table for the && operator

Expression Value of the Expression

true && false false

false && true false

false && false false

true && true true

Let’s take a close look at each of these operators.

The && operator

The && operator is known as the logical AND operator. It takes two boolean expressions as
operands and creates a boolean expression that is true only when both subexpressions are
true. Here is an example of an if statement that uses the && operator:

if (temperature < 20 && minutes > 12)
{
 System.out.println("The temperature is in the " +
 "danger zone.");
}

In this statement the two boolean expressions temperature < 20 and minutes > 12 are com-
bined into a single expression. The message will be displayed only if temperature is less
than 20 AND minutes is greater than 12. If either boolean expression is false, the entire
expression is false and the message is not displayed.

Table 3-6 shows a truth table for the && operator. The truth table lists expressions showing
all the possible combinations of true and false connected with the && operator. The result-
ing values of the expressions are also shown.

As the table shows, both sides of the && operator must be true for the operator to return a
true value.

The && operator performs short-circuit evaluation. Here’s how it works: If the expression
on the left side of the && operator is false, the expression on the right side will not be
checked. Because the entire expression is false if only one of the subexpressions is false,
it would waste CPU time to check the remaining expression. So, when the && operator

 3.5 Logical Operators 139

finds that the expression on its left is false, it short-circuits and does not evaluate the
expression on its right.

The && operator can be used to simplify programs that otherwise would use nested if state-
ments. The program in Code Listing 3-7 is a different version of the LoanQualifier pro-
gram in Code Listing 3-3, written to use the && operator. Figures 3-19 and 3-20 show the
interaction during two different sessions with the program.

Code Listing 3-7 (LogicalAnd.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane class
 2
 3 /**
 4 This program demonstrates the logical && operator.
 5 */
 6
 7 public class LogicalAnd
 8 {
 9 public static void main(String[] args)
10 {
11 double salary; // Annual salary
12 double yearsOnJob; // Years at current job
13 String input; // To hold string input
14
15 // Get the user's annual salary.
16 input = JOptionPane.showInputDialog("Enter your " +
17 "annual salary.");
18 salary = Double.parseDouble(input);
19
20 // Get the number of years at the current job.
21 input = JOptionPane.showInputDialog("Enter the number of " +
22 "years at your current job.");
23 yearsOnJob = Double.parseDouble(input);
24
25 // Determine whether the user qualifies for the loan.
26 if (salary >= 30000 && yearsOnJob >= 2)
27 {
28 JOptionPane.showMessageDialog(null, "You qualify " +
29 "for the loan.");
30 }
31 else
32 {
33 JOptionPane.showMessageDialog(null, "You do not " +
34 "qualify for the loan.");
35 }
36
37 System.exit(0);
38 }
39 }

140 Chapter 3 Decision Structures

The message "You qualify for the loan." is displayed only when both the expressions
salary >= 30000 and yearsOnJob >= 2 are true. If either of these expressions is false, the
message "You do not qualify for the loan." is displayed.

You can also use logical operators with boolean variables. For example, assuming that
isValid is a boolean variable, the following if statement determines whether isValid is
true and x is greater than 90.

if (isValid && x > 90)

This input dialog box appears next.
The user enters 1 and clicks on the
OK button.

This message dialog box
appears next.

This input dialog box appears first.
The user enters 50000 and clicks on
the OK button.

Figure 3-19 Interaction with the LogicalAnd program

This input dialog box appears next.
The user enters 4 and clicks on the
OK button.

This input dialog box appears first.
The user enters 50000 and clicks on
the OK button.

This message dialog box appears
next.

Figure 3-20 Interaction with the LogicalAnd program

 3.5 Logical Operators 141

The || operator

The || operator is known as the logical OR operator. It takes two boolean expressions as
operands and creates a boolean expression that is true when either of the subexpressions
is true. Here is an example of an if statement that uses the || operator:

 if (temperature < 20 || temperature > 100)
 {
 System.out.println("The temperature is in the " +
 "danger zone.");
 }

The message will be displayed if temperature is less than 20 OR temperature is greater than
100. If either relational test is true, the entire expression is true.

Table 3-7 shows a truth table for the || operator.

All it takes for an OR expression to be true is for one side of the || operator to be true. It
doesn’t matter if the other side is false or true. Like the && operator, the || operator per-
forms short-circuit evaluation. If the expression on the left side of the || operator is true,
the expression on the right side will not be checked. Because it is necessary for only one of
the expressions to be true, it would waste CPU time to check the remaining expression.

Table 3-7 Truth table for the || operator

Expression Value

true || false true

false || true true

false || false false

true || true true

The program in Code Listing 3-8 is a different version of the previous program, shown in
Code Listing 3-7. This version uses the || operator to determine whether salary >= 30000
is true OR yearsOnJob >= 2 is true. If either expression is true, then the person qualifies
for the loan. Figure 3-21 shows example interaction with the program.

Code Listing 3-8 (LogicalOr.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane class
 2
 3 /**
 4 This program demonstrates the logical || operator.
 5 */
 6
 7 public class LogicalOr
 8 {
 9 public static void main(String[] args)
10 {

142 Chapter 3 Decision Structures

11 double salary; // Annual salary
12 double yearsOnJob; // Years at current job
13 String input; // To hold string input
14
15 // Get the user's annual salary.
16 input = JOptionPane.showInputDialog("Enter your " +
17 "annual salary.");
18 salary = Double.parseDouble(input);
19
20 // Get the number of years at the current job.
21 input = JOptionPane.showInputDialog("Enter the number of " +
22 "years at your current job.");
23 yearsOnJob = Double.parseDouble(input);
24
25 // Determine whether the user qualifies for loan.
26 if (salary >= 30000 || yearsOnJob >= 2)
27 {
28 JOptionPane.showMessageDialog(null, "You qualify " +
29 "for the loan.");
30 }
31 else
32 {
33 JOptionPane.showMessageDialog(null, "You do not " +
34 "qualify for the loan.");
35 }
36
37 System.exit(0);
38 }
39 }

This input dialog box appears first.
The user enters 20000 and clicks on
the OK button.

This input dialog box appears next.
The user enters 7 and clicks on the
OK button.

This message dialog box appears
next.

Figure 3-21 Interaction with the LogicalOr program

 3.5 Logical Operators 143

The ! operator

The ! operator performs a logical NOT operation. It is a unary operator that takes a
boolean expression as its operand and reverses its logical value. In other words, if the
expression is true, the ! operator returns false, and if the expression is false, it returns
true. Here is an if statement using the ! operator:

 if (!(temperature > 100))
 System.out.println("This is below the maximum temperature.");

First, the expression (temperature > 100) is tested and a value of either true or false is the
result. Then the ! operator is applied to that value. If the expression (temperature > 100)
is true, the ! operator returns false. If the expression (temperature > 100) is false, the !
operator returns true. The previous code is equivalent to asking: “Is the temperature not
greater than 100?”

Table 3-8 shows a truth table for the ! operator.

Table 3-8 Truth table for the ! operator

Expression Value

!true false

!false true

Table 3-9 Logical operators in order of precedence

!

&&

||

The precedence of Logical operators
Like other operators, the logical operators have orders of precedence and associativity.
Table 3-9 shows the precedence of the logical operators, from highest to lowest.

The ! operator has a higher precedence than many of Java’s other operators. You should
always enclose its operand in parentheses unless you intend to apply it to a variable or a
simple expression with no other operators. For example, consider the following expressions
(assume x is an int variable with a value stored in it):

 !(x > 2)
 !x > 2

The first expression applies the ! operator to the expression x > 2. It is asking “is x not
greater than 2?” The second expression, however, attempts to apply the ! operator to x only.
It is asking “is the logical complement of x greater than 2?” Because the ! operator can only
be applied to boolean expressions, this statement would cause a compiler error.

144 Chapter 3 Decision Structures

The && and || operators rank lower in precedence than the relational operators, so prece-
dence problems are less likely to occur. If you are unsure, however, it doesn’t hurt to use
parentheses anyway.

 (a > b) && (x < y) is the same as a > b && x < y
 (x == y) || (b > a) is the same as x == y || b > a

The logical operators evaluate their expressions from left to right. In the following expres-
sion, a < b is evaluated before y == z.

 a < b || y == z

In the following expression, y == z is evaluated first, however, because the && operator has
higher precedence than ||.

 a < b || y == z && m > j

This expression is equivalent to the following:

 (a < b) || ((y == z) && (m > j))

Table 3-10 shows the precedence of all the operators we have discussed so far. This table
includes the assignment, arithmetic, relational, and logical operators.

Table 3-10 Precedence of all operators discussed so far

Order of Precedence Operators Description

1 − (unary negation) ! Unary negation, logical NOT

2 * / % Multiplication, division, modulus

3 + − Addition, subtraction

4 < > <= >= Less than, greater than, less than or
equal to, greater than or equal to

5 == != Equal to, not equal to

6 && Logical AND

7 || Logical OR

8 = += −= *= /= %= Assignment and combined assignment

Checking numeric Ranges with Logical operators
Sometimes you will need to write code that determines whether a numeric value is within a
specific range of values or outside a specific range of values. When determining whether a
number is inside a range, it’s best to use the && operator. For example, the following if state-
ment checks the value in x to determine whether it is in the range of 20 through 40:

 if (x >= 20 && x <= 40)
 System.out.println(x + " is in the acceptable range.");

The boolean expression in the if statement will be true only when x is greater than or equal
to 20 AND less than or equal to 40. The value in x must be within the range of 20 through
40 for this expression to be true.

 3.6 Comparing String Objects 145

When determining whether a number is outside a range, it’s best to use the || operator. The
following statement determines whether x is outside the range of 20 through 40:

 if (x < 20 || x > 40)
 System.out.println(x + " is outside the acceptable range.");

It’s important not to get the logic of these logical operators confused. For example, the
boolean expression in the following if statement would never test true:

 if (x < 20 && x > 40)
 System.out.println(x + " is outside the acceptable range.");

Obviously, x cannot be less than 20 and at the same time be greater than 40.

Checkpoint

www.myprogramminglab.com

3.16 The following truth table shows various combinations of the values true and false
connected by a logical operator. Complete the table by circling T or F to indicate
whether the result of such a combination is true or false.

Logical Expression Result (true or false)
true && false T F
true && true T F
false && true T F
false && false T F
true || false T F
true || true T F
false || true T F
false || false T F
!true T F
!false T F

3.17 Assume the variables a = 2, b = 4, and c = 6. Circle the T or F for each of the follow-
ing conditions to indicate whether it is true or false.

a == 4 || b > 2 T F
6 <= c && a > 3 T F
1 != b && c != 3 T F
a >= -1 || a <= b T F
!(a > 2) T F

3.18 Write an if statement that displays the message "The number is valid" if the vari-
able speed is within the range 0 through 200.

3.19 Write an if statement that displays the message "The number is not valid" if the
variable speed is outside the range 0 through 200.

3.6 Comparing String objects

ConCepT: You cannot use relational operators to compare String objects. Instead
you must use a String method.

You saw in the preceding sections how numeric values can be compared using the relational
operators. You should not use the relational operators to compare String objects, however.

http://www.myprogramminglab.com

146 Chapter 3 Decision Structures

Remember that a String object is referenced by a variable that contains the object’s mem-
ory address. When you use a relational operator with the reference variable, the operator
works on the memory address that the variable contains, not the contents of the String
object. For example, suppose a program has the following declarations:

 String name1 = "Mark";
 String name2 = "Mary";

And later, the same program has the following if statement:

 if (name1 == name2)

The expression name1 == name2 will be false, but not because the strings “Mark” and “Mary”
are different. The expression will be false because the variables name1 and name2 reference
different objects. Figure 3-22 illustrates how the variables reference the String objects.

Figure 3-22 The name1 and name2 variables reference different String objects

To compare the contents of two String objects correctly, you should use the String class’s
equals method. The general form of the method is as follows:

 StringReference1.equals(StringReference2)

StringReference1 is a variable that references a String object, and StringReference2 is
another variable that references a String object. The method returns true if the two strings
are equal, or false if they are not equal. Here is an example:

 if (name1.equals(name2))

Assuming that name1 and name2 reference String objects, the expression in the if statement
will return true if they are the same, or false if they are not the same. The program in Code
Listing 3-9 demonstrates.

Code Listing 3-9 (StringCompare.java)

 1 /**
 2 This program correctly compares two String objects using
 3 the equals method.

 3.6 Comparing String Objects 147

 4 */
 5
 6 public class StringCompare
 7 {
 8 public static void main(String[] args)
 9 {
10 String name1 = "Mark",
11 name2 = "Mark",
12 name3 = "Mary";
13
14 // Compare "Mark" and "Mark"
15
16 if (name1.equals(name2))
17 {
18 System.out.println(name1 + " and " + name2 +
19 " are the same.");
20 }
21 else
22 {
23 System.out.println(name1 + " and " + name2 +
24 " are NOT the same.");
25 }
26
27 // Compare "Mark" and "Mary"
28
29 if (name1.equals(name3))
30 {
31 System.out.println(name1 + " and " + name3 +
32 " are the same.");
33 }
34 else
35 {
36 System.out.println(name1 + " and " + name3 +
37 " are NOT the same.");
38 }
39 }
40 }

program output

Mark and Mark are the same.
Mark and Mary are NOT the same.

You can also compare String objects to string literals. Simply pass the string literal as the
argument to the equals method, as follows:

 if (name1.equals("Mark"))

148 Chapter 3 Decision Structures

To determine whether two strings are not equal, simply apply the ! operator to the equals
method’s return value. Here is an example:

 if (!name1.equals("Mark"))

The boolean expression in this if statement performs a not-equal-to operation. It deter-
mines whether the object referenced by name1 is not equal to “Mark”.

The String class also provides the compareTo method, which can be used to determine
whether one string is greater than, equal to, or less than another string. The general form of
the method is as follows:

 StringReference.compareTo(OtherString)

StringReference is a variable that references a String object, and OtherString is either
another variable that references a String object or a string literal. The method returns an
integer value that can be used in the following manner:

•	 If	the	method’s	return	value	is	negative,	the	string	referenced	by	StringReference (the
calling object) is less than the OtherString argument.

•	 If	the	method’s	return	value	is	0,	the	two	strings	are	equal.
•	 If	the	method’s	return	value	is	positive,	the	string	referenced	by	StringReference (the

calling object) is greater than the OtherString argument.

For example, assume that name1 and name2 are variables that reference String objects. The
following if statement uses the compareTo method to compare the strings:

 if (name1.compareTo(name2) == 0)
 System.out.println("The names are the same.");

Also, the following expression compares the string referenced by name1 to the string
literal “Joe”:

 if (name1.compareTo("Joe") == 0)
 System.out.println("The names are the same.");

The program in Code Listing 3-10 more fully demonstrates the compareTo method.

Code Listing 3-10 (StringCompareTo.java)

 1 /**
 2 This program compares two String objects using
 3 the compareTo method.
 4 */
 5
 6 public class StringCompareTo
 7 {
 8 public static void main(String[] args)
 9 {
10 String name1 = "Mary",
11 name2 = "Mark";
12
13 // Compare "Mary" and "Mark"

 3.6 Comparing String Objects 149

14
15 if (name1.compareTo(name2) < 0)
16 {
17 System.out.println(name1 + " is less than " + name2);
18 }
19 else if (name1.compareTo(name2) == 0)
20 {
21 System.out.println(name1 + " is equal to " + name2);
22 }
23 else if (name1.compareTo(name2) > 0)
24 {
25 System.out.println(name1 + " is greater than " + name2);
26 }
27 }
28 }

program output

Mary is greater than Mark

Let’s take a closer look at this program. When you use the compareTo method to compare
two strings, the strings are compared character by character. This is often called a lexico-
graphical comparison. The program uses the compareTo method to compare the strings
“Mary” and “Mark”, beginning with the first, or leftmost, characters. This is illustrated
in Figure 3-23.

Figure 3-23 String comparison of “Mary” and “Mark”

Here is how the comparison takes place:

 1. The “M” in “Mary” is compared with the “M” in “Mark.” Because these are the same,
the next characters are compared.

 2. The “a” in “Mary” is compared with the “a” in “Mark.” Because these are the same,
the next characters are compared.

 3. The “r” in “Mary” is compared with the “r” in “Mark.” Because these are the same,
the next characters are compared.

 4. The “y” in “Mary” is compared with the “k” in “Mark.” Because these are not the
same, the two strings are not equal. The character “y” is greater than “k”, so it is
determined that “Mary” is greater than “Mark.”

If one of the strings in a comparison is shorter than the other, Java can only compare the
corresponding characters. If the corresponding characters are identical, then the shorter

150 Chapter 3 Decision Structures

string is considered less than the longer string. For example, suppose the strings “High” and
“Hi” were being compared. The string “Hi” would be considered less than “High” because
it is shorter.

Ignoring Case in String Comparisons
The equals and compareTo methods perform case-sensitive comparisons, which means that
uppercase letters are not considered the same as their lowercase counterparts. In other
words, “A” is not the same as “a”. This can obviously lead to problems when you want to
perform case-insensitive comparisons.

The String class provides the equalsIgnoreCase and compareToIgnoreCase methods. These
methods work like the equals and compareTo methods, except the case of the characters in
the strings is ignored. For example, the program in Code Listing 3-11 asks the user to enter
the secret word, which is similar to a password. The secret word is "PROSPERO", and the
program performs a case-insensitive string comparison to determine whether the user has
entered it.

Code Listing 3-11 (SecretWord.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program demonstrates a case insensitive string comparison.
 5 */
 6
 7 public class SecretWord
 8 {
 9 public static void main(String[] args)
10 {
11 String input; // To hold the user's input
12
13 // Create a Scanner object for keyboard input.
14 Scanner keyboard = new Scanner(System.in);
15
16 // Prompt the user to enter the secret word.
17 System.out.print("Enter the secret word: ");
18 input = keyboard.nextLine();
19
20 // Determine whether the user entered the secret word.
21 if (input.equalsIgnoreCase("PROSPERO"))
22 {
23 System.out.println("Congratulations! You know the " +
24 "secret word!");
25 }
26 else
27 {

 3.7 More about Variable Declaration and Scope 151

28 System.out.println("Sorry, that is NOT the " +
29 "secret word!");
30 }
31 }
32 }

program output with example Input Shown in Bold

Enter the secret word: Ferdinand [enter]
Sorry, that is NOT the secret word!

program output with example Input Shown in Bold

Enter the secret word: prospero [enter]
Congratulations! You know the secret word!

The compareToIgnoreCase method works exactly like the compareTo method, except the
case of the characters in the strings being compared is ignored.

Checkpoint

www.myprogramminglab.com

3.20 Assume the variable name references a String object. Write an if statement that dis-
plays “Do I know you?” if the String object contains “Timothy”.

3.21 Assume the variables name1 and name2 reference two different String objects, con-
taining different strings. Write code that displays the strings referenced by these
variables in alphabetical order.

3.22 Modify the statement you wrote in response to Checkpoint 3.20 so it performs a
case-insensitive comparison.

3.7 More about Variable Declaration and Scope

ConCepT: The scope of a variable is limited to the block in which it is declared.

Recall from Chapter 2 that a local variable is a variable that is declared inside a method.
Java allows you to create local variables just about anywhere in a method. For example,
look at the program in Code Listing 3-12. The main method declares two String reference
variables: firstName and lastName. Notice that the declarations of these variables appear
near the code that first uses the variables.

Code Listing 3-12 (VariableScope.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane
 2
 3 /**
 4 This program demonstrates how variables may be declared
 5 in various locations throughout a program.

http://www.myprogramminglab.com

152 Chapter 3 Decision Structures

 6 */
 7
 8 public class VariableScope
 9 {
10 public static void main(String[] args)
11 {
12 // Get the user's first name.
13 String firstName;
14 firstName = JOptionPane.showInputDialog("Enter your " +
15 "first name.");
16
17 // Get the user's last name.
18 String lastName;
19 lastName = JOptionPane.showInputDialog("Enter your " +
20 "last name.");
21
22 JOptionPane.showMessageDialog(null, "Hello, " + firstName +
23 " " + lastName);
24 System.exit(0);
25 }
26 }

Although it is a common practice to declare all of a method’s local variables at the begin-
ning of the method, it is possible to declare them at later points. Sometimes programmers
declare certain variables near the part of the program where they are used in order to make
their purpose more evident.

Recall from Chapter 2 that a variable’s scope is the part of the program where the variable’s
name may be used. A local variable’s scope always starts at the variable’s declaration, and
ends at the closing brace of the block of code in which it is declared. In Code Listing 3-12,
the firstName variable is visible only to the code in lines 13 through 24. The lastName vari-
able is visible only to the code in lines 18 through 24.

noTe: When a program is running and it enters the section of code that constitutes a
variable’s scope, it is said that the variable “comes into scope.” This simply means the
variable is now visible and the program may reference it. Likewise, when a variable
“leaves scope” it may not be used.

3.8 The Conditional operator (optional)

ConCepT: You can use the conditional operator to create short expressions that
work like if-else statements.

The conditional operator is powerful and unique. Because it takes three operands, it is con-
sidered a ternary operator. The conditional operator provides a shorthand method of

 3.8 The Conditional Operator (Optional) 153

expressing a simple if-else statement. The operator consists of the question mark (?) and the
colon (:). You use the operator to write a conditional expression, in the following format:

 BooleanExpression ? Value1: Value2;

The BooleanExpression is like the boolean expression in the parentheses of an if statement.
If the BooleanExpression is true, then the value of the conditional expression is Value1.
Otherwise, the value of the conditional expression is Value2. Here is an example of a state-
ment using the conditional operator:

y = x < 0 ? 10: 20;

This preceding statement performs the same operation as the following if-else statement:

 if (x < 0)
 y = 10;
 else
 y = 20;

The conditional operator gives you the ability to pack decision-making power into a con-
cise line of code. With a little imagination it can be applied to many other programming
problems. For instance, consider the following statement:

 System.out.println("Your grade is: " +
 (score < 60 ? "Fail." : "Pass."));
Converted to an if-else statement, it would be written as follows:
 if (score < 60)
 System.out.println("Your grade is: Fail.");
 else
 System.out.println("Your grade is: Pass.");

noTe: The parentheses are placed around the conditional expression because the +
operator has higher precedence than the ?: operator. Without the parentheses, the +
 operator would concatenate the value in score with the string "Your grade is: ".

Checkpoint

www.myprogramminglab.com

3.23 Rewrite the following if-else statements as statements that use the conditional
operator.
a) if (x > y)

 z = 1;
else
 z = 20;

For a complete example using the conditional operator, see the program named
 ConsultantCharges.java in this chapter’s source code folder, available for download from
the book’s companion Web site (www.pearsonhighered.com/gaddis).

http://www.myprogramminglab.com
http://www.pearsonhighered.com/gaddis

154 Chapter 3 Decision Structures

b) if (temp > 45)

 population = base * 10;
else
 population = base * 2;

c) if (hours > 40)

 wages *= 1.5;

else
 wages *= 1;

d) if (result >= 0)
 System.out.println("The result is positive.");
else
 System.out.println("The result is negative.");

3.9 The switch Statement

ConCepT: The switch statement lets the value of a variable or expression determine
where the program will branch to.

The switch statement is a multiple alternative decision structure. It allows you to test the
value of a variable or an expression and then use that value to determine which statement
or set of statements to execute. Figure 3-24 shows an example of how a multiple alternative
decision structure looks in a flowchart.

month

1 2 3 Default

Display "January" Display "February" Display "March"
Display "Error:
Invalid month"

Figure 3-24 A multiple alternative decision structure

In the flowchart, the diamond symbol shows month, which is the name of a variable. If the
month variable contains the value 1, the program displays January. If the month variable
contains the value 2, the program displays February. If the month variable contains the

 3.9 The switch Statement 155

value 3, the program displays March. If the month variable contains none of these values,
the action that is labeled Default is executed. In this case, the program displays Error:
Invalid month.

Here is the general format of a switch statement in Java:

switch (testExpression)
{
 case value_1:
 statement;
 statement;
 etc.
 break;

 case value_2:
 statement;
 statement;
 etc.
 break;

 Insert as many case sections as necessary.

 case value_N:
 statement;
 statement;
 etc.
 break;

 default:
 statement;
 statement;
 etc.
 break;
}

The testExpression is
a variable or expression.

These statements are executed
if the testExpression is
equal to value_1.

These statements are executed
if the testExpression is
equal to value_2.

These statements are executed
if the testExpression is
equal to value_N.

These statements are executed
if the testExpression is not
equal to any of the case values.

The first line of the statement starts with the word switch, followed by a testExpression,
which is enclosed in parentheses. The testExpression is a variable or an expression that
gives a char, byte, short, int, or string value. (If you are using a version of Java prior to
Java 7, the testExpression cannot be a string.)

Beginning at the next line is a block of code enclosed in curly braces. Inside this block of
code is one or more case sections. A case section begins with the word case, followed by a
value, followed by a colon. Each case section contains one or more statements, followed by
a break statement. After all of the case sections, an optional default section appears.

When the switch statement executes, it compares the value of the testExpression with the
values that follow each of the case statements (from top to bottom). When it finds a case
value that matches the testExpression’s value, the program branches to the case statement.
The statements that follow the case statement are executed until a break statement is
encountered. At that point, the program jumps out of the switch statement. If the
testExpression does not match any of the case values, the program branches to the default
statement and executes the statements that immediately follow it.

156 Chapter 3 Decision Structures

For example, the following code performs the same operation as the flowchart in Figure 3-24.
Assume month is an int variable.

switch (month)
{
 case 1:
 System.out.println("January");
 break;

 case 2:
 System.out.println("February");
 break;

 case 3:
 System.out.println("March");
 break;

 default:
 System.out.println("Error: Invalid month");
 break;
}

In this example the testExpression is the month variable. The month variable will be evalu-
ated and one of the following actions will take place:

•	 If	the	value	in	the	month variable is 1, the program will branch to the case 1: section
and execute the System.out.println("January") statement that immediately follows
it. The break statement then causes the program to exit the switch statement.

•	 If	the	value	in	the	month variable is 2, the program will branch to the case 2: section
and execute the System.out.println("February") statement that immediately follows
it. The break statement then causes the program to exit the switch statement.

•	 If	the	value	in	the	month variable is 3, the program will branch to the case 3: section
and execute the System.out.println("March") statement that immediately follows it.
The break statement then causes the program to exit the switch statement.

•	 If	the	value	in	the	month variable is not 1, 2, or 3, the program will branch to the
default: section and execute the System.out.println("Error: Invalid month")
statement that immediately follows it.

The switch statement can be used as an alternative to an if-else-if statement that com-
pares the same variable or expression to several different values. For example, the previ-
ously shown switch statement works like this if-else-if statement:

if (month == 1)
{
 System.out.println("January");
}

noTe: Each of the case values must be unique.

 3.9 The switch Statement 157

else if (month == 2)
{
 System.out.println("February");
}
else if (month == 3)
{
 System.out.println("March");
}
else
{
 System.out.println("Error: Invalid month");
}

noTe: The default section is optional. If you leave it out, however, the program will
have nowhere to branch to if the testExpression doesn’t match any of the case values.

The program in Code Listing 3-13 shows how a simple switch statement works.

Code Listing 3-13 (SwitchDemo.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program demonstrates the switch statement.
 5 */
 6
 7 public class SwitchDemo
 8 {
 9 public static void main(String[] args)
10 {
11 int number; // A number entered by the user
12
13 // Create a Scanner object for keyboard input.
14 Scanner keyboard = new Scanner(System.in);
15
16 // Get one of the numbers 1, 2, or 3 from the user.
17 System.out.print("Enter 1, 2, or 3: ");
18 number = keyboard.nextInt();
19
20 // Determine the number entered.
21 switch (number)
22 {
23 case 1:
24 System.out.println("You entered 1.");

158 Chapter 3 Decision Structures

25 break;
26 case 2:
27 System.out.println("You entered 2.");
28 break;
29 case 3:
30 System.out.println("You entered 3.");
31 break;
32 default:
33 System.out.println("That's not 1, 2, or 3!");
34 }
35 }
36 }

program output with example Input Shown in Bold

Enter 1, 2, or 3: 2 [enter]
You entered 2.

program output with example Input Shown in Bold

Enter 1, 2, or 3: 5 [enter]
That's not 1, 2, or 3!

Notice the break statements that are in the case 1, case 2, and case 3 sections.

switch (number)
{
 case 1:
 System.out.println("You entered 1.");
 break;←
 case 2:
 System.out.println("You entered 2.");
 break;←
 case 3:
 System.out.println("You entered 3.");
 break;←
 default:
 System.out.println("That's not 1, 2, or 3!");
}

The case statements show the program where to start executing in the block and the
break statements show the program where to stop. Without the break statements, the
program would execute all of the lines from the matching case statement to the end of
the block.

noTe: The default section (or the last case section if there is no default) does not need
a break statement. Some programmers prefer to put one there anyway for consistency.

 3.9 The switch Statement 159

The program in Code Listing 3-14 is a modification of Code Listing 3-13, without the
break statements.

Code Listing 3-14 (NoBreaks.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program demonstrates the switch statement.
 5 */
 6
 7 public class NoBreaks
 8 {
 9 public static void main(String[] args)
10 {
11 int number; // A number entered by the user
12
13 // Create a Scanner object for keyboard input.
14 Scanner keyboard = new Scanner(System.in);
15
16 // Get one of the numbers 1, 2, or 3 from the user.
17 System.out.print("Enter 1, 2, or 3: ");
18 number = keyboard.nextInt();
19
20 // Determine the number entered.
21 switch (number)
22 {
23 case 1:
24 System.out.println("You entered 1.");
25 case 2:
26 System.out.println("You entered 2.");
27 case 3:
28 System.out.println("You entered 3.");
29 default:
30 System.out.println("That's not 1, 2, or 3!");
31 }
32 }
33 }

program output with example Input Shown in Bold

Enter 1, 2, or 3: 1 [enter]
You entered 1.
You entered 2.
You entered 3.
That's not 1, 2, or 3!

160 Chapter 3 Decision Structures

program output with example Input Shown in Bold

Enter 1, 2, or 3: 3 [enter]
You entered 3.
That's not 1, 2, or 3!

Without the break statement, the program “falls through” all of the statements below the one
with the matching case expression. Sometimes this is what you want. For instance, the pro-
gram in Code Listing 3-15 asks the user to select a grade of pet food. The available choices are
A, B, and C. The switch statement will recognize either uppercase or lowercase letters.

Code Listing 3-15 (PetFood.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program demonstrates a switch statement.
 5 */
 6
 7 public class PetFood
 8 {
 9 public static void main(String[] args)
10 {
11 String input; // To hold the user's input
12 char foodGrade; // Grade of pet food
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Prompt the user for a grade of pet food.
18 System.out.println("Our pet food is available in " +
19 "three grades:");
20 System.out.print("A, B, and C. Which do you want " +
21 "pricing for? ");
22 input = keyboard.nextLine();
23 foodGrade = input.charAt(0);
24
25 // Display pricing for the selected grade.
26 switch(foodGrade)
27 {
28 case 'a':
29 case 'A':
30 System.out.println("30 cents per lb.");
31 break;
32 case 'b':
33 case 'B':
34 System.out.println("20 cents per lb.");
35 break;

 3.9 The switch Statement 161

36 case 'c':
37 case 'C':
38 System.out.println("15 cents per lb.");
39 break;
40 default:
41 System.out.println("Invalid choice.");
42 }
43 }
44 }

program output with example Input Shown in Bold

Our pet food is available in three grades:
A, B, and C. Which do you want pricing for? b [enter]
20 cents per lb.

program output with example Input Shown in Bold

Our pet food is available in three grades:
A, B, and C. Which do you want pricing for? B [enter]
20 cents per lb.

When the user enters ‘a’ the corresponding case has no statements associated with it, so the
program falls through to the next case, which corresponds with ‘A’.

case 'a':
case 'A':
 System.out.println("30 cents per lb.");
 break;

The same technique is used for ‘b’ and ‘c’.

If you are using a version of Java prior to Java 7, a switch statement’s testExpression can
be a char, byte, short, or int value. Beginning with Java 7, however, the testExpression
can also be a string. The program in Code Listing 3-16 demonstrates.

Code Listing 3-16 (Seasons.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program translates the English names of
 5 the seasons into Spanish.
 6 */
 7
 8 public class Seasons
 9 {
10 public static void main(String[] args)
11 {
12 String input;
13

162 Chapter 3 Decision Structures

14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Get a day from the user.
18 System.out.print("Enter the name of a season: ");
19 input = keyboard.nextLine();
20
21 // Translate the season to Spanish.
22 switch (input)
23 {
24 case "spring":
25 System.out.println("la primavera");
26 break;
27 case "summer":
28 System.out.println("el verano");
29 break;
30 case "autumn":
31 case "fall":
32 System.out.println("el otono");
33 break;
34 case "winter":
35 System.out.println("el invierno");
36 break;
37 default:
38 System.out.println("Please enter one of these words:\n"
39 + "spring, summer, autumn, fall, or winter.");
40 }
41 }
42 }

program output with example Input Shown in Bold

Enter the name of a season: summer [enter]
el verano

program output with example Input Shown in Bold

Enter the name of a season: fall [enter]
el otono

Checkpoint

www.myprogramminglab.com

3.24 Complete the following program skeleton by writing a switch statement that dis-
plays “one” if the user has entered 1, “two” if the user has entered 2, and “three” if
the user has entered 3. If a number other than 1, 2, or 3 is entered, the program
should display an error message.

import java.util.Scanner;
public class CheckPoint
{

http://www.myprogramminglab.com

 3.9 The switch Statement 163

 public static void main(String[] args)
 {
 int userNum;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter one of the numbers " +
 "1, 2, or 3: ");
 userNum = keyboard.nextInt();
 //
 // Write the switch statement here.
 //
 }
}

3.25 Rewrite the following if-else-if statement as a switch statement.

if (selection == 'A')
 System.out.println("You selected A.");
else if (selection == 'B')
 System.out.println("You selected B.");
else if (selection == 'C')
 System.out.println("You selected C.");
else if (selection == 'D')
 System.out.println("You selected D.");
else
 System.out.println("Not good with letters, eh?");

3.26 Explain why you cannot convert the following if-else-if statement into a
switch statement.

if (temp == 100)
 x = 0;
else if (population > 1000)
 x = 1;
else if (rate < .1)
 x = -1;

3.27 What is wrong with the following switch statement?

// This code has errors!!!
switch (temp)
{
 case temp < 0 :
 System.out.println("Temp is negative.");
 break;
 case temp = 0:
 System.out.println("Temp is zero.");
 break;
 case temp > 0 :
 System.out.println("Temp is positive.");
 break;
}

164 Chapter 3 Decision Structures

3.28 What will the following code display?

int funny = 7, serious = 15;
funny = serious * 2;
switch (funny)
{ case 0 :
 System.out.println("That is funny.");
 break;
 case 30:
 System.out.println("That is serious.");
 break;
 case 32:
 System.out.println("That is seriously funny.");
 break;
 default:
 System.out.println(funny);
}

3.10 Displaying Formatted output with
System.out.printf and String.format

ConCepT: The System.out.printf method allows you to format output in a variety
of ways. The String.format method allows you to format a string,
without displaying it. The string can be displayed at a later time.

When you display numbers with the System.out.println or System.out.print method, you
have little control over the way the numbers appear. For example, a value of the double data type
can be displayed with as many as 15 decimal places, as demonstrated by the following code:

double number = 10.0 / 6.0;
System.out.println(number);

This code will display:

1.666666666666667

Quite often, you want to format numbers so they are displayed in a particular way. For
example, you might want to round a floating-point number to a specific number of decimal
places, or insert comma separators to make a number easier to read. Fortunately, Java gives
us a way to do just that, and more, with the System.out.printf method. The method’s gen-
eral format is as follows:

System.out.printf(FormatString, ArgumentList)

In the general format, FormatString is a string that contains text, special formatting speci-
fiers, or both. ArgumentList is a list of zero or more additional arguments, which will be
formatted according to the format specifiers listed in the format string.

The simplest way you can use the System.out.printf method is with only a format string,
and no additional arguments. Here is an example:

System.out.printf("I love Java programming.\n");

 3.10 Displaying Formatted Output with System.out.printf and String.format 165

The format string in this example is "I love Java programming.\n". This method call does
not perform any special formatting, however. It simply prints the string
"I love Java programming.\n". Using the method in this fashion is exactly like using the
System.out.print method.

In most cases you will call the System.out.printf method in the following manner:

•	 The	format	string	will	contain	one	or	more	format	specifiers.	A	format specifier is a
placeholder for a value that will be inserted into the string when it is displayed.

•	 After	the	format	string,	one	or	more	additional	arguments	will	appear.	Each	of	the	
additional arguments will correspond to a format specifier that appears inside the
format string.

The following code shows an example:

double sales = 12345.67;
System.out.printf("Our sales are %f for the day.\n", sales);

Notice the following characteristics of the System.out.printf method call:

•	 Inside	the	format	string,	the	%f is a format specifier. The letter f indicates that a floating-
point value will be inserted into the string when it is displayed.

•	 Following	the	format	string,	the	sales variable is passed as an argument. This argu-
ment corresponds to the %f format specifier that appears inside the format string.

When the System.out.printf method executes, the %f will not be displayed on the screen. In
its place, the value of the sales argument will be displayed. Here is the output of the code:

Our sales are 12345.670000 for the day.

The diagram in Figure 3-25 shows how the sales variable corresponds to the %f
format specifier.

System.out.printf("Our sales is %f for the day.\n", sales);

Figure 3-25 The value of the sales variable is displayed in the place of the %f format specifier

Here is another example:

double temp1 = 72.5, temp2 = 83.7;
System.out.printf("The temperatures are %f and %f degrees.\n", temp1, temp2);

First, notice that this example uses two %f format specifiers in the format string. Also notice
that two additional arguments appear after the format string. The value of the first argu-
ment, temp1, will be printed in place of the first %f, and the value of the second argument,
temp2, will be printed in place of the second %f. The code will produce the following output:

The temperatures are 72.500000 and 83.700000 degrees.

There is a one-to-one correspondence between the format specifiers and the arguments that
appear after the format string. The diagram in Figure 3-26 shows how the first format
specifier corresponds to the first argument after the format string (the temp1 variable), and

166 Chapter 3 Decision Structures

the second format specifier corresponds to the second argument after the format string (the
temp2 variable).

The following code shows another example:

double value1 = 3.0;
double value2 = 6.0;
double value3 = 9.0;
System.out.printf("%f %f %f\n", value1, value2, value3);

In the System.out.printf method call, there are three format specifiers and three additional
arguments after the format string. This code will produce the following output:

3.000000 6.000000 9.000000

The diagram in Figure 3-27 shows how the format specifiers correspond to the arguments
that appear after the format string.

1

2

System.out.printf("The temperatures are %f and %f degrees.\n", temp1, temp2);

Figure 3-26 The format specifiers and their corresponding arguments

1

2

3

System.out.printf("%f %f %f\n", value1, value2, value3);

Figure 3-27 The format specifiers and their corresponding arguments

The previous examples demonstrated how to format floating-point numbers with the %f
format specifier. The letter f in the format specifier is a conversion character that indicates
the data type of the argument that is being formatted. You use the f conversion character
with any argument that is a float or a double.

If you want to format an integer value, you must use the %d format specifier. The d conver-
sion character stands for decimal integer, and it can be used with arguments of the int,
short, and long data types. Here is an example that displays an int:

int hours = 40;
System.out.printf("I worked %d hours this week.\n", hours);

 3.10 Displaying Formatted Output with System.out.printf and String.format 167

In this example, the %d format specifier corresponds with the hours argument. This code
will display the following:

I worked 40 hours this week.

Here is an example that displays two int values:

int dogs = 2;
int cats = 4;
System.out.printf("We have %d dogs and %d cats.\n", dogs, cats);

This code will display the following:

We have 2 dogs and 4 cats.

Keep in mind that %f must be used with floating-point values, and %d must be used with
integer values. Otherwise, an error will occur at runtime.

Format Specifier Syntax
In the previous examples you saw how format specifiers correspond to the arguments that
appear after the format string. Now you can learn how to use format specifiers to actually
format the values that they correspond to. When displaying numbers, the general syntax for
writing a format specifier is:

%[flags][width][.precision]conversion

The items that appear inside brackets are optional. Here is a summary of each item:

•	 %—All format specifiers begin with a % character.
•	 flags—After the % character, one or more optional flags may appear. Flags cause the

value to be formatted in a variety of ways.
•	 width—After any flags, you can optionally specify the minimum field width for

the value.
•	 .precision—If the value is a floating-point number, after the minimum field width,

you can optionally specify the precision. This is the number of decimal places that the
number should be rounded to.

•	 conversion—All format specifiers must end with a conversion character, such as f for
floating-point, or d for decimal integer.

Let’s take a closer look at each of the optional items, beginning with precision.

precision
You probably noticed in the previous examples that the %f format specifier causes floating-
point values to be displayed with six decimal places. You can change the number of decimal
points that are displayed, as shown in the following example:

double temp = 78.42819;
System.out.printf("The temperature is %.2f degrees.\n", temp);

Notice that this example doesn’t use the regular %f format specifier, but uses %.2f instead.
The .2 that appears between the % and the f specifies the precision of the displayed value. It

168 Chapter 3 Decision Structures

will cause the value of the temp variable to be rounded to two decimal places. This code will
produce the following output:

The temperature is 78.43 degrees.

The following example displays the same value, rounded to one decimal place:

double temp = 78.42819;
System.out.printf("The temperature is %.1f degrees.\n", temp);

This code will produce the following output:

The temperature is 78.4 degrees.

The following code shows another example:

double value1 = 123.45678;
double value2 = 123.45678;
double value3 = 123.45678;
System.out.printf("%.1f %.2f %.3f\n", value1, value2, value3);

In this example, value1 is rounded to one decimal place, value2 is rounded to two deci-
mal places, and value3 is rounded to three decimal places. This code will produce the
following output:

123.5 123.46 123.457

Keep in mind that you can specify precision only with floating-point point values. If you
specify a precision with the %d format specifier, an error will occur at runtime.

Specifying a Minimum Field Width
A format specifier can also include a minimum field width, which is the minimum number
of spaces that should be used to display the value. The following example prints a floating-
point number in a field that is 20 spaces wide:

double number = 12345.6789;
System.out.printf("The number is:%20f\n", number);

Notice that the number 20 appears in the format specifier, between the % and the f. This
code will produce the following output:

The number is: 12345.678900

In this example, the 20 that appears inside the %f format specifier indicates that the number
should be displayed in a field that is a minimum of 20 spaces wide. This is illustrated in
Figure 3-28.

The number is displayed in a
field that is 20 spaces wide.

The number is: 12345.678900

Figure 3-28 The number is displayed in a field that is 20 spaces wide

 3.10 Displaying Formatted Output with System.out.printf and String.format 169

In this case, the number that is displayed is shorter than the field in which it is displayed.
The number 12345.678900 uses only 12 spaces on the screen, but it is displayed in a field
that is 20 spaces wide. When this is the case, the number will be right-justified in the field.
If a value is too large to fit in the specified field width, the field is automatically enlarged to
accommodate it. The following example prints a floating-point number in a field that is
only one space wide:

double number = 12345.6789;
System.out.printf("The number is:%1f\n", number);

The value of the number variable requires more than one space, however, so the field width
is expanded to accommodate the entire number. This code will produce the following output:

The number is:12345.678900

You can specify a minimum field width for integers, as well as for floating-point values. The
following example displays an integer with a minimum field width of six characters:

int number = 200;
System.out.printf("The number is:%6d", number);

This code will display the following:

The number is: 200

Combining Minimum Field Width and precision in the Same
Format Specifier

When specifying the minimum field width and the precision of a floating-point number in
the same format specifier, remember that the field width must appear first, followed by the
precision. For example, the following code displays a number in a field of 12 spaces,
rounded to two decimal places:

double number = 12345.6789;
System.out.printf("The number is:%12.2f\n", number);

This code will produce the following output:

The number is: 12345.68

Field widths can help when you need to print numbers aligned in columns. For example,
look at Code Listing 3-17. Each of the variables is displayed in a field that is eight spaces
wide, and rounded to two decimal places. The numbers appear aligned in a column.

Code Listing 3-17 (Columns.java)

 1 /**
 2 This program displays a variety of
 3 floating-point numbers in a column
 4 with their decimal points aligned.
 5 */
 6
 7 public class Columns

170 Chapter 3 Decision Structures

 8 {
 9 public static void main(String[] args)
10 {
11 // Declare a variety of double variables.
12 double num1 = 127.899;
13 double num2 = 3465.148;
14 double num3 = 3.776;
15 double num4 = 264.821;
16 double num5 = 88.081;
17 double num6 = 1799.999;
18
19 // Display each variable in a field of
20 // 8 spaces with 2 decimal places.
21 System.out.printf("%8.2f\n", num1);
22 System.out.printf("%8.2f\n", num2);
23 System.out.printf("%8.2f\n", num3);
24 System.out.printf("%8.2f\n", num4);
25 System.out.printf("%8.2f\n", num5);
26 System.out.printf("%8.2f\n", num6);
27 }
28 }

program output

 127.90
 3465.15
 3.78
 264.82
 88.08
 1800.00

Flags
There are several optional flags that you can insert into a format specifier to cause a value to
be formatted in a particular way. In this book, we will use flags for the following purposes:

•	 To	display	numbers	with	comma	separators
•	 To	pad	numbers	with	leading	zeros
•	 To	left-justify	numbers

If you use a flag in a format specifier, you must write the flag before the field width and
the precision.

Comma Separators

Large numbers are easier to read if they are displayed with comma separators. You can for-
mat a number with comma separators by inserting a comma (,) flag into the format speci-
fier. Here is an example:

double amount = 1234567.89;
System.out.printf("%,f\n", amount);

 3.10 Displaying Formatted Output with System.out.printf and String.format 171

This code will produce the following output:

1,234,567.890000

Quite often, you will want to format a number with comma separators, and round the
number to a specific number of decimal places. You can accomplish this by inserting a
comma, followed by the precision value, into the %f format specifier, as shown in the
following example:

double sales = 28756.89;
System.out.printf("Sales for the month are %,.2f\n", sales);

This code will produce the following output:

Sales for the month are 28,756.89

Code Listing 3-18 demonstrates how the comma separator and a precision of two decimal
places can be used to format a number as a currency amount.

Code Listing 3-18 (CurrencyFormat.java)

 1 /**
 2 This program demonstrates how to use the System.out.printf
 3 method to format a number as currency.
 4 */
 5
 6 public class CurrencyFormat
 7 {
 8 public static void main(String[] args)
 9 {
10 double monthlyPay = 5000.0;
11 double annualPay = monthlyPay * 12;
12 System.out.printf("Your annual pay is $%,.2f\n", annualPay);
13 }
14 }

program output

Your annual pay is $60,000.00

The following example displays a floating-point number with comma separators, in a field
of 15 spaces, rounded to two decimal places:

double amount = 1234567.8901;
System.out.printf("%,15.2f\n", amount);

This code will produce the following output:

 1,234,567.89

The following example displays an int with a minimum field width of six characters:

int number = 200;
System.out.printf("The number is:%6d", number);

172 Chapter 3 Decision Structures

This code will display the following:

The number is: 200

The following example displays an int with comma separators, with a minimum field width
of 10 characters:

int number = 20000;
System.out.printf("The number is:%,10d", number);

This code will display the following:

The number is: 20,000

padding numbers with Leading Zeros

Sometimes, when a number is shorter than the field in which it is displayed, you want to
pad the number with leading zeros. If you insert a 0 flag into a format specifier, the resulting
number will be padded with leading zeros, if it is shorter than the field width. The following
code shows an example:

double number = 123.4;
System.out.printf("The number is:%08.1f\n", number);

This code will produce the following output:

The number is:000123.4

The diagram in Figure 3-29 shows the purpose of each part of the format specifier in the
previous example.

Pad with leading zeros

Minimum field with of 8

Round to one decimal place

System.out.printf("The number is:%08.1f\n", number);

Figure 3-29 Format specifier that pads with leading zeros

The following example displays an int padded with leading zeros, with a minimum field
width of seven characters:

int number = 1234;
System.out.printf("The number is:%07d", number);

This code will display the following:

The number is:0001234

The program in Code Listing 3-19 shows another example. This program displays a variety
of floating-point numbers with leading zeros, in a field of nine spaces, rounded to two deci-
mal places.

 3.10 Displaying Formatted Output with System.out.printf and String.format 173

Code Listing 3-19 (LeadingZeros.java)

 1 /**
 2 This program displays numbers padded with leading zeros.
 3 */
 4
 5 public class LeadingZeros
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Declare a variety of double variables.
10 double number1 = 1.234;
11 double number2 = 12.345;
12 double number3 = 123.456;
13
14 // Display each variable with leading
15 // zeros, in a field of 9 spaces, rounded
16 // to 2 decimal places.
17 System.out.printf("%09.2f\n", number1);
18 System.out.printf("%09.2f\n", number2);
19 System.out.printf("%09.2f\n", number3);
20 }
21 }

program output

000001.23
000012.35
000123.46

Left-Justifying numbers

By default, when a number is shorter than the field in which it is displayed, the number is
right-justified within that field. If you want a number to be left-justified within its field, you
insert a minus sign (-) flag into the format specifier. Code Listing 3-20 shows an example.

Code Listing 3-20 (LeftJustified.java)

 1 /**
 2 This program displays a variety of
 3 numbers left-justified in columns.
 4 */
 5
 6 public class LeftJustified
 7 {
 8 public static void main(String[] args)
 9 {
10 // Declare a variety of int variables.

174 Chapter 3 Decision Structures

11 int num1 = 123;
12 int num2 = 12;
13 int num3 = 45678;
14 int num4 = 456;
15 int num5 = 1234567;
16 int num6 = 1234;
17
18 // Display each variable left-justified
19 // in a field of 8 spaces.
20 System.out.printf("%-8d%-8d\n", num1, num2);
21 System.out.printf("%-8d%-8d\n", num3, num4);
22 System.out.printf("%-8d%-8d\n", num5, num6);
23 }
24 }

program output

123 12
45678 456
1234567 1234

Formatting String Arguments
If you wish to print a string argument, use the %s format specifier. Here is an example:

String name = "Ringo";
System.out.printf("Your name is %s\n", name);

This code produces the following output:

Your name is Ringo

You can also use a field width when printing strings. For example, look at the following code:

String name1 = "George";
String name2 = "Franklin";
String name3 = "Jay";
String name4 = "Ozzy";
String name5 = "Carmine";
String name6 = "Dee";
System.out.printf("%10s%10s\n", name1, name2);
System.out.printf("%10s%10s\n", name3, name4);
System.out.printf("%10s%10s\n", name5, name6);

The %10s format specifier prints a string in a field that is ten spaces wide. This code displays
the values of the variables in a table with three rows and two columns. Each column has a
width of ten spaces. Here is the output of the code:

 George Franklin
 Jay Ozzy
 Carmine Dee

 3.10 Displaying Formatted Output with System.out.printf and String.format 175

Notice that the strings are right-justified. You can use the minus flag (-) to left-justify a
string within its field. The following code demonstrates:

String name1 = "George";
String name2 = "Franklin";
String name3 = "Jay";
String name4 = "Ozzy";
String name5 = "Carmine";
String name6 = "Dee";
System.out.printf("%-10s%-10s\n", name1, name2);
System.out.printf("%-10s%-10s\n", name3, name4);
System.out.printf("%-10s%-10s\n", name5, name6);

Here is the output of the code:

George Franklin
Jay Ozzy
Carmine Dee

The following example shows how you can print arguments of different data types:

int hours = 40;
double pay = hours * 25;
String name = "Jay";
System.out.printf("Name: %s, Hours: %d, Pay: $%,.2f\n",
 name, hours, pay);

In this example, we are displaying a String, an int, and a double. The code will produce the
following output:

Name: Jay, Hours: 40, Pay: $1,000.00

noTe: The format specifiers we have shown in this section are the basic ones. Java
provides much more powerful format specifiers for more complex formatting needs. The
API documentation gives an overview of them all.

The String.format Method
The System.out.printf method formats a string and displays it in the console window.
Sometimes you need to format a string without displaying it in the console. For example,
you might need to display formatted output in a graphical interface, such as a message
 dialog. When this is the case, you can use the String.format method.

The String.format method works exactly like the System.out.printf method, except that
it does not display the formatted string on the screen. Instead, it returns a reference to the
formatted string. You can assign the reference to a variable, and then use it later. Here is the
method’s general format:

String.format(FormatString, ArgumentList)

In the general format, FormatString is a string that contains text, special formatting speci-
fiers, or both. ArgumentList is a list of zero or more additional arguments, which will be

176 Chapter 3 Decision Structures

Let’s take a closer look at the program. Line 12 declares a double variable named monthlyPay,
initialized with the value 5000.0, and line 13 declares a double variable named annualPay,
initialized with the result of the calculation monthlyPay * 12. Line 14 declares a String
variable named output, and initializes it with the string that is returned from the
String.format method. In line 16, the output variable is passed as an argument to the
JOptionPane.showMessageDialog method.

The program in Code Listing 3-21 can be simplified. We can combine the steps of calling
the String.format method, and passing the value that it returns to the JOptionPane
.showMessageDialog method. This allows us to eliminate the declaration of the output

formatted according to the format specifiers listed in the format string. The syntax for writ-
ing the format specifiers is the same as with the System.out.printf method. The method
creates a string in memory that is formatted as specified, and returns a reference to that
string. For example, look at the program in Code Listing 3-21. The program’s output is
shown in Figure 3-30.

Code Listing 3-21 (CurrencyFormat2.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates how to use the String.format
 5 method to format a number as currency.
 6 */
 7
 8 public class CurrencyFormat2
 9 {
10 public static void main(String[] args)
11 {
12 double monthlyPay = 5000.0;
13 double annualPay = monthlyPay * 12;
14 String output = String.format("Your annual pay is $%,.2f", annualPay);
15
16 JOptionPane.showMessageDialog(null, output);
17 }
18 }

Figure 3-30 Output of Code Listing 3-21

 variable. Code Listing 3-22 shows how this is done. The program’s output is the same as
shown in Figure 3-30.

Code Listing 3-22 (CurrencyFormat3.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates how to use the String.format
 5 method to format a number as currency.
 6 */
 7
 8 public class CurrencyFormat3
 9 {
10 public static void main(String[] args)
11 {
12 double monthlyPay = 5000.0;
13 double annualPay = monthlyPay * 12;
14
15 JOptionPane.showMessageDialog(null,
16 String.format("Your annual pay is $%,.2f", annualPay));
17 }
18 }

 3.10 Displaying Formatted Output with System.out.printf and String.format 177

Checkpoint

www.myprogramminglab.com

3.29 Assume the following variable declaration exists in a program:

double number = 1234567.456;

 Write a statement that uses System.out.printf to display the value of the number
variable formatted as:

1,234,567.46

3.30 Assume the following variable declaration exists in a program:

double number = 123.456;

 Write a statement that uses System.out.printf to display the value of the number
variable rounded to one decimal place, in a field that is 10 spaces wide. (Do not use
comma separators.)

3.31 Assume the following variable declaration exists in a program:

double number = 123.456;

 Write a statement that uses System.out.printf to display the value of the number
variable padded with leading zeros, in a field that is eight spaces wide, rounded to
one decimal place. (Do not use comma separators.)

http://www.myprogramminglab.com

178 Chapter 3 Decision Structures

3.32 Assume the following variable declaration exists in a program:

int number = 123456;

 Write a statement that uses System.out.printf to display the value of the number
variable in a field that is 10 spaces wide, with comma separators.

3.33 Assume the following variable declaration exists in a program:

double number = 123456.789;

 Write a statement that uses System.out.printf to display the value of the number
variable left-justified, with comma separators, in a field that is 20 spaces wide,
rounded to two decimal places.

3.34 Assume the following declaration exists in a program:

String name = "James";

 Write a statement that uses System.out.printf to display the value of name in a
field that is 20 spaces wide.

3.11 Common errors to Avoid
The following list describes several errors that are commonly committed when learning this
chapter’s topics.

•	 Using = instead of == to compare primitive values. Remember, = is the assignment
operator and == tests for equality.

•	 Using == instead of the equals method to compare String objects. You cannot use the
== operator to compare the contents of a String object with another string. Instead
you must use the equals or compareTo method.

•	 Forgetting to enclose an if statement’s boolean expression in parentheses. Java
requires that the boolean expression being tested by an if statement is enclosed in a
set of parentheses. An error will result if you omit the parentheses or use any other
grouping characters.

•	 Writing a semicolon at the end of an if clause. When you write a semicolon at the end
of an if clause, Java assumes that the conditionally executed statement is a null or
empty statement.

•	 Forgetting to enclose multiple conditionally executed statements in braces. Normally
the if statement conditionally executes only one statement. To conditionally execute
more than one statement, you must enclose them in braces.

•	 Omitting the trailing else in an if-else-if statement. This is not a syntax error, but
can lead to logical errors. If you omit the trailing else from an if-else-if statement,
no code will be executed if none of the statement’s boolean expressions are true.

•	 Not writing complete boolean expressions on both sides of a logical && or || operator.
You must write a complete boolean expression on both sides of a logical && or ||
operator. For example, the expression x > 0 && < 10 is not valid because < 10 is not a
complete expression. The expression should be written as x > 0 && x < 10.

•	 Trying to perform case-insensitive string comparisons with the String class’s equals
and compareTo methods. To perform case-insensitive string comparisons, use the
String class’s equalsIgnoreCase and compareToIgnoreCase methods.

 Review Questions and Exercises 179

•	 Using a SwitchExpression that is not an int, short, byte, char, or String. The switch
statement can only evaluate expressions that are of the int, short, byte, char, or
String data types.

•	 Using a CaseExpression that is not a literal or a final variable. Because the compiler
must determine the value of a CaseExpression at compile time, CaseExpressions must
be either literal values or final variables.

•	 Forgetting to write a colon at the end of a case statement. A colon must appear after
the CaseExpression in each case statement.

•	 Forgetting to write a break statement in a case section. This is not a syntax error, but
it can lead to logical errors. The program does not branch out of a switch statement
until it reaches a break statement or the end of the switch statement.

•	 Forgetting to write a default section in a switch statement. This is not a syntax error,
but can lead to a logical error. If you omit the default section, no code will be exe-
cuted if none of the CaseExpressions match the SwitchExpression.

•	 Reversing the ? and the : when using the conditional operator. When using the con-
ditional operator, the ? character appears first in the conditional expression, then
the : character.

•	 When	formatting	a	number	with	System.out.printf or String.format, writing the
flags, field width, and precision in an incorrect order.

•	 When	writing	a	format	specifier	for	the	System.out.printf or String.format methods,
using the wrong type indicator (%f = floating-point, %d = integer, %s = string).

Review Questions and exercises
Multiple Choice and True/False

 1. The if statement is an example of a __________.
a. sequence structure
b. decision structure
c. pathway structure
d. class structure

 2. This type of expression has a value of either true or false.
a. binary expression
b. decision expression
c. unconditional expression
d. boolean expression

 3. >, <, and == are __________.
a. relational operators
b. logical operators
c. conditional operators
d. ternary operators

 4. &&, ||, and ! are __________.
a. relational operators
b. logical operators
c. conditional operators
d. ternary operators

180 Chapter 3 Decision Structures

 5. This is an empty statement that does nothing.
a. missing statement
b. virtual statement
c. null statement
d. conditional statement

 6. To create a block of statements, you enclose the statements in these.
a. parentheses()
b. square brackets []
c. angled brackets <>
d. braces {}

 7. This is a boolean variable that signals when some condition exists in the program.
a. flag
b. signal
c. sentinel
d. siren

 8. How does the character ‘A’ compare to the character ‘B’?
a. ‘A’ is greater than ‘B’
b. ‘A’ is less than ‘B’
c. ‘A’ is equal to ‘B’
d. You cannot compare characters

 9. This is an if statement that appears inside another if statement.
a. nested if statement
b. tiered if statement
c. dislodged if statement
d. structured if statement

 10. An else clause always goes with __________.
a. the closest previous if clause that doesn’t already have its own else clause
b. the closest if clause
c. the if clause that is randomly selected by the compiler
d. none of these

 11. When determining whether a number is inside a range, it’s best to use this operator.
a. &&
b. !
c. ||
d. ? :

 12. This determines whether two different String objects contain the same string.
a. the == operator
b. the = operator
c. the equals method
d. the stringCompare method

 13. The conditional operator takes this many operands.
a. one
b. two
c. three
d. four

 Review Questions and Exercises 181

 14. This section of a switch statement is branched to if none of the case expressions
match the switch expression.
a. else
b. default
c. case
d. otherwise

 15. You can use this method to display formatted output in a console window.
a. Format.out.println
b. Console.format
c. System.out.printf
d. System.out.formatted

 16. True or False: The = operator and the == operator perform the same operation.

 17. True or False: A conditionally executed statement should be indented one level from
the if clause.

 18. True or False: All lines in a conditionally executed block should be indented one level.

 19. True or False: When an if statement is nested in the if clause of another statement,
the only time the inner if statement is executed is when the boolean expression of the
outer if statement is true.

 20. True or False: When an if statement is nested in the else clause of another statement,
the only time the inner if statement is executed is when the boolean expression of the
outer if statement is true.

 21. True or False: The scope of a variable is limited to the block in which it is defined.

Find the error

Find the errors in the following code:

 1. // Warning! This code contains ERRORS!
if (x == 1);
 y = 2;
else if (x == 2);
 y = 3;
else if (x == 3);
 y = 4;

 2. // Warning! This code contains an ERROR!
if (average = 100)
 System.out.println("Perfect Average!");

 3. // Warning! This code contains ERRORS!
if (num2 == 0)
 System.out.println("Division by zero is not possible.");
 System.out.println("Please run the program again ");
 System.out.println("and enter a number besides zero.");
else
 Quotient = num1 / num2;
 System.out.print("The quotient of " + Num1);
 System.out.print(" divided by " + Num2 + " is ");
 System.out.println(Quotient);

182 Chapter 3 Decision Structures

 4. // Warning! This code contains ERRORS!
switch (score)
{
 case (score > 90):
 grade = 'A';
 break;
 case(score > 80):
 grade = 'b';
 break;
 case(score > 70):
 grade = 'C';
 break;
 case (score > 60):
 grade = 'D';
 break;
 default:
 grade = 'F';
}

 5. The following statement should determine whether x is not greater than 20. What is
wrong with it?
if (!x > 20)

 6. The following statement should determine whether count is within the range of 0
through 100. What is wrong with it?
if (count >= 0 || count <= 100)

 7. The following statement should determine whether count is outside the range of 0
through 100. What is wrong with it?
if (count < 0 && count > 100)

 8. The following statement should assign 0 to z if a is less than 10; otherwise, it should
assign 7 to z. What is wrong with it?
z = (a < 10) : 0 ? 7;

 9. Assume that partNumber references a String object. The following if statement should
perform a case-insensitive comparison. What is wrong with it?

if (partNumber.equals("BQ789W4"))
 available = true;

 10. What is wrong with the following code?

double value = 12345.678;
System.out.printf("%.2d", value);

Algorithm Workbench

 1. Write an if statement that assigns 100 to x when y is equal to 0.

 2. Write an if-else statement that assigns 0 to x when y is equal to 10. Otherwise, it
should assign 1 to x.

 Review Questions and Exercises 183

 3. Using the following chart, write an if-else-if statement that assigns .10, .15, or .20
to commission, depending on the value in sales.

Sales Commission Rate

Up to $10,000 10%

$10,000 to $15,000 15%

Over $15,000 20%

 4. Write an if statement that sets the variable hours to 10 when the boolean flag vari-
able minimum is equal to true.

 5. Write nested if statements that perform the following tests: If amount1 is greater than
10 and amount2 is less than 100, display the greater of the two.

 6. Write an if statement that prints the message “The number is valid” if the variable
grade is within the range 0 through 100.

 7. Write an if statement that prints the message “The number is valid” if the variable
temperature is within the range −50 through 150.

 8. Write an if statement that prints the message “The number is not valid” if the vari-
able hours is outside the range 0 through 80.

 9. Write an if-else statement that displays the String objects title1 and title2 in
alphabetical order.

 10. Convert the following if-else-if statement into a switch statement:

if (choice == 1)
{
 System.out.println("You selected 1.");
}
else if (choice == 2 || choice == 3)
{
 System.out.println("You selected 2 or 3.");
}
else if (choice == 4)
{
 System.out.println("You selected 4.");
}
else
{
 System.out.println("Select again please.");
}

 11. Match the conditional expression with the if-else statement that performs the same
operation.

a. q = x < y ? a + b : x * 2;
b. q = x < y ? x * 2 : a + b;
c. q = x < y ? 0 : 1;
____ if (x < y)
 q = 0;
 else
 q = 1;

184 Chapter 3 Decision Structures

____ if (x < y)
 q = a + b;
 else
 q = x * 2;
____ if (x < y)
 q = x * 2;
 else
 q = a + b;

 12. Assume the double variable number contains the value 12345.6789. Write a statement
that uses System.out.printf to display the number as 12345.7.

 13. Assume the double variable number contains the value 12345.6789. Write a statement
that uses System.out.printf to display the number as 12,345.68.

 14. Assume the int variable number contains the value 1234567. Write a statement that
uses System.out.printf to display the number as 1,234,567.

Short Answer

 1. Explain what is meant by the phrase “conditionally executed.”

 2. Explain why a misplaced semicolon can cause an if statement to operate incorrectly.

 3. Why is it good advice to indent all the statements inside a set of braces?

 4. What happens when you compare two String objects with the == operator?

 5. Explain the purpose of a flag variable. Of what data type should a flag variable be?

 6. What risk does a programmer take when not placing a trailing else at the end of an
if-else-if statement?

 7. Briefly describe how the && operator works.

 8. Briefly describe how the || operator works.

 9. Why are the relational operators called “relational”?

 10. When does a constructor execute? What is its purpose?

programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Roman numerals

Write a program that prompts the user to enter a number within the range of 1 through 10.
The program should display the Roman numeral version of that number. If the number is
outside the range of 1 through 10, the program should display an error message.

2. Magic Dates

The date June 10, 1960, is special because when we write it in the following format, the
month times the day equals the year:

6/10/60

http://www.myprogramminglab.com

Write a program that asks the user to enter a month (in numeric form), a day, and a two-
digit year. The program should then determine whether the month times the day is equal
to the year. If so, it should display a message saying the date is magic. Otherwise, it should
display a message saying the date is not magic.

3. Body Mass Index

Write a program that calculates and displays a person’s body mass index (BMI). The BMI is
often used to determine whether a person with a sedentary lifestyle is overweight or under-
weight for his or her height. A person’s BMI is calculated with the following formula:

BMI 5 Weight 3 703 / Height2

where weight is measured in pounds and height is measured in inches. The program should
display a message indicating whether the person has optimal weight, is underweight, or is
overweight. A sedentary person’s weight is considered optimal if his or her BMI is between
18.5 and 25. If the BMI is less than 18.5, the person is considered underweight. If the BMI
value is greater than 25, the person is considered overweight.

4. Test Scores and Grade

Write a program that has variables to hold three test scores. The program should ask the
user to enter three test scores and then assign the values entered to the variables. The pro-
gram should display the average of the test scores and the letter grade that is assigned for
the test score average. Use the grading scheme in the following table:

Test Score Average Letter Grade

90–100 A

80–89 B

70–79 C

60–69 D

Below 60 F

5. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in Newtons. If you know the
amount of mass that an object has, you can calculate its weight, in Newtons, with the fol-
lowing formula:

Weight 5 Mass 3 9.8

Write a program that asks the user to enter an object’s mass, and then calculate its weight.
If the object weighs more than 1,000 Newtons, display a message indicating that it is too
heavy. If the object weighs less than 10 Newtons, display a message indicating that the
object is too light.

6. Time Calculator

Write a program that asks the user to enter a number of seconds.

•	 There	are	60	seconds	in	a	minute.	If	the	number	of	seconds	entered	by	the	user	is	
greater than or equal to 60, the program should display the number of minutes in that
many seconds.

 Programming Challenges 185

The Time
Calculator

Problem

VideoNote

186 Chapter 3 Decision Structures

•	 There	are	3,600	seconds	in	an	hour.	If	the	number	of	seconds	entered	by	the	user	is	
greater than or equal to 3,600, the program should display the number of hours in
that many seconds.

•	 There	are	86,400	seconds	in	a	day.	If	the	number	of	seconds	entered	by	the	user	is	
greater than or equal to 86,400, the program should display the number of days in
that many seconds.

7. Sorted names

Write a program that asks the user to enter three names, and then displays the names sorted
in ascending order. For example, if the user entered “Charlie”, “Leslie”, and “Andy”, the
program would display:

Andy
Charlie
Leslie

8. Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table:

Quantity Discount

10–19 20%

20–49 30%

50–99 40%

100 or more 50%

Write a program that asks the user to enter the number of packages purchased. The pro-
gram should then display the amount of the discount (if any) and the total amount of the
purchase after the discount.

9. Shipping Charges

The Fast Freight Shipping Company charges the following rates:

Weight of Package Rate per 500 Miles Shipped

2 pounds or less $1.10

Over 2 pounds but not more than 6 pounds $2.20

Over 6 pounds but not more than 10 pounds $3.70

Over 10 pounds $3.80

The shipping charges per 500 miles are not prorated. For example, if a 2-pound package is
shipped 550 miles, the charges would be $2.20. Write a program that asks the user to enter
the weight of a package and then displays the shipping charges.

 Programming Challenges 187

10. Fat Gram Calculator

Write a program that asks the user to enter the number of calories and fat grams in a food
item. The program should display the percentage of the calories that come from fat. One
gram of fat has 9 calories; therefore:

Calories from fat 5 Fat grams * 9

The percentage of calories from fat can be calculated as follows:

Calories from fat 4 Total calories

If the calories from fat are less than 30 percent of the total calories of the food, it should
also display a message indicating the food is low in fat.

noTe: The number of calories from fat cannot be greater than the total number of
calories in the food item. If the program determines that the number of calories from fat
is greater than the number of calories in the food item, it should display an error message
indicating that the input is invalid.

11. Running the Race

Write a program that asks for the names of three runners and the time, in minutes, it took
each of them to finish a race. The program should display the names of the runners in the
order that they finished.

12. The Speed of Sound

The following table shows the approximate speed of sound in air, water, and steel:

Medium Speed

Air 1,100 feet per second

Water 4,900 feet per second

Steel 16,400 feet per second

Write a program that asks the user to enter “air”, “water”, or “steel”, and the distance that
a sound wave will travel in the medium. The program should then display the amount of
time it will take. You can calculate the amount of time it takes sound to travel in air with
the following formula:

Time 5 Distance / 1,100

You can calculate the amount of time it takes sound to travel in water with the follow-
ing formula:

Time 5 Distance / 4,900

You can calculate the amount of time it takes sound to travel in steel with the follow-
ing formula:

Time 5 Distance / 16,400

188 Chapter 3 Decision Structures

13. Internet Service provider

An Internet service provider has three different subscription packages for its customers:

Package A: For $9.95 per month 10 hours of access are provided. Additional hours
are $2.00 per hour.

Package B: For $13.95 per month 20 hours of access are provided. Additional hours
are $1.00 per hour.

Package C: For $19.95 per month unlimited access is provided.

Write a program that calculates a customer’s monthly bill. It should ask the user to enter
the letter of the package the customer has purchased (A, B, or C) and the number of hours
that were used. It should then display the total charges.

14. Internet Service provider, part 2

Modify the program you wrote for Programming Challenge 13 so it also calculates and
displays the amount of money Package A customers would save if they purchased Package
B or C, and the amount of money Package B customers would save if they purchased Pack-
age C. If there would be no savings, no message should be printed.

15. Bank Charges

A bank charges a base fee of $10 per month, plus the following check fees for a commercial
checking account:

$.10 each for less than 20 checks
$.08 each for 20–39 checks
$.06 each for 40–59 checks
$.04 each for 60 or more checks

Write a program that asks for the number of checks written for the month. The program
should then calculate and display the bank’s service fees for the month.

16. Book Club points

Serendipity Booksellers has a book club that awards points to its customers based on the
number of books purchased each month. The points are awarded as follows:

•	 If	a	customer	purchases	0	books,	he	or	she	earns	0	points.
•	 If	a	customer	purchases	1	book,	he	or	she	earns	5	points.
•	 If	a	customer	purchases	2	books,	he	or	she	earns	15	points.
•	 If	a	customer	purchases	3	books,	he	or	she	earns	30	points.
•	 If	a	customer	purchases	4	or	more	books,	he	or	she	earns	60	points.

Write a program that asks the user to enter the number of books that he or she has pur-
chased this month and then displays the number of points awarded.

189

Loops and Files

C
H

A
P

T
E

R

4
TOPICS

 4.1 The Increment and Decrement
Operators

 4.2 The while Loop
 4.3 Using the while Loop for Input

Validation
 4.4 The do-while Loop
 4.5 The for Loop
 4.6 Running Totals and Sentinel Values

 4.7 Nested Loops
 4.8 The break and continue Statements

(Optional)
 4.9 Deciding Which Loop to Use
 4.10 Introduction to File Input and Output
 4.11 Generating Random Numbers with

the Random Class
 4.12 Common Errors to Avoid

4.1 The Increment and Decrement Operators

COnCePT: ++ and −− are operators that add and subtract one from their operands.

To increment a value means to increase it by one, and to decrement a value means to
decrease it by one. Both of the following statements increment the variable number:

 number = number + 1;
 number += 1;

And number is decremented in both of the following statements:

 number = number - 1;
 number -= 1;

Java provides a set of simple unary operators designed just for incrementing and decrement-
ing variables. The increment operator is ++ and the decrement operator is −−. The following
statement uses the ++ operator to increment number:

 number++;

And the following statement decrements number:

 number−−;

190 Chapter 4 Loops and Files

The program in Code Listing 4-1 demonstrates the ++ and −− operators.

Code Listing 4-1 (IncrementDecrement.java)

 1 /**
 2 This program demonstrates the ++ and -- operators.
 3 */
 4
 5 public class IncrementDecrement
 6 {
 7 public static void main(String[] args)
 8 {
 9 int number = 4; // number starts out with 4
10
11 // Display the value in number.
12 System.out.println("number is " + number);
13 System.out.println("I will increment number.");
14
15 // Increment number.
16 number++;
17
18 // Display the value in number again.
19 System.out.println("Now, number is " + number);
20 System.out.println("I will decrement number.");
21
22 // Decrement number.
23 number--;
24
25 // Display the value in number once more.
26 System.out.println("Now, number is " + number);
27 }
28 }

Program Output

number is 4
I will increment number.
Now, number is 5
I will decrement number.
Now, number is 4

The statements in Code Listing 4-1 show the increment and decrement operators used in
postfix mode, which means the operator is placed after the variable. The operators also
work in prefix mode, where the operator is placed before the variable name as follows:

nOTe: The expression number++ is pronounced “number plus plus,” and number−−
is pronounced “number minus minus.”

 4.1 The Increment and Decrement Operators 191

 ++number;

 --number;

In both postfix and prefix mode, these operators add one to or subtract one from their
operand. Code Listing 4-2 demonstrates this.

Code Listing 4-2 (Prefix.java)

 1 /**
 2 This program demonstrates the ++ and -- operators
 3 in prefix mode.
 4 */
 5
 6 public class Prefix
 7 {
 8 public static void main(String[] args)
 9 {
10 int number = 4; // number starts out with 4
11
12 // Display the value in number.
13 System.out.println("number is " + number);
14 System.out.println("I will increment number.");
15
16 // Increment number.
17 ++number;
18
19 // Display the value in number again.
20 System.out.println("Now, number is " + number);
21 System.out.println("I will decrement number.");
22
23 // Decrement number.
24 --number;
25
26 // Display the value in number once again.
27 System.out.println("Now, number is " + number);
28 }
29 }

Program Output

number is 4
I will increment number.
Now, number is 5
I will decrement number.
Now, number is 4

192 Chapter 4 Loops and Files

The Difference between Postfix and Prefix Modes
In Code Listings 4-1 and 4-2, the statements number++ and ++number increment the vari-
able number, while the statements number−− and −−number decrement the variable number.
In these simple statements, it doesn’t matter whether the operator is used in postfix or
prefix mode. The difference is important, however, when these operators are used in
statements that do more than just increment or decrement. For example, look at the
 following code:

number = 4;
System.out.println(number++);

The statement that calls the println method does two things: (1) calls println to display
the value of number, and (2) increments number. But which happens first? The println
method will display a different value if number is incremented first than if number is incre-
mented last. The answer depends upon the mode of the increment operator.

Postfix mode causes the increment to happen after the value of the variable is used in the
expression. In the previously shown statement, the println method will display 4 and then
number will be incremented to 5. Prefix mode, however, causes the increment to happen first.
Here is an example:

number = 4;
System.out.println(++number);

In these statements, number is incremented to 5, then println will display the value in number
(which is 5). For another example, look at the following code:

int x = 1, y;
y = x++; // Postfix increment

The first statement declares the variable x (initialized with the value 1) and the variable y.
The second statement does the following:

•	 It	assigns	the	value	of	x to the variable y.
•	 The	variable	x is incremented.

The value that will be stored in y depends on when the increment takes place. Because the
++ operator is used in postfix mode, it acts after the assignment takes place. So, this code
will store 1 in y. After the code has executed, x will contain 2. Let’s look at the same code,
but with the ++ operator used in prefix mode as follows:

int x = 1, y;
y = ++x; // Prefix increment

The first statement declares the variable x (initialized with the value 1) and the variable y. In
the second statement, the ++ operator is used in prefix mode, so it acts on the variable
before the assignment takes place. So, this code will store 2 in y. After the code has exe-
cuted, x will also contain 2.

Figure 4-1 Logic of a while loop

Here is the general format of the while loop:

while (BooleanExpression)
 Statement;

 4.2 The while Loop 193

Checkpoint

www.myprogramminglab.com

4.1 What will the following program segments display?
a) x = 2;

y = x++;
System.out.println(y);

b) x = 2;

System.out.println(x++);

c) x = 2;

System.out.println(--x);

d) x = 8;

y = x--;
System.out.println(y);

4.2 The while Loop

ConCepT: A loop is part of a program that repeats.

In Chapter 3, you were introduced to the concept of control structures, which direct the
flow of a program. A loop is a control structure that causes a statement or group of state-
ments to repeat. Java has three looping control structures: the while loop, the do-while
loop, and the for loop. The difference among each of these is how they control the repeti-
tion. In this section we will focus on the while loop.

The while loop has two important parts: (1) a boolean expression that is tested for a true
or false value, and (2) a statement or block of statements that is repeated as long as the
expression is true. Figure 4-1 shows the logic of a while loop.

The while
Loop

VideoNote

http://www.myprogramminglab.com

194 Chapter 4 Loops and Files

In the general format, BooleanExpression is any valid boolean expression, and Statement
is any valid Java statement. The first line shown in the format is sometimes called the
loop header. It consists of the key word while followed by the BooleanExpression enclosed
in parentheses.

Here’s how the loop works: The BooleanExpression is tested, and if it is true, the Statement
is executed. Then, the BooleanExpression is tested again. If it is true, the Statement is exe-
cuted. This cycle repeats until the BooleanExpression is false.

The statement that is repeated is known as the body of the loop. It is also considered a con-
ditionally executed statement, because it is only executed under the condition that the
BooleanExpression is true.

Notice there is no semicolon at the end of the loop header. Like the if statement, the while
loop is not complete without the conditionally executed statement that follows it.

If you wish the while loop to repeat a block of statements, the format is as follows:

while (BooleanExpression)
{
 Statement;
 Statement;
 // Place as many statements here
 // as necessary.
}

The while loop works like an if statement that executes over and over. As long as the
expression in the parentheses is true, the conditionally executed statement or block will
repeat. The program in Code Listing 4-3 uses the while loop to print “Hello” five times.

Code Listing 4-3 (WhileLoop.java)

 1 /**
 2 This program demonstrates the while loop.
 3 */
 4
 5 public class WhileLoop
 6 {
 7 public static void main(String[] args)
 8 {
 9 int number = 1;
10
11 while (number <= 5)
12 {
13 System.out.println("Hello");
14 number++;
15 }

 4.2 The while Loop 195

16
17 System.out.println("That's all!");
18 }
19 }

Program Output

Hello
Hello
Hello
Hello
Hello
That's all!

Let’s take a closer look at this program. An integer variable, number, is declared and initial-
ized with the value 1. The while loop begins with the following statement:

while (number <= 5)

This statement tests the variable number to determine whether it is less than or equal to 5. If
it is, then the statements in the body of the loop are executed as follows:

System.out.println("Hello");
number++;

The first statement in the body of the loop prints the word “Hello”. The second statement
uses the increment operator to add one to number. This is the last statement in the body of
the loop, so after it executes, the loop starts over. It tests the boolean expression again, and
if it is true, the statements in the body of the loop are executed. This cycle repeats until the
boolean expression number <= 5 is false, as illustrated in Figure 4-2.

Figure 4-2 The while loop

Each repetition of a loop is known as an iteration. This loop will perform five iterations
because the variable number is initialized with the value 1, and it is incremented each time
the body of the loop is executed. When the expression number <= 5 is tested and found to be

196 Chapter 4 Loops and Files

false, the loop will terminate and the program will resume execution at the statement that
immediately follows the loop. Figure 4-3 shows the logic of this loop.

In this example, the number variable is referred to as the loop control variable because it
controls the number of times that the loop iterates.

Figure 4-3 Logic of the example while loop

The while Loop Is a Pretest Loop
The while loop is known as a pretest loop, which means it tests its expression before each
iteration. Notice the variable declaration of number in Code Listing 4-3:

int number = 1;

The number variable is initialized with the value 1. If number had been initialized with a
value that is greater than 5, as shown in the following program segment, the loop would
never execute:

int number = 6;
while (number <= 5)
{
 System.out.println("Hello");
 number++;
}

An important characteristic of the while loop is that the loop will never iterate if the boolean
expression is false to start with. If you want to be sure that a while loop executes the first
time, you must initialize the relevant data in such a way that the boolean expression starts
out as true.

Infinite Loops
In all but rare cases, loops must contain a way to terminate within themselves. This means
that something inside the loop must eventually make the boolean expression false. The
loop in Code Listing 4-3 stops when the expression number <= 5 is false.

 4.2 The while Loop 197

If a loop does not have a way of stopping, it is called an infinite loop as it continues to
repeat until the program is interrupted. Here is an example of an infinite loop:

int number = 1;
while (number <= 5)
{
 System.out.println("Hello");
}

This is an infinite loop because it does not contain a statement that changes the value of the
number variable. Each time the boolean expression is tested, number will contain the value 1.

It’s also possible to create an infinite loop by accidentally placing a semicolon after the first
line of the while loop. Here is an example:

int number = 1;
while (number <= 5); // This semicolon is an ERROR!
{
 System.out.println("Hello");
 number++;
}

The semicolon at the end of the first line is assumed to be a null statement and disconnects
the while statement from the block that comes after it. To the compiler, this loop looks like
the following:

while (number <= 5);

This while loop will forever execute the null statement, which does nothing. The program
will appear to have “gone into space” because there is nothing to display screen output or
show activity.

Don’t Forget the Braces with a Block of Statements
If you are using a block of statements, don’t forget to enclose all of the statements in a set
of braces. If the braces are accidentally left out, the while statement conditionally executes
only the very next statement. For example, look at the following code:

int number = 1;
// This loop is missing its braces!
while (number <= 5)
 System.out.println("Hello");
 number++;

In this code the number++ statement is not in the body of the loop. Because the braces are
missing, the while statement executes only the statement that immediately follows it.
This loop will execute infinitely because there is no code in its body that changes the
number variable.

198 Chapter 4 Loops and Files

Programming Style and the while Loop
It’s possible to create loops that look like the following:

while (number <= 5) { System.out.println("Hello"); number++; }

Avoid this style of programming. The programming style you should use with the while
loop is similar to that of the if statement as follows:

•	 If	there	is	only	one	statement	repeated	by	the	loop,	it	should	appear	on	the	line	after	
the while statement and be indented one additional level. The statement can option-
ally appear inside a set of braces.

•	 If	the	loop	repeats	a	block,	each	line	inside	the	braces	should	be	indented.

This programming style should visually set the body of the loop apart from the surrounding
code. In general, you’ll find a similar style being used with the other types of loops pre-
sented in this chapter.

In the Spotlight:
Designing a Program with a while Loop
A project currently underway at Chemical Labs, Inc., requires that a substance be continu-
ally heated in a vat. A technician must check the substance’s temperature every 15 minutes.
If the substance’s temperature does not exceed 102.5 degrees Celsius, then the technician
does nothing. However, if the temperature is greater than 102.5 degrees Celsius, the techni-
cian must turn down the vat’s thermostat, wait 5 minutes, and check the temperature again.
The technician repeats these steps until the temperature does not exceed 102.5 degrees
 Celsius. The director of engineering has asked you to write a program that guides the tech-
nician through this process.

Here is the algorithm:

 1. Prompt the user to enter the substance’s temperature.
 2. Repeat the following steps as long as the temperature is greater than 102.5 degrees

Celsius:
(a) Tell the technician to turn down the thermostat, wait 5 minutes, and check the

temperature again.
(b) Prompt the user to enter the substance’s temperature.

 3. After the loop finishes, tell the technician that the temperature is acceptable and to
check it again in 15 minutes.

After reviewing this algorithm, you realize that Steps 2(a) and 2(b) should not be performed
if the test condition (temperature is greater than 102.5) is false to begin with. The while
loop will work well in this situation, because it will not execute even once if its condition
is false. Code Listing 4-4 shows the program.

Code Listing 4-4 (CheckTemperature.java)

 1 import java.util.Scanner;
 2

 3 /**
 4 This program assists a technician in the process
 5 of checking a substance's temperature.
 6 */
 7 public class CheckTemperature
 8 {
 9 public static void main(String[] args)
10 {
11 final double MAX_TEMP = 102.5; // Maximum temperature
12 double temperature; // To hold the temperature
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Get the current temperature.
18 System.out.print("Enter the substance's Celsius temperature: ");
19 temperature = keyboard.nextDouble();
20
21 // As long as necessary, instruct the technician
22 // to adjust the temperature.
23 while (temperature > MAX_TEMP)
24 {
25 System.out.println("The temperature is too high. Turn the");
26 System.out.println("thermostat down and wait 5 minutes.");
27 System.out.println("Then, take the Celsius temperature again");
28 System.out.print("and enter it here: ");
29 temperature = keyboard.nextDouble();
30 }
31
32 // Remind the technician to check the temperature
33 // again in 15 minutes.
34 System.out.println("The temperature is acceptable.");
35 System.out.println("Check it again in 15 minutes.");
36 }
37 }

Program Output with example Input Shown in Bold

Enter the substance's Celsius temperature: 104.7 [enter]
The temperature is too high. Turn the
thermostat down and wait 5 minutes.
Then, take the Celsius temperature again
and enter it here: 103.2 [enter]
The temperature is too high. Turn the
thermostat down and wait 5 minutes.
Then, take the Celsius temperature again
and enter it here: 102.1 [enter]
The temperature is acceptable.
Check it again in 15 minutes.

 4.2 The while Loop 199

200 Chapter 4 Loops and Files

Checkpoint

www.myprogramminglab.com

4.2 How many times will "Hello World" be printed in the following program segment?

int count = 10;
while (count < 1)
{
 System.out.println("Hello World");
 count++;
}

4.3 How many times will "I love Java programming!" be printed in the following
 program segment?

int count = 0;
while (count < 10)
 System.out.println("I love Java programming!);

4.3 Using the while Loop for Input Validation

COnCePT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Perhaps the most famous saying of the computer industry is “garbage in, garbage out.” The
integrity of a program’s output is only as good as its input, so you should try to make sure
garbage does not go into your programs. Input validation is the process of inspecting data
given to a program by the user and determining whether it is valid. A good program should
give clear instructions about the kind of input that is acceptable, and not assume the user
has followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a loop
can require that the user reenter it as many times as necessary. For example, the following
loop asks for a number in the range of 1 through 100:

input = JOptionPane.showInputDialog("Enter a number " +
 "in the range of 1 through 100.");
number = Integer.parseInt(input);
// Validate the input.
while (number < 1 || number > 100)
{
 input = JOptionPane.showInputDialog("Invalid input. " +
 "Enter a number in the range of " +
 "1 through 100.");
 number = Integer.parseInt(input);
}

This code first allows the user to enter a number. This takes place just before the loop. If the
input is valid, the loop will not execute. If the input is invalid, however, the loop will display
an error message and require the user to enter another number. The loop will continue to

http://www.myprogramminglab.com

 4.3 Using the while Loop for Input Validation 201

execute until the user enters a valid number. The general logic of performing input valida-
tion is shown in Figure 4-4.

The read operation that takes place just before the loop is called a priming read. It provides
the first value for the loop to test. Subsequent values are obtained by the loop.

The program in Code Listing 4-5 calculates the number of soccer teams a youth league may
create, based on a given number of players and a maximum number of players per team.
The program uses while loops (in lines 28 through 36 and lines 44 through 49) to validate
the user’s input. Figure 4-5 shows an example of interaction with the program.

Code Listing 4-5 (SoccerTeams.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program calculates the number of soccer teams
 5 that a youth league may create from the number of
 6 available players. Input validation is demonstrated
 7 with while loops.
 8 */
 9
10 public class SoccerTeams
11 {
12 public static void main(String[] args)
13 {
14 final int MIN_PLAYERS = 9; // Minimum players per team
15 final int MAX_PLAYERS = 15; // Maximum players per team
16 int players; // Number of available players
17 int teamSize; // Number of players per team
18 int teams; // Number of teams

Figure 4-4 Input validation logic

202 Chapter 4 Loops and Files

19 int leftOver; // Number of leftover players
20 String input; // To hold the user input
21
22 // Get the number of players per team.
23 input = JOptionPane.showInputDialog("Enter the number of " +
24 "players per team.");
25 teamSize = Integer.parseInt(input);
26
27 // Validate the number entered.
28 while (teamSize < MIN_PLAYERS || teamSize > MAX_PLAYERS)
29 {
30 input = JOptionPane.showInputDialog("The number must " +
31 "be at least " + MIN_PLAYERS +
32 " and no more than " +
33 MAX_PLAYERS + ".\n Enter " +
34 "the number of players.");
35 teamSize = Integer.parseInt(input);
36 }
37
38 // Get the number of available players.
39 input = JOptionPane.showInputDialog("Enter the available " +
40 "number of players.");
41 players = Integer.parseInt(input);
42
43 // Validate the number entered.
44 while (players < 0)
45 {
46 input = JOptionPane.showInputDialog("Enter 0 or " +
47 "greater.");
48 players = Integer.parseInt(input);
49 }
50
51 // Calculate the number of teams.
52 teams = players / teamSize;
53
54 // Calculate the number of leftover players.
55 leftOver = players % teamSize;
56
57 // Display the results.
58 JOptionPane.showMessageDialog(null, "There will be " +
59 teams + " teams with " +
60 leftOver +
61 " players left over.");
62 System.exit(0);
63 }
64 }

 4.3 Using the while Loop for Input Validation 203

Checkpoint

www.myprogramminglab.com

4.4 Write an input validation loop that asks the user to enter a number in the range of
10 through 24.

4.5 Write an input validation loop that asks the user to enter ‘Y’, ‘y’, ‘N’, or ‘n’.

4.6 Write an input validation loop that asks the user to enter “Yes” or “No”.

This input dialog box appears
first. The user enters 4 (an invalid
value) and clicks the OK button.

This input dialog box appears
next. The user enters 12 and
clicks the OK button.

This input dialog box appears
next. The user enters –142 (an
invalid value) and clicks the OK
button.

This input dialog box appears
next. The user enters 142 and
clicks the OK button.

This message dialog box
appears next.

Figure 4-5 Interaction with the SoccerTeams program

http://www.myprogramminglab.com

204 Chapter 4 Loops and Files

4.4 The do-while Loop

COnCePT: The do-while loop is a posttest loop, which means its boolean
expression is tested after each iteration.

The do-while loop looks something like an inverted while loop. Here is the do-while loop’s
format when the body of the loop contains only a single statement:

do
 Statement;
while (BooleanExpression);

Here is the format of the do-while loop when the body of the loop contains multiple statements:

do
{
 Statement;
 Statement;
 // Place as many statements here as necessary.
} while (BooleanExpression);

The do-while loop is a posttest loop. This means it does not test its boolean expression until
it has completed an iteration. As a result, the do-while loop always performs at least one
iteration, even if the boolean expression is false to begin with. This differs from the behav-
ior of a while loop, which you will recall is a pretest loop. For example, in the following
while loop the println statement will not execute at all:

int x = 1;
while (x < 0)
 System.out.println(x);

But the println statement in the following do-while loop will execute once because the
do-while loop does not evaluate the expression x < 0 until the end of the iteration:

int x = 1;
do
 System.out.println(x);
while (x < 0);

Figure 4-6 illustrates the logic of the do-while loop.

You should use the do-while loop when you want to make sure the loop executes at least
once. For example, the program in Code Listing 4-6 averages a series of three test scores for
a student. After the average is displayed, it asks the user whether he or she wants to average
another set of test scores. The program repeats as long as the user enters Y for yes.

nOTe: The do-while loop must be terminated with a semicolon.

 4.4 The do-while Loop 205

Code Listing 4-6 (TestAverage1.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program demonstrates a user controlled loop.
 5 */
 6
 7 public class TestAverage1
 8 {
 9 public static void main(String[] args)
10 {
11 int score1, score2, score3; // Three test scores
12 double average; // Average test score
13 char repeat; // To hold 'y' or 'n'
14 String input; // To hold input
15
16 System.out.println("This program calculates the " +
17 "average of three test scores.");
18
19 // Create a Scanner object for keyboard input.
20 Scanner keyboard = new Scanner(System.in);
21
22 // Get as many sets of test scores as the user wants.
23 do
24 {
25 // Get the first test score in this set.
26 System.out.print("Enter score #1: ");
27 score1 = keyboard.nextInt();
28
29 // Get the second test score in this set.
30 System.out.print("Enter score #2: ");
31 score2 = keyboard.nextInt();
32

boolean

Figure 4-6 Logic of the do-while loop

206 Chapter 4 Loops and Files

33 // Get the third test score in this set.
34 System.out.print("Enter score #3: ");
35 score3 = keyboard.nextInt();
36
37 // Consume the remaining newline.
38 keyboard.nextLine();
39
40 // Calculate and print the average test score.
41 average = (score1 + score2 + score3) / 3.0;
42 System.out.println("The average is " + average);
43 System.out.println(); // Prints a blank line
44
45 // Does the user want to average another set?
46 System.out.println("Would you like to average " +
47 "another set of test scores?");
48 System.out.print("Enter Y for yes or N for no: ");
49 input = keyboard.nextLine(); // Read a line.
50 repeat = input.charAt(0); // Get the first char.
51
52 } while (repeat == 'Y' || repeat == 'y');
53 }
54 }

Program Output with example Input Shown in Bold

This program calculates the average of three test scores.
Enter score #1: 89 [enter]
Enter score #2: 90 [enter]
Enter score #3: 97 [enter]
The average is 92.0

Would you like to average another set of test scores?
Enter Y for yes or N for no: y [enter]
Enter score #1: 78 [enter]
Enter score #2: 65 [enter]
Enter score #3: 88 [enter]
The average is 77.0

Would you like to average another set of test scores?
Enter Y for yes or N for no: n [enter]

When this program was written, the programmer had no way of knowing the number of
times the loop would iterate. This is because the loop asks the user whether he or she wants
to repeat the process. This type of loop is known as a user controlled loop, because it allows
the user to decide the number of iterations.

 4.5 The for Loop 207

4.5 The for Loop

COnCePT: The for loop is ideal for performing a known number of iterations.

In general, there are two categories of loops: conditional loops and count-controlled loops.
A conditional loop executes as long as a particular condition exists. For example, an input
validation loop executes as long as the input value is invalid. When you write a conditional
loop, you have no way of knowing the number of times it will iterate.

Sometimes you do know the exact number of iterations that a loop must perform. A loop
that repeats a specific number of times is known as a count-controlled loop. For example, if
a loop asks the user to enter the sales amounts for each month in the year, it will iterate
12 times. In essence, the loop counts to 12 and asks the user to enter a sales amount each
time it makes a count.

A count-controlled loop must possess three elements:

 1. It must initialize a control variable to a starting value.
 2. It must test the control variable by comparing it to a maximum value. When the con-

trol variable reaches its maximum value, the loop terminates.
 3. It must update the control variable during each iteration. This is usually done by

incrementing the variable.

In Java, the for loop is ideal for writing count-controlled loops. It is specifically designed to
initialize, test, and update a loop control variable. Here is the format of the for loop when
used to repeat a single statement:

for (Initialization; Test; Update)
 Statement;

The format of the for loop when used to repeat a block is as follows:

for (Initialization; Test; Update)
{
 Statement;
 Statement;
 // Place as many statements here as necessary.
}

The first line of the for loop is known as the loop header. After the key word for, there are
three expressions inside the parentheses, separated by semicolons. (Notice there is not a
semicolon after the third expression.) The first expression is the initialization expression. It
is normally used to initialize a control variable to its starting value. This is the first action
performed by the loop, and it is done only once. The second expression is the test expres-
sion. This is a boolean expression that controls the execution of the loop. As long as this
expression is true, the body of the for loop will repeat. The for loop is a pretest loop, so it
evaluates the test expression before each iteration. The third expression is the update expres-
sion. It executes at the end of each iteration. Typically, this is a statement that increments
the loop’s control variable.

208 Chapter 4 Loops and Files

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)
 System.out.println("Hello");

In this loop, the initialization expression is count = 1, the test expression is count <= 5, and
the update expression is count++. The body of the loop has one statement, which is the
println statement. Figure 4-7 illustrates the sequence of events that takes place during the
loop’s execution. Notice that Steps 2 through 4 are repeated as long as the test expression
is true.

Figure 4-8 shows the loop’s logic in the form of a flowchart.

Notice how the control variable, count, is used to control the number of times that the loop
iterates. During the execution of the loop, this variable takes on the values 1 through 5, and
when the test expression count <= 5 is false, the loop terminates. Because this variable
keeps a count of the number of iterations, it is often called a counter variable.

Also notice that in this example the count variable is used only in the loop header, to control
the number of loop iterations. It is not used for any other purpose. It is also possible to use
the control variable within the body of the loop. For example, look at the following code:

Step 2.

Step 3

Figure 4-7 Sequence of events in the for loop

Figure 4-8 Logic of the for loop

 4.5 The for Loop 209

for (number = 1; number <= 10; number++)
 System.out.print(number + " ");

The control variable in this loop is number. In addition to controlling the number of itera-
tions, it is also used in the body of the loop. This loop will produce the following output:

1 2 3 4 5 6 7 8 9 10

As you can see, the loop displays the contents of the number variable during each iteration.
The program in Code Listing 4-7 shows another example of a for loop that uses its control
variable within the body of the loop. This program displays a table showing the numbers 1
through 10 and their squares.

Code Listing 4-7 (Squares.java)

 1 /**
 2 This program demonstrates the for loop.
 3 */
 4
 5 public class Squares
 6 {
 7 public static void main(String[] args)
 8 {
 9 int number; // Loop control variable
10
11 System.out.println("Number Number Squared");
12 System.out.println("------------------------");
13
14 for (number = 1; number <= 10; number++)
15 {
16 System.out.println(number + "\t\t" +
17 number * number);
18 }
19 }
20 }

Program Output
Number Number Squared

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

210 Chapter 4 Loops and Files

Figure 4-9 illustrates the sequence of events performed by this for loop.

Figure 4-10 shows the logic of the loop.

S

S

Figure 4-9 Sequence of events with the for loop in Code Listing 4-7

Figure 4-10 Logic of the for loop in Code Listing 4-7

The for Loop Is a Pretest Loop
Because the for loop tests its boolean expression before it performs an iteration, it is a
pretest loop. It is possible to write a for loop in such a way that it will never iterate. Here is
an example:

for (count = 11; count <= 10; count++)
 System.out.println("Hello");

Because the variable count is initialized to a value that makes the boolean expression false
from the beginning, this loop terminates as soon as it begins.

 4.5 The for Loop 211

Avoid Modifying the Control Variable
in the Body of the for Loop
Be careful not to place a statement that modifies the control variable in the body of the for
loop. All modifications of the control variable should take place in the update expression,
which is automatically executed at the end of each iteration. If a statement in the body of
the loop also modifies the control variable, the loop probably will not terminate when you
expect it to. The following loop, for example, increments x twice for each iteration:

for (x = 1; x <= 10; x++)
{
 System.out.println(x);
 x++; // Wrong!
}

Other Forms of the Update expression
You are not limited to using increment statements in the update expression. Here is a loop
that displays all the even numbers from 2 through 100 by adding 2 to its counter:

for (number = 2; number <= 100; number += 2)
 System.out.println(number);

And here is a loop that counts backward from 10 to 0:

for (number = 10; number >= 0; number--)
 System.out.println(number);

Declaring a Variable in the for Loop’s
Initialization expression
Not only may the control variable be initialized in the initialization expression, but also it
may be declared there. The following code shows an example. The following is a modified
version of the loop in Code Listing 4-7:

for (int number = 1; number <= 10; number++)
{
 System.out.println(number + "\t\t" +
 number * number);
}

In this loop, the number variable is both declared and initialized in the initialization expres-
sion. If the control variable is used only in the loop, it makes sense to declare it in the loop
header. This makes the variable’s purpose clearer.

When a variable is declared in the initialization expression of a for loop, the scope of the
variable is limited to the loop. This means you cannot access the variable in statements out-
side the loop. For example, the following program segment will not compile because the last
println statement cannot access the variable count:

212 Chapter 4 Loops and Files

for (int count = 1; count <= 10; count++)
 System.out.println(count);
System.out.println("count is now " + count); // ERROR!

Creating a User Controlled for Loop
Sometimes you want the user to determine the maximum value of the control variable in a
for loop, and therefore determine the number of times the loop iterates. For example, look
at the program in Code Listing 4-8. It is a modification of Code Listing 4-7. Instead of dis-
playing the numbers 1 through 10 and their squares, this program allows the user to enter
the maximum value to display.

Code Listing 4-8 (UserSquares.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program demonstrates a user controlled for loop.
 5 */
 6
 7 public class UserSquares
 8 {
 9 public static void main(String[] args)
10 {
11 int number; // Loop control variable
12 int maxValue; // Maximum value to display
13
14 System.out.println("I will display a table of " +
15 "numbers and their squares.");
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Get the maximum value to display.
21 System.out.print("How high should I go? ");
22 maxValue = keyboard.nextInt();
23
24 // Display the table.
25 System.out.println("Number Number Squared");
26 System.out.println("-----------------------");
27 for (number = 1; number <= maxValue; number++)
28 {
29 System.out.println(number + "\t\t" +
30 number * number);
31 }
32 }
33 }

 4.5 The for Loop 213

Program Output with example Input Shown in Bold

I will display a table of numbers and their squares.
How high should I go? 7 [enter]
Number Number Squared

1 1
2 4
3 9
4 16
5 25
6 36
7 49

In lines 21 and 22, which are before the loop, this program asks the user to enter the highest
value to display. This value is stored in the maxValue variable as follows:

System.out.print("How high should I go? ");
maxValue = keyboard.nextInt();

In line 27, the for loop’s test expression uses the value in the maxValue variable as the upper
limit for the control variable as follows:

for (number = 1; number <= maxValue; number++)

In this loop, the number variable takes on the values 1 through maxValue, and then the
loop terminates.

Using Multiple Statements in the Initialization
and Update expressions
It is possible to execute more than one statement in the initialization expression and the
update expression. When using multiple statements in either of these expressions, simply
separate the statements with commas. For example, look at the loop in the following code,
which has two statements in the initialization expression:

int x, y;
for (x = 1, y = 1; x <= 5; x++)
{
 System.out.println(x + " plus " + y +
 " equals " + (x + y));
}

This loop’s initialization expression is as follows:

x = 1, y = 1

This initializes two variables, x and y. The output produced by this loop is as follows:

1 plus 1 equals 2
2 plus 1 equals 3
3 plus 1 equals 4

214 Chapter 4 Loops and Files

4 plus 1 equals 5
5 plus 1 equals 6

We can further modify the loop to execute two statements in the update expression. Here
is an example:

int x, y;
for (x = 1, y = 1; x <= 5; x++, y++)
{
 System.out.println(x + " plus " + y +
 " equals " + (x + y));
}

The loop’s update expression is as follows:

x++, y++

This update expression increments both the x and y variables. The output produced by this
loop is as follows:

1 plus 1 equals 2
2 plus 2 equals 4
3 plus 3 equals 6
4 plus 4 equals 8
5 plus 5 equals 10

Connecting multiple statements with commas works well in the initialization and update
expressions, but don’t try to connect multiple boolean expressions this way in the test
expression. If you wish to combine multiple boolean expressions in the test expression, you
must use the && or || operators.

In the Spotlight:
Designing a Count-Controlled for Loop
Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in
the United States, and she is afraid she will get a speeding ticket because the car’s speedom-
eter indicates kilometers per hour (KPH). She has asked you to write a program that
displays a table of speeds in kilometers per hour with their values converted to miles per
hour (MPH). The formula for converting KPH to MPH is

MPH 5 KPH * 0.6214

In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers
per hour.

The table that your program displays should show speeds from 60 kilometers per hour
through 130 kilometers per hour, in increments of 10, along with their values converted to
miles per hour. The table should look something like this:

KPH MPH
60 37.3
70 43.5
80 49.7
etc.
130 80.8

After thinking about this table of values, you decide that you will write a for loop that uses
a counter variable to hold the KPH speeds. The counter’s starting value will be 60, its end-
ing value will be 130, and you will add 10 to the counter variable after each iteration. Inside
the loop you will use the counter variable to calculate a speed in MPH. Code Listing 4-9
shows the code.

Code Listing 4-9 (SpeedConverter.java)

 1 /**
 2 This program displays a table of speeds in
 3 kph converted to mph.
 4 */
 5
 6 public class SpeedConverter
 7 {
 8 public static void main(String[] args)
 9 {
10 // Constants
11 final int STARTING_KPH = 60; // Starting speed
12 final int MAX_KPH = 130; // Maximum speed
13 final int INCREMENT = 10; // Speed increment
14
15 // Variables
16 int kph; // To hold the speed in kph
17 double mph; // To hold the speed in mph
18
19 // Display the table headings.
20 System.out.println("KPH\t\tMPH");
21 System.out.println("-------------------");
22
23 // Display the speeds.
24 for (kph = STARTING_KPH; kph <= MAX_KPH; kph += INCREMENT)
25 {
26 // Calculate the mph.
27 mph = kph * 0.6214;
28
29 // Display the speeds in kph and mph.
30 System.out.printf("%d\t\t%.1f\n", kph, mph);
31 }
32 }
33 }

 4.5 The for Loop 215

216 Chapter 4 Loops and Files

Program Output

KPH MPH

60 37.3
70 43.5
80 49.7
90 55.9
100 62.1
110 68.4
120 74.6
130 80.8

Checkpoint

www.myprogramminglab.com

4.7 Name the three expressions that appear inside the parentheses in the for loop’s header.

4.8 You want to write a for loop that displays “I love to program” 50 times. Assume
that you will use a control variable named count.
a) What initialization expression will you use?
b) What test expression will you use?
c) What update expression will you use?
d) Write the loop.

4.9 What will the following program segments display?
a) for (int count = 0; count < 6; count++)

 System.out.println(count + count);

b) for (int value = -5; value < 5; value++)

 System.out.println(value);

c) int x;

for (x = 5; x <= 14; x += 3)
 System.out.println(x);
System.out.println(x);

4.10 Write a for loop that displays your name 10 times.

4.11 Write a for loop that displays all of the odd numbers, 1 through 49.

4.12 Write a for loop that displays every fifth number, zero through 100.

4.6 Running Totals and Sentinel Values

COnCePT: A running total is a sum of numbers that accumulates with each iteration
of a loop. The variable used to keep the running total is called an
accumulator. A sentinel is a value that signals when the end of a list of
values has been reached.

Many programming tasks require you to calculate the total of a series of numbers. For exam-
ple, suppose you are writing a program that calculates a business’s total sales for a week. The
program would read the sales for each day as input and calculate the total of those numbers.

http://www.myprogramminglab.com

 4.6 Running Totals and Sentinel Values 217

Programs that calculate the total of a series of numbers typically use two elements:

•	 A	loop	that	reads	each	number	in	the	series.
•	 A	variable	that	accumulates	the	total	of	the	numbers	as	they	are	read.

The variable used to accumulate the total of the numbers is called an accumulator. It is often
said that the loop keeps a running total because it accumulates the total as it reads each num-
ber in the series. Figure 4-11 shows the general logic of a loop that calculates a running total.

Yes
(True)

No
(False)

Set accumulator
to 0

Read the
next number

Add the number to
the accumulator

Is there
another number

to read?

Figure 4-11 Logic for calculating a running total

When the loop finishes, the accumulator will contain the total of the numbers that were
read by the loop. Notice that the first step in the flowchart is to set the accumulator variable
to 0. This is a critical step. Each time the loop reads a number, it adds it to the accumulator.
If the accumulator starts with any value other than 0, it will not contain the correct total
when the loop finishes.

Let’s look at a program that calculates a running total. Code Listing 4-10 calculates a com-
pany’s total sales over a period of time by taking daily sales figures as input and calculating
a running total of them as they are gathered. Figure 4-12 shows an example of interaction
with the program.

Code Listing 4-10 (TotalSales.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program calculates a running total.
 5 */
 6
 7 public class TotalSales
 8 {
 9 public static void main(String[] args)

218 Chapter 4 Loops and Files

10 {
11 int days; // The number of days
12 double sales; // A day's sales figure
13 double totalSales; // Accumulator
14 String input; // To hold the user's input
15
16 // Get the number of days.
17 input = JOptionPane.showInputDialog("For how many days " +
18 "do you have sales figures?");
19 days = Integer.parseInt(input);
20
21 // Set the accumulator to 0.
22 totalSales = 0.0;
23
24 // Get the sales figures and calculate a running total.
25 for (int count = 1; count <= days; count++)
26 {
27 input = JOptionPane.showInputDialog("Enter the sales " +
28 "for day " + count + ": ");
29 sales = Double.parseDouble(input);
30 totalSales += sales; // Add sales to totalSales.
31 }
32
33 // Display the total sales.
34 JOptionPane.showMessageDialog(null,
35 String.format("The total sales are $%,.2f", totalSales));
36
37 System.exit(0);
38 }
39 }

1

2

3

4

5

6

Figure 4-12 Interaction with the TotalSales program

 4.6 Running Totals and Sentinel Values 219

Let’s take a closer look at this program. In lines 17 and 18 the user is asked to enter the
number of days for which he or she has sales figures. The number is read from an input
dialog box and assigned to the days variable. Then, in line 22 the totalSales variable is
assigned 0.0. In general programming terms, the totalSales variable is referred to as an
accumulator. An accumulator is a variable that is initialized with a starting value, which is
usually zero, and then accumulates a sum of numbers by having the numbers added to it. As
you will see, it is critical that the accumulator is set to zero before values are added to it.

Next, the for loop in lines 25 through 31 executes. During each iteration of the loop, the
user enters the amount of sales for a specific day, which are assigned to the sales variable.
This is done in lines 27 through 29. Then, in line 30 the contents of sales is added to the
existing value in the totalSales variable. (Note that line 30 does not assign sales to
totalSales, but adds sales to totalSales. Put another way, this line increases totalSales
by the amount in sales.)

Because totalSales was initially assigned 0.0, after the first iteration of the loop, totalSales
will be set to the same value as sales. After each subsequent iteration, totalSales will be
increased by the amount in sales. After the loop has finished, totalSales will contain the
total of all the daily sales figures entered. Now it should be clear why we assigned 0.0 to
totalSales before the loop executed. If totalSales started at any other value, the total
would be incorrect.

Using a Sentinel Value
The program in Code Listing 4-10 requires the user to know in advance the number of days
for which he or she has sales figures. Sometimes the user has a very long list of input values,
and doesn’t know the exact number of items. In other cases, the user might be entering val-
ues from several lists and it is impractical to require that every item in every list is counted.

A technique that can be used in these situations is to ask the user to enter a sentinel value at
the end of the list. A sentinel value is a special value that cannot be mistaken as a member
of the list, and signals that there are no more values to be entered. When the user enters the
sentinel value, the loop terminates.

The program in Code Listing 4-11 shows an example. It calculates the total points earned
by a soccer team over a series of games. It allows the user to enter the series of game points,
and then −1 to signal the end of the list.

Code Listing 4-11 (SoccerPoints.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program calculates the total number of points a
 5 soccer team has earned over a series of games. The user
 6 enters a series of point values, then -1 when finished.
 7 */
 8
 9 public class SoccerPoints

220 Chapter 4 Loops and Files

10 {
11 public static void main(String[] args)
12 {
13 int points; // Game points
14 int totalPoints = 0; // Accumulator initialized to 0
15
16 // Create a Scanner object for keyboard input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Display general instructions.
20 System.out.println("Enter the number of points your team");
21 System.out.println("has earned for each game this season.");
22 System.out.println("Enter -1 when finished.");
23 System.out.println();
24
25 // Get the first number of points.
26 System.out.print("Enter game points or -1 to end: ");
27 points = keyboard.nextInt();
28
29 // Accumulate the points until -1 is entered.
30 while (points != -1)
31 {
32 // Add points to totalPoints.
33 totalPoints += points;
34
35 // Get the next number of points.
36 System.out.print("Enter game points or -1 to end: ");
37 points = keyboard.nextInt();
38 }
39
40 // Display the total number of points.
41 System.out.println("The total points are " +
42 totalPoints);
43 }
44 }

Program Output with example Input Shown in Bold

Enter the number of points your team
has earned for each game this season.
Enter -1 when finished.

Enter game points or -1 to end: 7 [enter]
Enter game points or -1 to end: 9 [enter]
Enter game points or -1 to end: 4 [enter]
Enter game points or -1 to end: 6 [enter]
Enter game points or -1 to end: 8 [enter]
Enter game points or -1 to end: –1 [enter]
The total points are 34

 4.7 Nested Loops 221

The value −1 was chosen for the sentinel because it is not possible for a team to score nega-
tive points. Notice that this program performs a priming read to get the first value. This
makes it possible for the loop to terminate immediately if the user enters −1 as the first
value. Also note that the sentinel value is not included in the running total.

Checkpoint

www.myprogramminglab.com

4.13 Write a for loop that repeats seven times, asking the user to enter a number. The
loop should also calculate the sum of the numbers entered.

4.14 In the following program segment, which variable is the loop control variable (also
known as the counter variable) and which is the accumulator?

int a, x = 0, y = 0;
while (x < 10)
{
 a = x * 2;
 y += a;
 x++;
}
System.out.println("The sum is " + y);

4.15 Why should you be careful when choosing a sentinel value?

4.7 nested Loops

COnCePT: A loop that is inside another loop is called a nested loop.

Nested loops are necessary when a task performs a repetitive operation and that task itself
must be repeated. A clock is a good example of something that works like a nested loop.
The program in Code Listing 4-12 uses nested loops to simulate a clock.

Code Listing 4-12 (Clock.java)

 1 /**
 2 This program uses nested loops to simulate a clock.
 3 */
 4
 5 public class Clock
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Simulate the clock.
10 for (int hours = 1; hours <= 12; hours++)
11 {
12 for (int minutes = 0; minutes <= 59; minutes++)
13 {
14 for (int seconds = 0; seconds <= 59; seconds++)

http://www.myprogramminglab.com

222 Chapter 4 Loops and Files

15 {
16 System.out.printf("%02d:%02d:%02d\n", hours, minutes, seconds);
17 }
18 }
19 }
20 }
21 }

Program Output

01:00:00
01:00:01
01:00:02
01:00:03

(The loop continues to count . . .)

12:59:57
12:59:58
12:59:59

The innermost loop (which begins at line 14) will iterate 60 times for each single iteration
of the middle loop. The middle loop (which begins at line 12) will iterate 60 times for each
single iteration of the outermost loop. When the outermost loop (which begins at line 10)
has iterated 12 times, the middle loop will have iterated 720 times and the innermost loop
will have iterated 43,200 times.

The simulated clock example brings up a few points about nested loops:

•	 An	inner	loop	goes	through	all	of	its	iterations	for	each	iteration	of	an	outer	loop.
•	 Inner	loops	complete	their	iterations	before	outer	loops	do.
•	 To	get	the	total	number	of	iterations	of	a	nested	loop,	multiply	the	number	of	itera-

tions of all the loops.

The program in Code Listing 4-13 shows another example. It is a program that a teacher
might use to get the average of each student’s test scores. In line 22 the user enters the num-
ber of students, and in line 26 the user enters the number of test scores per student. The for
loop that begins in line 29 iterates once for each student. The nested inner for loop, in lines
36 through 41, iterates once for each test score.

Code Listing 4-13 (TestAverage2.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates a nested loop.
 5 */
 6
 7 public class TestAverage2

 4.7 Nested Loops 223

 8 {
 9 public static void main(String [] args)
10 {
11 int numStudents, // Number of students
12 numTests, // Number of tests per student
13 score, // Test score
14 total; // Accumulator for test scores
15 double average; // Average test score
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Get the number of students.
21 System.out.print("How many students do you have? ");
22 numStudents = keyboard.nextInt();
23
24 // Get the number of test scores per student.
25 System.out.print("How many test scores per student? ");
26 numTests = keyboard.nextInt();
27
28 // Process all the students.
29 for (int student = 1; student <= numStudents; student++)
30 {
31 total = 0; // Set the accumulator to zero.
32
33 // Get the test scores for a student.
34 System.out.println("Student number " + student);
35 System.out.println("--------------------");
36 for (int test = 1; test <= numTests; test++)
37 {
38 System.out.print("Enter score " + test + ": ");
39 score = keyboard.nextInt();
40 total += score; // Add score to total.
41 }
42
43 // Calculate and display the average.
44 average = total / numTests;
45 System.out.printf("The average for student %d is %.1f.\n\n",
46 student, average);
47 }
48 }
49 }

Program Output with example Input Shown in Bold

How many students do you have? 3 [enter]
How many test scores per student? 3 [enter]

224 Chapter 4 Loops and Files

Student number 1

Enter score 1: 100 [enter]
Enter score 2: 95 [enter]
Enter score 3: 90 [enter]
The average for student number 1 is 95.0.

Student number 2

Enter score 1: 80 [enter]
Enter score 2: 81 [enter]
Enter score 3: 82 [enter]
The average for student number 2 is 81.0.

Student number 3

Enter score 1: 75 [enter]
Enter score 2: 85 [enter]
Enter score 3: 80 [enter]
The average for student number 3 is 80.0.

In the Spotlight:
Using Nested Loops to Print Patterns
One interesting way to learn about nested loops is to use them to display patterns on the
screen. Let’s look at a simple example. Suppose we want to print asterisks on the screen in
the following rectangular pattern:

If you think of this pattern as having rows and columns, you can see that it has eight rows,
and each row has six columns. The following code can be used to display one row of asterisks:

final int COLS = 6;
for (int col = 0; col < COLS; col++)
{
 System.out.print("*");
}

If we run this code in a program, it will produce the following output:

To complete the entire pattern, we need to execute this loop eight times. We can place the
loop inside another loop that iterates eight times, as shown here:

1 final int COLS = 6;
2 final int ROWS = 8;
3 for (int row = 0; row < ROWS; row++)
4 {
5 for (int col = 0; col < COLS; col++)
6 {
7 System.out.print("*");
8 }
9 System.out.println();
10 }

The outer loop iterates eight times. Each time it iterates, the inner loop iterates six times.
(Notice that in line 9, after each row has been printed, we call the System.out.println()
method. We have to do that to advance the screen cursor to the next line at the end of each
row. Without that statement, all the asterisks will be printed in one long row on the screen.)

We could easily write a program that prompts the user for the number of rows and columns,
as shown in Code Listing 4-14.

Code Listing 4-14 (RectangularPattern.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program displays a rectangular pattern
 5 of asterisks.
 6 */
 7
 8 public class RectangularPattern
 9 {
10 public static void main(String[] args)
11 {
12 int rows, cols;
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Get the number of rows and columns.
18 System.out.print("How many rows? ");
19 rows = keyboard.nextInt();
20 System.out.print("How many columns? ");
21 cols = keyboard.nextInt();
22
23 for (int r = 0; r < rows; r++)
24 {
25 for (int c = 0; c < cols; c++)

 4.7 Nested Loops 225

226 Chapter 4 Loops and Files

26 {
27 System.out.print("*");
28 }
29 System.out.println();
30 }
31 }
32 }

Program Output with example Input Shown in Bold

How many rows? 5 [enter]
How many columns? 10 [enter]

Let’s look at another example. Suppose you want to print asterisks in a pattern that looks
like the following triangle:

*
**

Once again, think of the pattern as being arranged in rows and columns. The pattern has a
total of eight rows. In the first row, there is one column. In the second row, there are two
columns. In the third row, there are three columns. This continues to the eighth row, which
has eight columns. Code Listing 4-15 shows the program that produces this pattern.

Code Listing 4-15 (TrianglePattern.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program displays a triangle pattern.
 5 */
 6
 7 public class TrianglePattern
 8 {
 9 public static void main(String[] args)
10 {
11 final int BASE_SIZE = 8;
12
13 for (int r = 0; r < BASE_SIZE; r++)

14 {
15 for (int c = 0; c < (r + 1); c++)
16 {
17 System.out.print("*");
18 }
19 System.out.println();
20 }
21 }
22 }

Program Output

*
**

The outer loop (which begins in line 13) will iterate eight times. As the loop iterates, the
variable r will be assigned the values 0 through 7.

For each iteration of the outer loop, the inner loop will iterate r + 1 times. So,

•	 During	the	outer	loop’s	first	iteration,	the	variable	r is assigned 0. The inner loop iter-
ates one time, printing one asterisk.

•	 During	the	outer	loop’s	second	iteration,	the	variable	r is assigned 1. The inner loop
iterates two times, printing two asterisks.

•	 During	the	outer	loop’s	third	iteration,	the	variable	r is assigned 2. The inner loop iter-
ates three times, printing three asterisks.

•	 And	so	forth.

Let’s look at another example. Suppose you want to display the following stair-step pattern:

#
 #
 #
 #
 #
 #

The pattern has six rows. In general, we can describe each row as having some number of
spaces followed by a # character. Here’s a row-by-row description:

First row: 0 spaces followed by a # character.
Second row: 1 space followed by a # character.
Third row: 2 spaces followed by a # character.
Fourth row: 3 spaces followed by a # character.
Fifth row: 4 spaces followed by a # character.
Sixth row: 5 spaces followed by a # character.

 4.7 Nested Loops 227

228 Chapter 4 Loops and Files

To display this pattern, we can write code containing a pair of nested loops that work in the
following manner:

•	 The	outer	loop	will	iterate	six	times.	Each	iteration	will	perform	the	following:
•	 The	inner	loop	will	display	the	correct	number	of	spaces,	side	by	side.
•	 Then,	a	# character will be displayed.

Code Listing 4-16 shows the Java code.

Code Listing 4-16 (StairStepPattern.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program displays a stairstep pattern.
 5 */
 6
 7 public class StairStepPattern
 8 {
 9 public static void main(String[] args)
10 {
11 final int NUM_STEPS = 6;
12
13 for (int r = 0; r < NUM_STEPS; r++)
14 {
15 for (int c = 0; c < r; c++)
16 {
17 System.out.print(" ");
18 }
19 System.out.println("#");
20 }
21 }
22 }

Program Output

#
 #
 #
 #
 #
 #

The outer loop (which begins in line 13) will iterate six times. As the loop iterates, the vari-
able r will be assigned the values 0 through 5.

For each iteration of the outer loop, the inner loop will iterate r times. So,

•	 During	the	outer	loop’s	first	iteration,	the	variable	r is assigned 0. The inner loop will
not execute at this time.

 4.9 Deciding Which Loop to Use 229

•	 During	the	outer	loop’s	second	iteration,	the	variable	r is assigned 1. The inner loop
iterates one time, printing one space.

•	 During	the	outer	loop’s	third	iteration,	the	variable	r is assigned 2. The inner loop iter-
ates two times, printing two spaces.

•	 And	so	forth.

4.8 The break and continue Statements (Optional)

COnCePT: The break statement causes a loop to terminate early. The continue
statement causes a loop to stop its current iteration and begin the next one.

The break statement, which was used with the switch statement in Chapter 3, can also be
placed inside a loop. When it is encountered, the loop stops and the program jumps to the
statement immediately following the loop. Although it is perfectly acceptable to use the
break statement in a switch statement, it is considered taboo to use it in a loop. This is
because it bypasses the normal condition that is required to terminate the loop, and it
makes code difficult to understand and debug. For this reason, you should avoid using the
break statement in a loop when possible.

The continue statement causes the current iteration of a loop to end immediately. When
continue is encountered, all the statements in the body of the loop that appear after it are
ignored, and the loop prepares for the next iteration. In a while loop, this means the program
jumps to the boolean expression at the top of the loop. As usual, if the expression is still true,
the next iteration begins. In a do-while loop, the program jumps to the boolean expression at the
bottom of the loop, which determines whether the next iteration will begin. In a for loop,
continue causes the update expression to be executed, and then the test expression is evaluated.

The continue statement should also be avoided. Like the break statement, it bypasses the
loop’s logic and makes the code difficult to understand and debug.

4.9 Deciding Which Loop to Use

COnCePT: Although most repetitive algorithms can be written with any of the three
types of loops, each works best in different situations.

Each of Java’s three loops is ideal to use in different situations. The following is a short
summary of when each loop should be used:

•	 The while loop. The while loop is a pretest loop. It is ideal in situations where you do
not want the loop to iterate if the condition is false from the beginning. It is also ideal
if you want to use a sentinel value to terminate the loop.

•	 The do-while loop. The do-while loop is a posttest loop. It is ideal in situations where
you always want the loop to iterate at least once.

•	 The for loop. The for loop is a pretest loop that has built-in expressions for initializ-
ing, testing, and updating. These expressions make it very convenient to use a loop
control variable as a counter. The for loop is ideal in situations where the exact num-
ber of iterations is known.

230 Chapter 4 Loops and Files

4.10 Introduction to File Input and Output

COnCePT: The Java API provides several classes that you can use for writing data to
a file and reading data from a file. To write data to a file, you can use the
PrintWriter class and, optionally, the FileWriter class. To read data
from a file, you can use the Scanner class and the File class.

The programs you have written so far require you to reenter data each time the program
runs. This is because the data stored in variables and objects in RAM disappears once the
program stops running. To retain data between the times it runs, a program must have a
way of saving the data.

Data may be saved in a file, which is usually stored on a computer’s disk. Once the data is
saved in a file, it will remain there after the program stops running. The data can then be
retrieved and used at a later time. In general, there are three steps that are taken when a file
is used by a program:

 1. The file must be opened. When the file is opened, a connection is created between the
file and the program.

 2. Data is then written to the file or read from the file.
 3. When the program is finished using the file, the file must be closed.

In this section we will discuss how to write Java programs that write data to files and read
data from files. The terms input file and output file are commonly used. An input file is a file
that a program reads data from. It is called an input file because the data stored in it serves
as input to the program. An output file is a file that a program writes data to. It is called an
output file because the program stores output in the file.

In general, there are two types of files: text and binary. A text file contains data that has been
encoded as text, using a scheme such as Unicode. Even if the file contains numbers, those num-
bers are stored in the file as a series of characters. As a result, the file may be opened and viewed
in a text editor such as Notepad. A binary file contains data that has not been converted to text.
As a consequence, you cannot view the contents of a binary file with a text editor. In this chapter,
we will discuss how to work with text files. Binary files are discussed in Chapter 11.

The Java API provides a number of classes that you will use to work with files. To use these
classes, you will place the following import statement near the top of your program:

import java.io.*;

Using the PrintWriter Class to Write Data to a File
To write data to a file you will create an instance of the PrintWriter class. The PrintWriter
class allows you to open a file for writing. It also allows you to write data to the file using
the same print and println methods that you have been using to display data on the
screen. You pass the name of the file that you wish to open, as a string, to the PrintWriter
class’s constructor. For example, the following statement creates a PrintWriter object and
passes the file name StudentData.txt to the constructor.

PrintWriter outputFile = new PrintWriter("StudentData.txt");

This statement will create an empty file named StudentData.txt and establish a connection
between it and the PrintWriter object that is referenced by outputFile. The file will be cre-
ated in the current directory or folder.

 4.10 Introduction to File Input and Output 231

You may also pass a reference to a String object as an argument to the PrintWriter con-
structor. For example, in the following code the user specifies the name of the file.

String filename;
filename = JOptionPane.showInputDialog("Enter the filename.");
PrintWriter outputFile = new PrintWriter(filename);

WARnIng! If the file that you are opening with the PrintWriter object already exists,
it will be erased and an empty file by the same name will be created.

Once you have created an instance of the PrintWriter class and opened a file, you can write
data to the file using the print and println methods. You already know how to use print
and println with System.out to display data on the screen. They are used the same way
with a PrintWriter object to write data to a file. For example, assuming that outputFile
references a PrintWriter object, the following statement writes the string "Jim" to the file:

outputFile.println("Jim");

When the program is finished writing data to the file, it must close the file. To close the file
use the PrintWriter class’s close method. Here is an example of the method’s use:

outputFile.close();

Your application should always close files when finished with them. This is because the
system creates one or more buffers when a file is opened. A buffer is a small “holding sec-
tion” of memory. When a program writes data to a file, that data is first written to the buf-
fer. When the buffer is filled, all the information stored there is written to the file. This
technique increases the system’s performance because writing data to memory is faster than
writing it to a disk. The close method writes any unsaved data remaining in the file buffer.

Once a file is closed, the connection between it and the PrintWriter object is removed. In
order to perform further operations on the file, it must be opened again.

More about the PrintWriter Class’s println Method

The PrintWriter class’s println method writes a line of data to a file. For example, assume
an application creates a file and writes three students’ first names and their test scores to the
file with the following code:

PrintWriter outputFile = new PrintWriter("StudentData.txt");
outputFile.println("Jim");
outputFile.println(95);
outputFile.println("Karen");
outputFile.println(98);
outputFile.println("Bob");
outputFile.println(82);
outputFile.close();

The println method writes data to the file and then writes a newline character immediately
after the data. You can visualize the data written to the file in the following manner:

Jim<newline>95<newline>Karen<newline>98<newline>Bob<newline>82<newline>

232 Chapter 4 Loops and Files

The newline characters are represented here as <newline>. You do not actually see the new-
line characters, but when the file is opened in a text editor such as Notepad, its contents will
appear as shown in Figure 4-13. As you can see from the figure, each newline character
causes the data that follows it to be displayed on a new line.

Figure 4-14 Contents of file displayed in Notepad

Figure 4-13 File contents displayed in Notepad

In addition to separating the contents of a file into lines, the newline character also serves as
a delimiter. A delimiter is an item that separates other items. When you write data to a file
using the println method, newline characters will separate the individual items of data.
Later you will see that the individual items of data in a file must be separated in order for
them to be read from the file.

The PrintWriter Class’s print Method

The print method is used to write an item of data to a file without writing the newline
character. For example, look at the following code:

 String name = "Jeffrey Smith";
 String phone = "555-7864";
 int idNumber = 47895;
 PrintWriter outputFile = new PrintWriter("PersonalData.txt");
 outputFile.print(name + " ");
 outputFile.print(phone + " ");
 outputFile.println(idNumber);
 outputFile.close();

This code uses the print method to write the contents of the name object to the file, followed
by a space (" "). Then it uses the print method to write the contents of the phone object to
the file, followed by a space. Then it uses the println method to write the contents of the
idNumber variable, followed by a newline character. Figure 4-14 shows the contents of the
file displayed in Notepad.

 4.10 Introduction to File Input and Output 233

Adding a throws Clause to the Method Header

When an unexpected event occurs in a Java program, it is said that the program throws an
exception. For now, you can think of an exception as a signal indicating that the program
cannot continue until the unexpected event has been dealt with. For example, suppose you
create a PrintWriter object and pass the name of a file to its constructor. The PrintWriter
object attempts to create the file, but unexpectedly, the disk is full and the file cannot be
created. Obviously the program cannot continue until this situation has been dealt with, so
an exception is thrown, which causes the program to suspend normal execution.

When an exception is thrown, the method that is executing must either deal with the excep-
tion or throw it again. If the main method throws an exception, the program halts and an
error message is displayed. Because PrintWriter objects are capable of throwing excep-
tions, we must either write code that deals with the possible exceptions, or allow our meth-
ods to rethrow the exceptions when they occur. In Chapter 12 you will learn all about
exceptions and how to respond to them, but for now, we will simply allow our methods to
rethrow any exceptions that might occur.

To allow a method to rethrow an exception that has not been dealt with, you simply write
a throws clause in the method header. The throws clause must indicate the type of exception
that might be thrown. The following is an example:

public static void main(String[] args) throws IOException

This header indicates that the main method is capable of throwing an exception of the
IOException type. This is the type of exception that PrintWriter objects are capable of
throwing. So, any method that uses PrintWriter objects and does not respond to their
exceptions must have this throws clause listed in its header.

In addition, any method that calls a method that uses a PrintWriter object should have a
throws IOException clause in its header. For example, suppose the main method does not
perform any file operations, but calls a method named buildFile that opens a file and
writes data to it. Both the buildFile and main methods should have a throws IOException
clause in their headers. Otherwise a compiler error will occur.

An example Program

Let’s look at an example program that writes data to a file. The program in Code Listing
4-17 writes the names of your friends to a file.

Code Listing 4-17 (FileWriteDemo.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2 import java.io.*; // Needed for File I/O classes
 3
 4 /**
 5 This program writes data to a file.
 6 */
 7
 8 public class FileWriteDemo
 9 {

234 Chapter 4 Loops and Files

10 public static void main(String[] args) throws IOException
11 {
12 String filename; // File name
13 String friendName; // Friend's name
14 int numFriends; // Number of friends
15
16 // Create a Scanner object for keyboard input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Get the number of friends.
20 System.out.print("How many friends do you have? ");
21 numFriends = keyboard.nextInt();
22
23 // Consume the remaining newline character.
24 keyboard.nextLine();
25
26 // Get the filename.
27 System.out.print("Enter the filename: ");
28 filename = keyboard.nextLine();
29
30 // Open the file.
31 PrintWriter outputFile = new PrintWriter(filename);
32
33 // Get data and write it to the file.
34 for (int i = 1; i <= numFriends; i++)
35 {
36 // Get the name of a friend.
37 System.out.print("Enter the name of friend " +
38 "number " + i + ": ");
39 friendName = keyboard.nextLine();
40
41 // Write the name to the file.
42 outputFile.println(friendName);
43 }
44
45 // Close the file.
46 outputFile.close();
47 System.out.println("Data written to the file.");
48 }
49 }

Program Output with example Input Shown in Bold

How many friends do you have? 5 [enter]
Enter the filename: MyFriends.txt [enter]
Enter the name of friend number 1: Joe [enter]
Enter the name of friend number 2: Rose [enter]
Enter the name of friend number 3: greg [enter]

 4.10 Introduction to File Input and Output 235

Enter the name of friend number 4: Kirk [enter]
Enter the name of friend number 5: Renee [enter]
Data written to the file.

The import statement in line 2 is necessary because this program uses the PrintWriter class.
In addition, the main method header, in line 10, has a throws IOException clause because
objects of the PrintWriter class can potentially throw an IOException.

This program asks the user to enter the number of friends he or she has (in lines 20 and 21),
then a name for the file that will be created (in lines 27 and 28). The filename variable ref-
erences the name of the file, and is used in the following statement, in line 31:

PrintWriter outputFile = new PrintWriter(filename);

This statement opens the file and creates a PrintWriter object that can be used to write
data to the file. The for loop in lines 34 through 43 performs an iteration for each friend
that the user has, each time asking for the name of a friend. The user’s input is referenced by
the friendName variable. Once the name is entered, it is written to the file with the following
statement, which appears in line 42:

outputFile.println(friendName);

After the loop finishes, the file is closed in line 46. After the program is executed with the
input shown in the example run, the file MyFriends.txt will be created. If we open the file in
Notepad, we will see its contents as shown in Figure 4-15.

Review

Before moving on, let’s review the basic steps necessary when writing a program that writes
data to a file:

 1. You need the import java.io.*; statement in the top section of your program.
 2. Because we have not yet learned how to respond to exceptions, any method that uses

a PrintWriter object must have a throws IOException clause in its header.
 3. You create a PrintWriter object and pass the name of the file as a string to the

constructor.

Figure 4-15 Contents of the file displayed in Notepad

236 Chapter 4 Loops and Files

 4. You use the PrintWriter class’s print and println methods to write data to the file.
 5. When finished writing to the file, you use the PrintWriter class’s close method to

close the file.

Appending Data to a File
When you pass the name of a file to the PrintWriter constructor, and the file already
exists, it will be erased and a new empty file with the same name will be created. Some-
times, however, you want to preserve an existing file and append new data to its current
contents. Appending to a file means writing new data to the end of the data that already
exists in the file.

To append data to an existing file, you first create an instance of the FileWriter class. You
pass two arguments to the FileWriter constructor: a string containing the name of the file,
and the boolean value true. Here is an example:

FileWriter fwriter = new FileWriter("MyFriends.txt", true);

This statement creates a FileWriter object and opens the file MyFriends.txt for writing.
Any data written to the file will be appended to the file’s existing contents. (If the file does
not exist, it will be created.)

You still need to create a PrintWriter object so you can use the print and println methods
to write data to the file. When you create the PrintWriter object, you pass a reference to the
FileWriter object as an argument to the PrintWriter constructor. For example, look at the
following code:

FileWriter fwriter = new FileWriter("MyFriends.txt", true);
PrintWriter outputFile = new PrintWriter(fwriter);

This creates a PrintWriter object that can be used to write data to the file MyFriends.txt.
Any data that is written to the file will be appended to the file’s existing contents. For
example, assume the file MyFriends.txt exists and contains the following data:

Joe
Rose
Greg
Kirk
Renee

The following code opens the file and appends additional data to its existing contents:

FileWriter fwriter = new FileWriter("MyFriends.txt", true);
PrintWriter outputFile = new PrintWriter(fwriter);
outputFile.println("Bill");
outputFile.println("Steven");
outputFile.println("Sharon");
outputFile.close();

After this code executes, the MyFriends.txt file will contain the following data:

 4.10 Introduction to File Input and Output 237

Joe
Rose
Greg
Kirk
Renee
Bill
Steven
Sharon

nOTe: The FileWriter class also throws an IOException if the file cannot be opened
for any reason.

TIP: Java allows you to substitute forward slashes for backslashes in a Windows path.
For example, the path "C:\\MyData\\Data.txt" could be written as "C:/MyData/Data.txt".
This eliminates the need to use double backslashes.

Specifying the File Location
When you open a file you may specify its path along with its filename. On a Windows
 computer, paths contain backslash characters. Remember that when a single backslash
character appears in a string literal, it marks the beginning of an escape sequence such as
"\n". Two backslash characters in a string literal represent a single backslash. So, when you
provide a path in a string literal, and the path contains backslash characters, you must use
two backslash characters in the place of each single backslash character.

For example, the path "E:\\Names.txt" specifies that Names.txt is in the root folder of
drive E:, and the path "C:\\MyData\\Data.txt" specifies that Data.txt is in the \MyData
folder on drive C:. In the following statement, the file Pricelist.txt is created in the root
folder of drive A:.

PrintWriter outputFile = new PrintWriter("A:\\PriceList.txt");

You only need to use double backslashes if the file’s path is in a string literal. If your program
asks the user to enter a path into a String object, which is then passed to the PrintWriter
or FileWriter constructor, the user does not have to enter double backslashes.

On a UNIX or Linux computer, you can provide a path without any modifications. Here is
an example:

PrintWriter outputFile = new PrintWriter("/home/rharrison/names.txt");

Reading Data from a File
In Chapter 2 you learned how to use the Scanner class to read input from the keyboard. To
read keyboard input, recall that we create a Scanner object, passing System.in to the
Scanner class constructor. Here is an example:

Scanner keyboard = new Scanner(System.in);

238 Chapter 4 Loops and Files

Recall that the System.in object represents the keyboard. Passing System.in as an argu-
ment to the Scanner constructor specifies that the keyboard is the Scanner object’s source
of input.

You can also use the Scanner class to read input from a file. Instead of passing System.in to
the Scanner class constructor, you pass a reference to a File object. Here is an example:

File myFile = new File("Customers.txt");
Scanner inputFile = new Scanner(myFile);

The first statement creates an instance of the File class. The File class is in the Java API,
and is used to represent a file. Notice that we have passed the string "Customers.txt" to the
constructor. This creates a File object that represents the file Customers.txt.

In the second statement we pass a reference to this File object as an argument to the
Scanner class constructor. This creates a Scanner object that uses the file Customers.txt as
its source of input. You can then use the same Scanner class methods that you learned
about in Chapter 2 to read items from the file. (See Table 2-17 for a list of commonly used
methods.)

When you are finished reading from the file, you use the Scanner class’s close method to
close the file. For example, assuming the variable inputFile references a Scanner object, the
following statement closes the file that is the object’s source of input:

inputFile.close();

Reading Lines from a File with the nextLine Method
The Scanner class’s nextLine method reads a line of input, and returns the line as a String.
The program in Code Listing 4-18 demonstrates how the nextLine method can be used to
read a line from a file. This program asks the user to enter a filename. It then displays the
first line in the file on the screen.

Code Listing 4-18 (ReadFirstLine.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2 import java.io.*; // Needed for File and IOException
 3
 4 /**
 5 This program reads the first line from a file.
 6 */
 7
 8 public class ReadFirstLine
 9 {
10 public static void main(String[] args) throws IOException
11 {
12 // Create a Scanner object for keyboard input.
13 Scanner keyboard = new Scanner(System.in);
14

 4.10 Introduction to File Input and Output 239

15 // Get the file name.
16 System.out.print("Enter the name of a file: ");
17 String filename = keyboard.nextLine();
18
19 // Open the file.
20 File file = new File(filename);
21 Scanner inputFile = new Scanner(file);
22
23 // Read the first line from the file.
24 String line = inputFile.nextLine();
25
26 // Display the line.
27 System.out.println("The first line in the file is:");
28 System.out.println(line);
29
30 // Close the file.
31 inputFile.close();
32 }
33 }

Program Output with example Input Shown in Bold

Enter the name of a file: MyFriends.txt [enter]
The first line in the file is:
Joe

This program gets the name of a file from the user in line 17. A File object is created in line
20 to represent the file, and a Scanner object is created in line 21 to read data from the file.
Line 24 reads a line from the file. After this statement executes, the line variable references
a String object holding the line that was read from the file. The line is displayed on the
screen in line 28, and the file is closed in line 31.

It’s worth pointing out that this program creates two separate Scanner objects. The Scanner
object that is created in line 13 reads data from the keyboard, and the Scanner object that is
created in line 21 reads data from a file.

When a file is opened for reading, a special value known as a read position is internally
maintained for that file. A file’s read position marks the location of the next item that will
be read from the file. When a file is opened, its read position is set to the first item in the file.
When the item is read, the read position is advanced to the next item in the file. As subse-
quent items are read, the internal read position advances through the file. For example,
consider the file Quotation.txt, shown in Figure 4-16. As you can see from the figure, the
file has three lines.

You can visualize that the data is stored in the file in the following manner:

Imagination is more<newline>important than knowledge.<newline>
Albert Einstein<newline>

240 Chapter 4 Loops and Files

Suppose a program opens the file with the following code:

File file = new File("Quotation.txt");
Scanner inputFile = new Scanner(file);

When this code opens the file, its read position is at the beginning of the first line, as illus-
trated in Figure 4-17.

Now, suppose the program uses the following statement to read a line from the file:

String str = inputFile.nextLine();

This statement will read a line from the file, beginning at the current read position. After
the statement executes, the object referenced by str will contain the string “Imagination
is more”. The file’s read position will be advanced to the next line, as illustrated in
Figure 4-18.

If the nextLine method is called again, the second line will be read from the file and the
file’s read position will be advanced to the third line. After all the lines have been read, the
read position will be at the end of the file.

Figure 4-16 File with three lines

Figure 4-17 Initial read position

Figure 4-18 Read position after first line is read

 4.10 Introduction to File Input and Output 241

Adding a throws Clause to the Method Header
When you pass a File object reference to the Scanner class constructor, the constructor will
throw an exception of the IOException type if the specified file is not found. So, you will
need to write a throws IOException clause in the header of any method that passes a File
object reference to the Scanner class constructor.

Detecting the end of a File

Quite often a program must read the contents of a file without knowing the number of
items that are stored in the file. For example, the MyFriends.txt file that was created by the
program in Code Listing 4-17 can have any number of names stored in it. This is because
the program asks the user for the number of friends that he or she has. If the user enters 5
for the number of friends, the program creates a file with five names in it. If the user enters
100, the program creates a file with 100 names in it.

The Scanner class has a method named hasNext that can be used to determine whether the
file has more data that can be read. You call the hasNext method before you call any other
methods to read from the file. If there is more data that can be read from the file, the
hasNext method returns true. If the end of the file has been reached and there is no more
data to read, the hasNext method returns false.

Code Listing 4-19 shows an example. The program reads the file containing the names of
your friends, which was created by the program in Code Listing 4-17.

Code Listing 4-19 (FileReadDemo.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2 import java.io.*; // Needed for the File and IOException
 3
 4 /**
 5 This program reads data from a file.
 6 */
 7
 8 public class FileReadDemo
 9 {
10 public static void main(String[] args) throws IOException
11 {
12 // Create a Scanner object for keyboard input.
13 Scanner keyboard = new Scanner(System.in);
14
15 // Get the filename.
16 System.out.print("Enter the filename: ");
17 String filename = keyboard.nextLine();

nOTe: The string that is returned from the nextLine method will not contain the
newline character.

242 Chapter 4 Loops and Files

18
19 // Open the file.
20 File file = new File(filename);
21 Scanner inputFile = new Scanner(file);
22
23 // Read lines from the file until no more are left.
24 while (inputFile.hasNext())
25 {
26 // Read the next name.
27 String friendName = inputFile.nextLine();
28
29 // Display the last name read.
30 System.out.println(friendName);
31 }
32
33 // Close the file.
34 inputFile.close();
35 }
36 }

Program Output with example Input Shown in Bold

Enter the filename: MyFriends.txt [enter]
Joe
Rose
Greg
Kirk
Renee

The file is opened and a Scanner object to read it is created in line 21. The loop in lines 24
through 31 reads all of the lines from the file and displays them. In line 24 the loop calls the
Scanner object’s hasNext method. If the method returns true, then the file has more data to
read. In that case, the next line is read from the file in line 27, and is displayed in line 30.
The loop repeats until the hasNext method returns false in line 24. Figure 4-19 shows the
logic of reading a file until the end is reached.

Reading Primitive Values from a File

Recall from Chapter 2 that the Scanner class provides methods for reading primitive values.
These methods are named nextByte, nextDouble, nextFloat, nextInt, nextLine, nextLong,
and nextShort. Table 2-17 gives more information on each of these methods, which can be
used to read primitive values from a file.

The program in Code Listing 4-20 demonstrates how the nextDouble method can be used
to read floating-point values from a file. The program reads the contents of a file named
Numbers.txt. The contents of the Numbers.txt file are shown in Figure 4-20. As you can
see, the file contains a series of floating-point numbers. The program reads all of the
 numbers from the file and calculates their total.

 4.10 Introduction to File Input and Output 243

Code Listing 4-20 (FileSum.java)

 1 import java.util.Scanner;
 2 import java.io.*;
 3
 4 /**
 5 This program reads a series of numbers from a file and
 6 accumulates their sum.
 7 */
 8
 9 public class FileSum
10 {
11 public static void main(String[] args) throws IOException
12 {

Process
the item.

Yes

No

Did
hasNext

return
true?

Read an item
from the file.

Open the file
with a Scanner

object.

Close the file.

Figure 4-19 Logic of reading a file until the end is reached

Figure 4-20 Contents of Numbers.txt

244 Chapter 4 Loops and Files

13 double sum = 0.0; // Accumulator, initialized to 0
14
15 // Open the file for reading.
16 File file = new File("Numbers.txt");
17 Scanner inputFile = new Scanner(file);
18
19 // Read all of the values from the file
20 // and calculate their total.
21 while (inputFile.hasNext())
22 {
23 // Read a value from the file.
24 double number = inputFile.nextDouble();
25
26 // Add the number to sum.
27 sum = sum + number;
28 }
29
30 // Close the file.
31 inputFile.close();
32
33 // Display the sum of the numbers.
34 System.out.println("The sum of the numbers in " +
35 "Numbers.txt is " + sum);
36 }
37 }

Program Output

The sum of the numbers in Numbers.txt is 41.4

Review

Let’s quickly review the steps necessary when writing a program that reads data from a file:

 1. You will need the import java.util.Scanner; statement in the top section of your
program, so you can use the Scanner class. You will also need the import java.io.*;
statement in the top section of your program. This is required by the File class.

 2. Because we have not yet learned how to respond to exceptions, any method that uses
a Scanner object to open a file must have a throws IOException clause in its header.

 3. You create a File object and pass the name of the file as a string to the constructor.
 4. You create a Scanner object and pass a reference to the File object as an argument to

the constructor.
 5. You use the Scanner class’s nextLine method to read a line from the file. The method

returns the line of data as a string. To read primitive values, use methods such as
nextInt, nextDouble, and so forth.

 4.10 Introduction to File Input and Output 245

 6. Call the Scanner class’s hasNext method to determine whether there is more data to
read from the file. If the method returns true, then there is more data to read. If the
method returns false, you have reached the end of the file.

 7. When finished writing to the file, you use the Scanner class’s close method to close
the file.

Checking for a File’s existence
It’s usually a good idea to make sure that a file exists before you try to open it for input. If
you attempt to open a file for input, and the file does not exist, the program will throw an
exception and halt. For example, the program you saw in Code Listing 4-20 will throw an
exception at line 17 if the file Numbers.txt does not exist. Here is an example of the error
message that will be displayed when this happens:

Exception in thread "main" java.io.FileNotFoundException: Numbers.txt (The
system cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:106)
 at java.util.Scanner.<init>(Scanner.java:636)
 at FileSum.main(FileSum.java:17)

Rather than allowing the exception to be thrown and permitting this cryptic error message
to be displayed, your program can check for the file’s existence before it attempts to open
the file. If the file does not exist, the program can display a more user-friendly error message
and gracefully shut down.

After you create a File object representing the file that you want to open, you can use
the File class’s exists method to determine whether the file exists. The method returns
true if the file exists, or false if the file does not exist. Code Listing 4-21 shows how to
use the method. This is a modification of the FileSum program in Code Listing 4-20. This
version of the program checks for the existence of the file Numbers.txt before it attempts
to open it.

Code Listing 4-21 (FileSum2.java)

 1 import java.util.Scanner;
 2 import java.io.*;
 3
 4 /**
 5 This version of the program confirms that the
 6 Numbers.txt file exists before opening it.
 7 */
 8
 9 public class FileSum2
10 {
11 public static void main(String[] args) throws IOException
12 {
13 double sum = 0.0; // Accumulator, initialized to 0

246 Chapter 4 Loops and Files

14
15 // Make sure the file exists.
16 File file = new File("Numbers.txt");
17 if (!file.exists())
18 {
19 System.out.println("The file Numbers.txt is not found.");
20 System.exit(0);
21 }
22
23 // Open the file for reading.
24 Scanner inputFile = new Scanner(file);
25
26 // Read all of the values from the file
27 // and calculate their total.
28 while (inputFile.hasNext())
29 {
30 // Read a value from the file.
31 double number = inputFile.nextDouble();
32
33 // Add the number to sum.
34 sum = sum + number;
35 }
36
37 // Close the file.
38 inputFile.close();
39
40 // Display the sum of the numbers.
41 System.out.println("The sum of the numbers in " +
42 "Numbers.txt is " + sum);
43 }
44 }

Program Output (Assuming numbers.txt Does not exist)

The file Numbers.txt is not found.

In line 16 the program creates a File object to represent the Numbers.txt file. In line 17,
the if statement calls the file.exists() method. Notice the use of the ! operator. If the
method returns false, indicating that the file does not exist, the code in lines 19 and 20
executes. Line 19 displays an error message, and line 20 calls the System.exit(0) method
to shut the program down.

The previous example shows you how to make sure that a file exists before trying to open
it for input. But, when you are opening a file for output, sometimes you want to make sure
the file does not exist. When you use a PrintWriter object to open a file, the file will be
erased if it already exists. If you do not want to erase the existing file, you have to check for
its existence before creating the PrintWriter object. Code Listing 4-22 shows you how to
use the File class’s exists method in this type of situation. This is a modification of the
program you saw in Code Listing 4-17.

 4.10 Introduction to File Input and Output 247

Code Listing 4-22 (FileWriteDemo2.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2 import java.io.*; // Needed for File and IOException
 3
 4 /**
 5 This program writes data to a file. It makes sure the
 6 specified file does not exist before opening it.
 7 */
 8
 9 public class FileWriteDemo2
10 {
11 public static void main(String[] args) throws IOException
12 {
13 String filename; // Filename
14 String friendName; // Friend's name
15 int numFriends; // Number of friends
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Get the number of friends.
21 System.out.print("How many friends do you have? ");
22 numFriends = keyboard.nextInt();
23
24 // Consume the remaining newline character.
25 keyboard.nextLine();
26
27 // Get the filename.
28 System.out.print("Enter the filename: ");
29 filename = keyboard.nextLine();
30
31 // Make sure the file does not exist.
32 File file = new File(filename);
33 if (file.exists())
34 {
35 System.out.println("The file " + filename +
36 " already exists.");
37 System.exit(0);
38 }
39
40 // Open the file.
41 PrintWriter outputFile = new PrintWriter(file);
42
43 // Get data and write it to the file.
44 for (int i = 1; i <= numFriends; i++)
45 {
46 // Get the name of a friend.

248 Chapter 4 Loops and Files

47 System.out.print("Enter the name of friend " +
48 "number " + i + ": ");
49 friendName = keyboard.nextLine();
50
51 // Write the name to the file.
52 outputFile.println(friendName);
53 }
54
55 // Close the file.
56 outputFile.close();
57 System.out.println("Data written to the file.");
58 }
59 }

Program Output with example Input Shown in Bold

How many friends do you have? 2 [enter]
Enter the filename: MyFriends.txt [enter]
The file MyFriends.txt already exists.

Line 32 creates a File object representing the file. The if statement in line 33 calls the
file.exists() method. If the method returns true, then the file exists. In this case the code
in lines 35 through 37 executes. This code displays an error message and shuts the program
down. If the file does not exist, the rest of the program executes.

Notice that in line 41 we pass a reference to the File object to the PrintWriter constructor.
In previous programs that created an instance PrintWriter, we passed a filename to the con-
structor. If you have a reference to a File object that represents the file you wish to open, as
we do in this program, you have the option of passing it to the PrintWriter constructor.

Checkpoint

www.myprogramminglab.com

4.16 What is the difference between an input file and an output file?

4.17 What import statement will you need in a program that performs file operations?

4.18 What class do you use to write data to a file?

4.19 Write code that does the following: opens a file named MyName.txt, writes your
first name to the file, and then closes the file.

4.20 What classes do you use to read data from a file?

4.21 Write code that does the following: opens a file named MyName.txt, reads the first
line from the file and displays it, and then closes the file.

4.22 You are opening an existing file for output. How do you open the file without
 erasing it, and at the same time make sure that new data that is written to the file
is appended to the end of the file’s existing data?

4.23 What clause must you write in the header of a method that performs a file operation?

http://www.myprogramminglab.com

 4.11 Generating Random Numbers with the Random Class 249

4.11 generating Random numbers with the
Random Class

COnCePT: Random numbers are used in a variety of applications. Java provides the
Random class that you can use to generate random numbers.

Random numbers are useful for lots of different programming tasks. The following are just
a few examples.

•	 Random	numbers	are	commonly	used	in	games.	For	example,	computer	games	that	
let the player roll dice use random numbers to represent the values of the dice. Pro-
grams that show cards being drawn from a shuffled deck use random numbers to
represent the face values of the cards.

•	 Random	numbers	are	useful	in	simulation	programs.	In	some	simulations,	the	com-
puter must randomly decide how a person, animal, insect, or other living being will
behave. Formulas can be constructed in which a random number is used to determine
various actions and events that take place in the program.

•	 Random	numbers	are	useful	in	statistical	programs	that	must	randomly	select	data	
for analysis.

•	 Random	numbers	are	commonly	used	in	computer	security	to	encrypt	sensitive	data.

The Java API provides a class named Random that you can use to generate random numbers.
The class is part of the java.util package, so any program that uses it will need an import
statement such as:

import java.util.Random;

You create an object from the Random class with a statement such as this:

Random randomNumbers = new Random();

This statement does the following:

•	 It	declares	a	variable	named	randomNumbers. The data type is the Random class.
•	 The	expression	new Random() creates an instance of the Random class.
•	 The	equal	sign	assigns	the	address	of	the	Random class to the randomNumbers variable.

After this statement executes, the randomNumbers variable will reference a Random object.
Once you have created a Random object, you can call its nextInt method to get a random
integer number. The following code shows an example:

// Declare an int variable.
int number;

// Create a Random object.
Random randomNumbers = new Random();

// Get a random integer and assign it to number.
number = randomNumbers.nextInt();

After this code executes, the number variable will contain a random integer. If you call the
nextInt method with no arguments, as shown in this example, the returned integer is

250 Chapter 4 Loops and Files

somewhere between −2,147,483,648 and +2,147,483,647. Alternatively, you can pass an
argument that specifies an upper limit to the generated number’s range. In the following
statement, the value assigned to number is somewhere between 0 and 99:

number = randomNumbers.nextInt(100);

You can add or subtract a value to shift the numeric range upward or downward. In the
following statement, we call the nextInt method to get a random number in the range of 0
through 9, and then we add 1 to it. So, the number assigned to number will be somewhere in
the range of 1 through 10:

number = randomNumbers.nextInt(10) + 1;

The following statement shows another example. It assigns a random integer to number
between −50 and +49:

number = randomNumbers.nextInt(100) - 50

The Random class has other methods for generating random numbers, and Table 4-1
summarizes several of them.

Table 4-1 Some of the Random class’s methods

Method Description

nextDouble() Returns the next random number as a double. The number will be
within the range of 0.0 through 1.0.

nextFloat() Returns the next random number as a float. The number will be
within the range of 0.0 through 1.0.

nextInt() Returns the next random number as an int. The number will be within
the range of an int, which is −2,147,483,648 to +2,147,483,648.

nextInt(int n) This method accepts an integer argument, n. It returns a random num-
ber as an int. The number will be within the range of 0 through n.

nextLong() Returns the next random number as a long. The number will be within
the range of a long, which is −9,223,372,036,854,775,808 to
+9,223,372,036,854,775,808.

The program in Code Listing 4-23 demonstrates using the Random class.

Code Listing 4-23 (MathTutor.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2 import java.util.Random; // Needed for the Random class
 3
 4 /**
 5 This program demonstrates the Random class.
 6 */
 7
 8 public class MathTutor

 4.11 Generating Random Numbers with the Random Class 251

 9 {
10 public static void main(String[] args)
11 {
12 int number1; // A number
13 int number2; // Another number
14 int sum; // The sum of the numbers
15 int userAnswer; // The user's answer
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Create a Random class object.
21 Random randomNumbers = new Random();
22
23 // Get two random numbers.
24 number1 = randomNumbers.nextInt(100);
25 number2 = randomNumbers.nextInt(100);
26
27 // Display an addition problem.
28 System.out.println("What is the answer to the " +
29 "following problem?");
30 System.out.print(number1 + " + " +
31 number2 + " = ? ");
32
33 // Calculate the answer.
34 sum = number1 + number2;
35
36 // Get the user's answer.
37 userAnswer = keyboard.nextInt();
38
39 // Display the user's results.
40 if (userAnswer == sum)
41 System.out.println("Correct!");
42 else
43 {
44 System.out.println("Sorry, wrong answer. " +
45 "The correct answer is " +
46 sum);
47 }
48 }
49 }

Program Output with example Input Shown in Bold

What is the answer to the following problem?
52 + 19 = ? 71 [enter]
Correct!

252 Chapter 4 Loops and Files

Program Output with example Input Shown in Bold

What is the answer to the following problem?
27 + 73 = ? 101 [enter]
Sorry, wrong answer. The correct answer is 100

In the Spotlight:
Using Random Numbers
Dr. Kimura teaches an introductory statistics class, and has asked you to write a program
that he can use in class to simulate the rolling of dice. The program should randomly gener-
ate two numbers in the range of 1 through 6 and display them. In your interview with
Dr. Kimura, you learn that he would like to use the program to simulate several rolls of the
dice, one after the other. Here is the pseudocode for the program:

While the user wants to roll the dice:
Display a random number in the range of 1 through 6
Display another random number in the range of 1 through 6
Ask the user if he or she wants to roll the dice again

You will write a while loop that simulates one roll of the dice, and then asks the user
whether another roll should be performed. As long as the user answers “y” for yes, the loop
will repeat. Code Listing 4-24 shows the program.

Code Listing 4-24 (RollDice.java)

 1 import java.util.Scanner;
 2 import java.util.Random;
 3
 4 /**
 5 This program simulates the rolling of dice.
 6 */
 7
 8 public class RollDice
 9 {
10 public static void main(String[] args)
11 {
12 String again = "y"; // To control the loop
13 int die1; // To hold the value of die #1
14 int die2; // to hold the value of die #2
15
16 // Create a Scanner object to read keyboard input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Create a Random object to generate random numbers.
20 Random rand = new Random();
21
22 // Simulate rolling the dice.

23 while (again.equalsIgnoreCase("y"))
24 {
25 System.out.println("Rolling the dice ...");
26 die1 = rand.nextInt(6) + 1;
27 die2 = rand.nextInt(6) + 1;
28 System.out.println("Their values are:");
29 System.out.println(die1 + " " + die2);
30
31 System.out.print("Roll them again (y = yes)? ");
32 again = keyboard.nextLine();
33 }
34 }
35 }

Program Output with example Input Shown in Bold

Rolling the dice ...
Their values are:
4 3
Roll them again (y = yes)? y [enter]
Rolling the dice ...
Their values are:
2 6
Roll them again (y = yes)? y [enter]
Rolling the dice ...
Their values are:
1 5
Roll them again (y = yes)? n [enter]

In the Spotlight:
Using Random Numbers to Represent Other Values
Dr. Kimura was so happy with the dice rolling simulator that you wrote for him, he has
asked you to write one more program. He would like a program that he can use to simulate
ten coin tosses, one after the other. Each time the program simulates a coin toss, it should
randomly display either “Heads” or “Tails”.

You decide that you can simulate the tossing of a coin by randomly generating a number in
the range of 0 through 1. You will write an if statement that displays “Tails” if the random
number is 0, or “Heads” otherwise. Here is the pseudocode:

Repeat 10 times:
If a random number in the range of 0 through 1 equals 0, then:
 Display “Tails”
Else:
 Display “Heads”

Because the program should simulate 10 tosses of a coin, you decide to use a for loop. The
program is shown in Code Listing 4-25.

 4.11 Generating Random Numbers with the Random Class 253

254 Chapter 4 Loops and Files

Code Listing 4-25 (CoinToss.java)

 1 import java.util.Random;
 2
 3 /**
 4 This program simulates 10 tosses of a coin.
 5 */
 6
 7 public class CoinToss
 8 {
 9 public static void main(String[] args)
10 {
11 // Create a Random object to generate random numbers.
12 Random rand = new Random();
13
14 // Simulate the coin tosses.
15 for (int count = 0; count < 10; count++)
16 {
17 if (rand.nextInt(2) == 0)
18 System.out.println("Tails");
19 else
20 System.out.println("Heads");
21 }
22 }
23 }

Program Output

Tails
Tails
Heads
Tails
Heads
Heads
Heads
Tails
Heads
Tails

Checkpoint

www.myprogramminglab.com

4.24 Assume x is an int variable, and rand references a Random object. What does the
 following statement do?

x = rand.nextInt();

http://www.myprogramminglab.com

 4.12 Common Errors to Avoid 255

4.25 Assume x is an int variable, and rand references a Random object. What does the
 following statement do?

x = rand.nextInt(100);

4.26 Assume x is an int variable, and rand references a Random object. What does the
 following statement do?

x = rand.nextInt(9) + 1;

4.27 Assume x is a double variable, and rand references a Random object. What does the
following statement do?

x = rand.nextDouble();

4.12 Common errors to Avoid
The following list describes several errors that are commonly committed when learning this
chapter’s topics.

•	 Using the increment or decrement operator in the wrong mode. When the increment
or decrement operator is placed in front of (to the left of) its operand, it is used in
prefix mode. When either of these operators is placed behind (to the right of) its oper-
and, it is used in postfix mode.

•	 Forgetting to enclose the boolean expression in a while loop or a do-while loop inside
parentheses.

•	 Placing a semicolon at the end of a while or for loop’s header. When you write a semi-
colon at the end of a while or for loop’s header, Java assumes that the conditionally
executed statement is a null or empty statement. This usually results in an infinite loop.

•	 Forgetting to write the semicolon at the end of the do-while loop. The do-while loop
must be terminated with a semicolon.

•	 Forgetting to enclose multiple statements in the body of a loop in braces. Normally a
loop conditionally executes only one statement. To conditionally execute more than
one statement, you must place the statements in braces.

•	 Using commas instead of semicolons to separate the initialization, test, and update
expressions in a for loop.

•	 Forgetting to write code in the body of a while or do-while loop that modifies the
loop control variable. If a while or do-while loop’s boolean expression never becomes
false, the loop will repeat indefinitely. You must have code in the body of the loop
that modifies the loop control variable so that the boolean expression will at some
point become false.

•	 Using a sentinel value that can also be a valid data value. Remember, a sentinel is a
special value that cannot be mistaken as a member of a list of data items and signals
that there are no more data items from the list to be processed. If you choose as a
sentinel a value that might also appear in the list, the loop will prematurely terminate
if it encounters the value in the list.

•	 Forgetting to initialize an accumulator to zero. In order for an accumulator to keep a
correct running total, it must be initialized to zero before any values are added to it.

256 Chapter 4 Loops and Files

Review Questions and exercises
Multiple Choice and True/False

 1. What will the println statement in the following program segment display?

int x = 5;
System.out.println(x++);

a. 5
b. 6
c. 0
d. None of these

 2. What will the println statement in the following program segment display?

int x = 5;
System.out.println(++x);

a. 5
b. 6
c. 0
d. None of these

 3. In the expression number++, the ++ operator is in what mode?
a. prefix
b. pretest
c. postfix
d. posttest

 4. What is each repetition of a loop known as?
a. cycle
b. revolution
c. orbit
d. iteration

 5. This is a variable that controls the number of iterations performed by a loop.
a. loop control variable
b. accumulator
c. iteration register variable
d. repetition meter

 6. The while loop is this type of loop.
a. pretest
b. posttest
c. prefix
d. postfix

 7. The do-while loop is this type of loop.
a. pretest
b. posttest
c. prefix
d. postfix

 Review Questions and Exercises 257

 8. The for loop is this type of loop.
a. pretest
b. posttest
c. prefix
d. postfix

 9. This type of loop has no way of ending and repeats until the program is interrupted.
a. indeterminate
b. interminable
c. infinite
d. timeless

 10. This type of loop always executes at least once.
a. while
b. do-while
c. for
d. any of these

 11. This expression is executed by the for loop only once, regardless of the number of
iterations.
a. initialization expression
b. test expression
c. update expression
d. pre-increment expression

 12. This is a variable that keeps a running total.
a. sentinel
b. sum
c. total
d. accumulator

 13. This is a special value that signals when there are no more items from a list of items to
be processed. This value cannot be mistaken as an item from the list.
a. sentinel
b. flag
c. signal
d. accumulator

 14. To open a file for writing, you use the following class.
a. PrintWriter
b. FileOpen
c. OutputFile
d. FileReader

 15. To open a file for reading, you use the following classes.
a. File and Writer
b. File and Output
c. File and Input
d. File and Scanner

258 Chapter 4 Loops and Files

 16. When a program is finished using a file, it should do this.
a. erase the file
b. close the file
c. throw an exception
d. reset the read position

 17. This class allows you to use the print and println methods to write data to a file.
a. File
b. FileReader
c. OutputFile
d. PrintWriter

 18. This class allows you to read a line from a file.
a. FileWriter
b. Scanner
c. InputFile
d. FileReader

 19. True or False: The while loop is a pretest loop.

 20. True or False: The do-while loop is a pretest loop.

 21. True or False: The for loop is a posttest loop.

 22. True or False: It is not necessary to initialize accumulator variables.

 23. True or False: One limitation of the for loop is that only one variable may be initial-
ized in the initialization expression.

 24. True or False: A variable may be defined in the initialization expression of the for
loop.

 25. True or False: In a nested loop, the inner loop goes through all of its iterations for
every iteration of the outer loop.

 26. True or False: To calculate the total number of iterations of a nested loop, add the
number of iterations of all the loops.

Find the error

Find the errors in the following code:

 1. // This code contains ERRORS!
// It adds two numbers entered by the user.
int num1, num2;
String input;
char again;

Scanner keyboard = new Scanner(System.in);
while (again == 'y' || again == 'Y')
 System.out.print("Enter a number: ");
 num1 = keyboard.nextInt();
 System.out.print("Enter another number: ";

 Review Questions and Exercises 259

 num2 = keyboard.nextInt();
 System.out.println("Their sum is "+ (num1 + num2));
 System.out.println("Do you want to do this again? ");
 keyboard.nextLine(); // Consume remaining newline
 input = keyboard.nextLine();
 again = input.charAt(0);

 2. // This code contains ERRORS!
int count = 1, total;
while (count <= 100)
 total += count;
System.out.print("The sum of the numbers 1 - 100 is ");
System.out.println(total);

 3. // This code contains ERRORS!
int choice, num1, num2;
Scanner keyboard = new Scanner(System.in);
do
{
 System.out.print("Enter a number: ");
 num1 = keyboard.nextInt();
 System.out.print("Enter another number: ");
 num2 = keyboard.nextInt();
 System.out.println("Their sum is " + (num1 + num2));
 System.out.println("Do you want to do this again? ");
 System.out.print("1 = yes, 0 = no ");
 choice = keyboard.nextInt();
} while (choice = 1)

 4. // This code contains ERRORS!
// Print the numbers 1 through 10.
for (int count = 1, count <= 10, count++;)
{
 System.out.println(count);
 count++;
}

Algorithm Workbench

 1. Write a while loop that lets the user enter a number. The number should be multiplied
by 10, and the result stored in the variable product. The loop should iterate as long
as product contains a value less than 100.

 2. Write a do-while loop that asks the user to enter two numbers. The numbers should
be added and the sum displayed. The loop should ask the user whether he or she
wishes to perform the operation again. If so, the loop should repeat; otherwise it
should terminate.

 3. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 ... 1000

260 Chapter 4 Loops and Files

 4. Write a loop that asks the user to enter a number. The loop should iterate 10 times
and keep a running total of the numbers entered.

 5. Write a for loop that calculates the total of the following series of numbers:

 1
30

+
2
29

+
3
28

+ . . .
30
1

 6. Write a nested loop that displays 10 rows of '#' characters. There should be 15 '#'
characters in each row.

 7. Convert the while loop in the following code to a do-while loop:

Scanner keyboard = new Scanner(System.in);
int x = 1;
while (x > 0)
{
 System.out.print("Enter a number: ");
 x = keyboard.nextInt();
}

 8. Convert the do-while loop in the following code to a while loop:

Scanner keyboard = new Scanner(System.in);
String input;
char sure;
do
{
 System.out.print("Are you sure you want to quit? ");
 input = keyboard.next();
 sure = input.charAt(0);
} while (sure != 'Y' && sure != 'N');

 9. Convert the following while loop to a for loop:

int count = 0;
while (count < 50)
{
 System.out.println("count is " + count);
 count++;
}

 10. Convert the following for loop to a while loop:

for (int x = 50; x > 0; x--)
{
 System.out.println(x + " seconds to go.");
}

 11. Write an input validation loop that asks the user to enter a number in the range of 1
through 4.

 12. Write an input validation loop that asks the user to enter the word “yes” or “no”.

 Review Questions and Exercises 261

 13. Write nested loops to draw this pattern:

**
*

 14. Write nested loops to draw this pattern:

##
#
#
#
#
#

 15. Complete the following program so it displays a random integer in the range of 1
through 10.

// Write the necessary import statement(s) here.
public class ReviewQuestion15
{
 public static void main(String[] args)
 {
 // Write the necessary code here.
 }
}

 16. Complete the following program so it performs the following actions 10 times:

•	 Generates	a	random	number	that	is	either	0	or	1.

•	 	Displays	either	the	word	“Yes”	or	the	word	“No”	depending	on	the	random		number	
that was generated.

// Write the necessary import statement(s) here.
public class ReviewQuestion16
{
 public static void main(String[] args)
 {
 // Write the necessary code here.
 }
}

 17. Write code that does the following: opens a file named NumberList.txt, uses a loop
to write the numbers 1 through 100 to the file, and then closes the file.

 18. Write code that does the following: opens the NumberList.txt file that was created
by the code in Question 17, reads all of the numbers from the file and displays them,
and then closes the file.

 19. Modify the code you wrote in Question 18 so it adds all of the numbers read from
the file and displays their total.

 20. Write code that opens a file named NumberList.txt for writing, but does not erase the
file’s contents if it already exists.

262 Chapter 4 Loops and Files

Short Answer

 1. Briefly describe the difference between the prefix and postfix modes used by the incre-
ment and decrement operators.

 2. Why should you indent the statements in the body of a loop?

 3. Describe the difference between pretest loops and posttest loops.

 4. Why are the statements in the body of a loop called conditionally executed statements?

 5. Describe the difference between the while loop and the do-while loop.

 6. Which loop should you use in situations where you want the loop to repeat until the
boolean expression is false, and the loop should not execute if the test expression is
false to begin with?

 7. Which loop should you use in situations where you want the loop to repeat until the
boolean expression is false, but the loop should execute at least once?

 8. Which loop should you use when you know the number of required iterations?

 9. Why is it critical that accumulator variables are properly initialized?

 10. What is an infinite loop? Write the code for an infinite loop.

 11. Describe a programming problem that would require the use of an accumulator.

 12. What does it mean to let the user control a loop?

 13. What is the advantage of using a sentinel?

 14. Why must the value chosen for use as a sentinel be carefully selected?

 15. Describe a programming problem requiring the use of nested loops.

 16. How does a file buffer increase a program’s performance?

 17. Why should a program close a file when it’s finished using it?

 18. What is a file’s read position? Where is the read position when a file is first opened
for reading?

 19. When writing data to a file, what is the difference between the print and the println
methods?

 20. What does the Scanner class’s hasNext method return when the end of the file has
been reached?

 21. What is a potential error that can occur when a file is opened for reading?

 22. What does it mean to append data to a file?

 23. How do you open a file so that new data will be written to the end of the file’s existing data?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Sum of numbers

Write a program that asks the user for a positive nonzero integer value. The program should
use a loop to get the sum of all the integers from 1 up to the number entered. For example,
if the user enters 50, the loop will find the sum of 1, 2, 3, 4, . . . 50.

http://www.myprogramminglab.com

 Programming Challenges 263

2. Distance Traveled

The distance a vehicle travels can be calculated as follows:

Distance 5 Speed * Time

For example, if a train travels 40 miles-per-hour for three hours, the distance traveled is
120 miles. Write a program that asks for the speed of a vehicle (in miles-per-hour) and the
number of hours it has traveled. It should use a loop to display the distance a vehicle has
traveled for each hour of a time period specified by the user. For example, if a vehicle is
traveling at 40 mph for a three-hour time period, it should display a report similar to the
one that follows:

Input Validation: Do not accept a negative number for speed and do not accept any value
less than 1 for time traveled.

3. Distance File

Modify the program you wrote for Programming Challenge 2 (Distance Traveled) so it
writes the report to a file instead of the screen. Open the file in Notepad or another text
editor to confirm the output.

4. Pennies for Pay

Write a program that calculates the amount a person would earn over a period of time if his
or her salary is one penny the first day, two pennies the second day, and continues to double
each day. The program should display a table showing the salary for each day, and then
show the total pay at the end of the period. The output should be displayed in a dollar
amount, not the number of pennies.

Input Validation: Do not accept a number less than 1 for the number of days worked.

5. Letter Counter

Write a program that asks the user to enter a string, and then asks the user to enter a char-
acter. The program should count and display the number of times that the specified charac-
ter appears in the string.

6. File Letter Counter

Write a program that asks the user to enter the name of a file, and then asks the user to
enter a character. The program should count and display the number of times that the
specified character appears in the file. Use Notepad or another text editor to create a simple
file that can be used to test the program.

7. Hotel Occupancy

A hotel’s occupancy rate is calculated as follows:

Occupancy rate 5 Number of rooms occupied 4 Total number of rooms

Hour

Distance Traveled

1 40

2 80

3 120

The Pennies
for Pay

Problem

VideoNote

264 Chapter 4 Loops and Files

Write a program that calculates the occupancy rate for each floor of a hotel. The program
should start by asking for the number of floors in the hotel. A loop should then iterate once
for each floor. During each iteration, the loop should ask the user for the number of rooms
on the floor and the number of them that are occupied. After all the iterations, the program
should display the number of rooms the hotel has, the number of them that are occupied,
the number that are vacant, and the occupancy rate for the hotel.

Input Validation: Do not accept a value less than 1 for the number of floors. Do not accept
a number less than 10 for the number of rooms on a floor.

8. Average Rainfall

Write a program that uses nested loops to collect data and calculate the average rainfall
over a period of years. First the program should ask for the number of years. The outer loop
will iterate once for each year. The inner loop will iterate 12 times, once for each month.
Each iteration of the inner loop will ask the user for the inches of rainfall for that month.
After all iterations, the program should display the number of months, the total inches of
rainfall, and the average rainfall per month for the entire period.

Input Validation: Do not accept a number less than 1 for the number of years. Do not
accept negative numbers for the monthly rainfall.

9. Population

Write a program that will predict the size of a population of organisms. The program
should ask for the starting number of organisms, their average daily population increase
(as a percentage), and the number of days they will multiply. For example, a population
might begin with two organisms, have an average daily increase of 50 percent, and will be
allowed to multiply for seven days. The program should use a loop to display the size of
the population for each day.

Input Validation: Do not accept a number less than 2 for the starting size of the population.
Do not accept a negative number for average daily population increase. Do not accept a
number less than 1 for the number of days they will multiply.

10. Largest and Smallest

Write a program with a loop that lets the user enter a series of integers. The user should
enter −99 to signal the end of the series. After all the numbers have been entered, the pro-
gram should display the largest and smallest numbers entered.

11. Celsius to Fahrenheit Table

Write a program that displays a table of the Celsius temperatures 0 through 20 and
their Fahrenheit equivalents. The formula for converting a temperature from Celsius to
Fahrenheit is

F 5 9
5

C 1 32

where F is the Fahrenheit temperature and C is the Celsius temperature. Your program must
use a loop to display the table.

 Programming Challenges 265

12. Bar Chart

Write a program that asks the user to enter today’s sales for five stores. The program should
display a bar chart comparing each store’s sales. Create each bar in the bar chart by display-
ing a row of asterisks. Each asterisk should represent $100 of sales. Here is an example of
the program’s output:

Enter today's sales for store 1: 1000 [enter]
Enter today's sales for store 2: 1200 [enter]
Enter today's sales for store 3: 1800 [enter]
Enter today's sales for store 4: 800 [enter]
Enter today's sales for store 5: 1900 [enter]

SALES BAR CHART
Store 1: **********
Store 2: ************
Store 3: ******************
Store 4: ********
Store 5: *******************

13. File Head Display

Write a program that asks the user for the name of a file. The program should display only
the first five lines of the file’s contents. If the file contains fewer than five lines, it should
display the file’s entire contents.

14. Line numbers

Write a program that asks the user for the name of a file. The program should display the
contents of the file with each line preceded with a line number followed by a colon. The
line numbering should start at 1.

15. Uppercase File Converter

Write a program that asks the user for the names of two files. The first file should be opened
for reading and the second file should be opened for writing. The program should read
the contents of the first file, change all characters to uppercase, and store the results in the
second file. The second file will be a copy of the first file, except that all the characters will
be uppercase. Use Notepad or another text editor to create a simple file that can be used
to test the program.

16. Budget Analysis

Write a program that asks the user to enter the amount that he or she has budgeted for
a month. A loop should then prompt the user to enter each of his or her expenses for the
month, and keep a running total. When the loop finishes, the program should display the
amount that the user is over or under budget.

266 Chapter 4 Loops and Files

17. Random number guessing game

Write a program that generates a random number and asks the user to guess what the
number is. If the user’s guess is higher than the random number, the program should display
“Too high, try again.” If the user’s guess is lower than the random number, the program
should display “Too low, try again.” The program should use a loop that repeats until the
user correctly guesses the random number.

18. Random number guessing game enhancement

Enhance the program that you wrote for Programming Challenge 17 so it keeps a count
of the number of guesses that the user makes. When the user correctly guesses the random
number, the program should display the number of guesses.

19. eSP game

Write a program that tests your ESP (extrasensory perception). The program should ran-
domly select the name of a color from the following list of words:

Red, Green, Blue, Orange, Yellow

To select a word, the program can generate a random number. For example, if the number
is 0, the selected word is Red, if the number is 1, the selected word is Green, and so forth.

Next, the program should ask the user to enter the color that the computer has selected.
After the user has entered his or her guess, the program should display the name of the ran-
domly selected color. The program should repeat this 10 times and then display the number
of times the user correctly guessed the selected color.

20. Square Display

Write a program that asks the user for a positive integer no greater than 15. The program
should then display a square on the screen using the character ‘X’. The number entered by
the user will be the length of each side of the square. For example, if the user enters 5, the
program should display the following:

XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

If the user enters 8, the program should display the following:

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

 Programming Challenges 267

21. Dice game

Write a program that plays a simple dice game between the computer and the user. When
the program runs, a loop should repeat 10 times. Each iteration of the loop should do the
following:

•	 Generate	 a	 random	 integer	 in	 the	 range	of	1	 through	6.	This	 is	 the	value	of	 the	
 computer’s die.

•	 Generate	another	random	integer	in	the	range	of	1	through	6.	This	is	the	value	of	the	
user’s die.

•	 The	die	with	the	highest	value	wins.	 (In	case	of	a	 tie,	 there	 is	no	winner	 for	 that	
 particular roll of the dice.)

As the loop iterates, the program should keep count of the number of times the computer
wins, and the number of times that the user wins. After the loop performs all of its itera-
tions, the program should display who was the grand winner, the computer or the user.

22. Slot Machine Simulation

A slot machine is a gambling device that the user inserts money into and then pulls a lever
(or presses a button). The slot machine then displays a set of random images. If two or more
of the images match, the user wins an amount of money that the slot machine dispenses
back to the user.

Create a program that simulates a slot machine. When the program runs, it should do
the following:

•	 Asks	the	user	to	enter	the	amount	of	money	he	or	she	wants	to	enter	into	the	slot	machine.
•	 Instead	of	displaying	 images,	 the	program	will	 randomly	 select	 a	word	 from	 the	

 following list:

Cherries, Oranges, Plums, Bells, Melons, Bars

To select a word, the program can generate a random number in the range of 0
through 5. If the number is 0, the selected word is Cherries; if the number is 1, the
selected word is Oranges; and so forth. The program should randomly select a word
from this list three times and display all three of the words.

•	 If	none	of	the	randomly	selected	words	match,	the	program	will	inform	the	user	that	
he or she has won $0. If two of the words match, the program will inform the user
that he or she has won two times the amount entered. If three of the words match, the
program will inform the user that he or she has won three times the amount entered.

•	 The	program	will	ask	whether	the	user	wants	to	play	again.	If	so,	these	steps	are	
repeated. If not, the program displays the total amount of money entered into the slot
machine and the total amount won.Decision Structures

This page intentionally left blank

269

Methods

C
H

A
P

T
E

R

5
Topics

 5.1 Introduction to Methods
 5.2 Passing Arguments to a Method
 5.3 More about Local Variables

 5.4 Returning a Value from a Method
 5.5 Problem Solving with Methods
 5.6 Common Errors to Avoid

5.1 introduction to Methods

concepT: Methods can be used to break a complex program into small, manageable
pieces. A void method simply executes a group of statements and then
terminates. A value-returning method returns a value to the statement
that called it.

In a general sense, a method is a collection of statements that performs a specific task. So far
you have experienced methods in two ways: (1) You have created a method named main in
every program you’ve written, and (2) you have executed predefined methods from the Java
API, such as System.out.println, Integer.parseInt, and Math.pow. In this chapter, you will
learn how to create your own methods, other than main, that can be executed just as you
execute the API methods.

Methods are commonly used to break a problem into small, manageable pieces. Instead of
writing one long method that contains all of the statements necessary to solve a problem,
several small methods that each solve a specific part of the problem can be written. These
small methods can then be executed in the desired order to solve the problem. This approach
is sometimes called divide and conquer because a large problem is divided into several
smaller problems that are easily solved. Figure 5-1 illustrates this idea by comparing two
programs: one that uses a long, complex method containing all of the statements necessary
to solve a problem, and another that divides a problem into smaller problems, each of
which is handled by a separate method.

270 Chapter 5 Methods

Another reason to write methods is that they simplify programs. If a specific task is per-
formed in several places in a program, a method can be written once to perform that task,
and then be executed any time it is needed. This benefit of using methods is known as code
reuse because you are writing the code to perform a task once and then reusing it each time
you need to perform the task.

First, we will look at the general ways in which methods operate. At the end of the chapter
we will discuss in greater detail how methods can be used in problem solving.

void Methods and Value-Returning Methods
In this chapter, you will learn about two general categories of methods: void methods and
value-returning methods. A void method is one that simply performs a task and then termi-
nates. System.out.println is an example of a void method. For example, look at the
 following code:

1 int number = 7;
2 System.out.println(number);
3 number = 0;

Figure 5-1 Using methods to divide and conquer a problem

 5.1 Introduction to Methods 271

The statement in line 1 declares the number variable and initializes it with the value 7. The
statement in line 2 calls the System.out.println method, passing number as an argument.
The method does its job, which is to display a value on the screen, and then terminates. The
code then resumes at line 3.

A value-returning method not only performs a task but also sends a value back to the code
that called it. The Random class’s nextInt method is an example of a value-returning method.
For example, look at the following code:

1 int number;
2 Random rand = new Random();
3 number = rand.nextInt();

The statement in line 1 declares the number variable. Line 2 creates a Random object and
assigns its address to a variable named rand. Line 3 is an assignment statement, which
assigns a value to the number variable. Notice that on the right side of the = operator is a call
to the rand.nextInt method. The method executes, and then returns a value. The value that
is returned from the method is assigned to the number variable.

Defining a void Method
To create a method you must write its definition, which consists of two general parts: a
header and a body. You learned about both of these in Chapter 2, but let’s briefly review.
The method header, which appears at the beginning of a method definition, lists several
important things about the method, including the method’s name. The method body is a
collection of statements that are performed when the method is executed. These statements
are enclosed inside a set of curly braces. Figure 5-2 points out the header and body of a
main method.

Figure 5-2 The header and body of a main method

As you already know, every complete Java program must have a main method. Java pro-
grams can have other methods as well. Here is an example of a simple method that displays
a message on the screen:

public static void displayMessage()
{
 System.out.println("Hello from the displayMessage method.");
}

This method has a header and a body. Figure 5-3 shows the different parts of the method header.

272 Chapter 5 Methods

Let’s take a closer look at the parts identified in the figure as follows:

•	 Method modifiers—The key words public and static are modifiers. You don’t need
to be too concerned with these modifiers now, but if your curiosity is getting the best
of you, here’s a brief explanation: The word public means that the method is publicly
available to code outside the class. The word static means that the method belongs
to the class, not a specific object. You will learn more about these modifiers in later
chapters. For this chapter, every method that we write will begin with public static.

•	 Return type—Recall our previous discussion of void and value-returning methods.
When the key word void appears here, it means that the method is a void method, and
does not return a value. As you will see later, a value-returning method lists a data
type here.

•	 Method name—You should give each method a descriptive name. In general, the same
rules that apply to variable names also apply to method names. This method is named
displayMessage, so we can easily guess what the method does: It displays a message.

•	 Parentheses—In the header, the method name is always followed by a set of parenthe-
ses. As you will learn later in this chapter, methods can be capable of receiving
 arguments. When this is the case, a list of one or more variable declarations will
appear inside the parentheses. The method in this example does not receive any argu-
ments, so the parentheses are empty.

Figure 5-3 Parts of the method header

calling a Method
A method executes when it is called. The main method is automatically called when a pro-
gram starts, but other methods are executed by method call statements. When a method is
called, the JVM branches to that method and executes the statements in its body. Here is
an example of a method call statement that calls the displayMessage method we previ-
ously examined:

displayMessage();

The statement is simply the name of the method followed by a set of parentheses. Because it
is a complete statement, it is terminated with a semicolon.

noTe: The method header is never terminated with a semicolon.

 5.1 Introduction to Methods 273

The program in Code Listing 5-1 demonstrates.

code Listing 5-1 (SimpleMethod.java)

 1 /**
 2 This program defines and calls a simple method.
 3 */
 4
 5 public class SimpleMethod
 6 {
 7 public static void main(String[] args)
 8 {
 9 System.out.println("Hello from the main method.");
10 displayMessage();
11 System.out.println("Back in the main method.");
12 }
13
14 /**
15 The displayMessage method displays a greeting.
16 */
17
18 public static void displayMessage()
19 {
20 System.out.println("Hello from the displayMessage method.");
21 }
22 }

program output

Hello from the main method.
Hello from the displayMessage method.
Back in the main method.

Notice how the program flows. It starts, of course, in the main method. When the call to the
displayMessage method in line 10 is encountered, the JVM branches to that method and
performs the statement in its body (at line 20). Once the displayMessage method has
 finished executing, the JVM branches back to the main method and resumes at line 11 with
the statement that follows the method call. This is illustrated in Figure 5-4.

Tip: Notice that the method modifiers and the void return type are not written in the
method call statement. They are written only in the method header.

274 Chapter 5 Methods

Method call statements may be used in control structures like loops, if statements, and
switch statements. The program in Code Listing 5-2 places the displayMessage method call
inside a loop.

code Listing 5-2 (LoopCall.java)

 1 /**
 2 This program defines and calls a simple method.
 3 */
 4
 5 public class LoopCall
 6 {
 7 public static void main(String[] args)
 8 {
 9 System.out.println("Hello from the main method.");
10 for (int i = 0; i < 5; i++)
11 displayMessage();
12 System.out.println("Back in the main method.");
13 }
14
15 /**
16 The displayMessage method displays a greeting.
17 */
18
19 public static void displayMessage()
20 {
21 System.out.println("Hello from the displayMessage method.");
22 }
23 }

program output

Hello from the main method.
Hello from the displayMessage method.
Hello from the displayMessage method.
Hello from the displayMessage method.

Figure 5-4 Branching in the SimpleMethod.java program

 5.1 Introduction to Methods 275

Hello from the displayMessage method.
Hello from the displayMessage method.
Back in the main method.

The program in Code Listing 5-3 shows another example. It asks the user to enter his or her
annual salary and credit rating. The program then determines whether the user qualifies for
a credit card. One of two void methods, qualify or noQualify, is called to display a
message. Figures 5-5 and 5-6 show example interactions with the program.

code Listing 5-3 (CreditCard.java)

 1 import javax.swing.JOptionPane; 2
 2
 3 /**
 4 This program uses two void methods.
 5 */
 6
 7 public class CreditCard
 8 {
 9 public static void main(String[] args)
10 {
11 double salary; // Annual salary
12 int creditRating; // Credit rating
13 String input; // To hold the user’s input
14
15 // Get the user’s annual salary.
16 input = JOptionPane.showInputDialog(“What is " +
17 "your annual salary?");
18 salary = Double.parseDouble(input);
19
20 // Get the user’s credit rating (1 through 10).
21 input = JOptionPane.showInputDialog(“On a scale of " +
22 "1 through 10, what is your credit rating?\n" +
23 "(10 = excellent, 1 = very bad)");
24 creditRating = Integer.parseInt(input);
25
26 // Determine whether the user qualifies.
27 if (salary >= 20000 && creditRating >= 7)
28 qualify();
29 else
30 noQualify();
31
32 System.exit(0);
33 }
34
35 /**
36 The qualify method informs the user that he
37 or she qualifies for the credit card.
38 */

276 Chapter 5 Methods

39
40 public static void qualify()
41 {
42 JOptionPane.showMessageDialog(null, "Congratulations! " +
43 "You qualify for the credit card!");
44 }
45
46 /**
47 The noQualify method informs the user that he
48 or she does not qualify for the credit card.
49 */
50
51 public static void noQualify()
52 {
53 JOptionPane.showMessageDialog(null, "I'm sorry. You " +
54 "do not qualify for the credit card.");
55 }
56 }

1 2

3

Figure 5-5 Interaction with the CreditCard.java program

1 2

3

Figure 5-6 Interaction with the CreditCard.java program

 5.1 Introduction to Methods 277

Hierarchical Method calls
Methods can also be called in a hierarchical, or layered fashion. In other words, method A
can call method B, which can then call method C. When method C finishes, the JVM returns
to method B. When method B finishes, the JVM returns to method A. The program in Code
Listing 5-4 demonstrates this with three methods: main, deep, and deeper. The main method
calls the deep method, which then calls the deeper method.

code Listing 5-4 (DeepAndDeeper.java)

 1 /**
 2 This program demonstrates hierarchical method calls.
 3 */
 4
 5 public class DeepAndDeeper
 6 {
 7 public static void main(String[] args)
 8 {
 9 System.out.println("I am starting in main.");
10 deep();
11 System.out.println("Now I am back in main.");
12 }
13
14 /**
15 The deep method displays a message and then calls
16 the deeper method.
17 */
18
19 public static void deep()
20 {
21 System.out.println("I am now in deep.");
22 deeper();
23 System.out.println("Now I am back in deep.");
24 }
25
26 /**
27 The deeper method simply displays a message.
28 */
29
30 public static void deeper()
31 {
32 System.out.println("I am now in deeper.");
33 }
34 }

program output

I am starting in main.
I am now in deep.

278 Chapter 5 Methods

I am now in deeper.
Now I am back in deep.
Now I am back in main.

Using Documentation comments with Methods
You should always document a method by writing comments that appear just before the
method’s definition. The comments should provide a brief explanation of the method’s
 purpose. Notice that the programs we’ve looked at in this chapter use documentation com-
ments. Recall from Chapter 2 that documentation comments begin with /** and end with
*/. These types of comments can be read and processed by a program named javadoc,
which produces attractive HTML documentation. As we progress through this chapter, you
will learn more about documentation comments and how they can be used with methods.

checkpoint

www.myprogramminglab.com

5.1 What is the difference between a void method and a value-returning method?

5.2 Is the following line of code a method header or a method call?

calcTotal();

5.3 Is the following line of code a method header or a method call?

public static void calcTotal()

5.4 What message will the following program display if the user enters 5? What if the
user enters 10? What if the user enters 100?

import javax.swing.JOptionPane;
public class Checkpoint
{
 public static void main(String[] args)
 {
 String input;
 int number;

 input = JOptionPane.showInputDialog("Enter a number.");
 number = Integer.parseInt(input);

 if (number < 10)
 method1();
 else
 method2();

 System.exit(0);
 }

 public static void method1()
 {
 JOptionPane.showMessageDialog(null, "Able was I.");
 }

http://www.myprogramminglab.com

 5.2 Passing Arguments to a Method 279

 public static void method2()
 {
 JOptionPane.showMessageDialog(null, "I saw Elba.");
 }
}

5.5 Write a void method that displays your full name. The method should be named
myName.

5.2 passing Arguments to a Method

concepT: A method may be written so it accepts arguments. Data can then be
passed into the method when it is called.

Values that are sent into a method are called arguments. You’re already familiar with how
to use arguments in a method call. For example, look at the following statement:

System.out.println("Hello");

This statement calls the System.out.println method and passes "Hello" as an argument.
Here is another example:

number = Integer.parseInt(str);

This statement calls the Integer.parseInt method and passes the contents of the str vari-
able as an argument. By using parameter variables, you can design your own methods that
accept data this way. A parameter variable, sometimes simply referred to as a parameter, is
a special variable that holds a value being passed into a method. Here is the definition of a
method that uses a parameter:

public static void displayValue(int num)
{
 System.out.println("The value is " + num);
}

Notice the integer variable declaration that appears inside the parentheses (int num). This is
the declaration of a parameter variable, which enables the displayValue method to accept
an integer value as an argument. Here is an example of a call to the displayValue method,
passing 5 as an argument:

displayValue(5);

This statement executes the displayValue method. The argument that is listed inside the
parentheses is copied into the method’s parameter variable, num. This is illustrated in
Figure 5-7.

Passing
Arguments

to a Method

VideoNote

280 Chapter 5 Methods

Inside the displayValue method, the variable num will contain the value of whatever argu-
ment was passed into it. If we pass 5 as the argument, the method will display as follows:

The value is 5

You may also pass the contents of variables and the values of expressions as arguments.
For example, the following statements call the displayValue method with various argu-
ments passed:

displayValue(x);
displayValue(x * 4);
displayValue(Integer.parseInt("700"));

The first statement is simple. It passes the value in the variable x as the argument to the
displayValue method. The second statement is also simple, but it does a little more work: It
passes the result of the expression x * 4 as the argument to the displayValue method. The
third statement does even more work. It passes the value returned from the Integer.parseInt
method as the argument to the displayValue method. (The Integer.parseInt method is
called first, and its return value is passed to the displayValue method.) The program in
Code Listing 5-5 demonstrates these method calls.

code Listing 5-5 (PassArg.java)

 1 /**
 2 This program demonstrates a method with a parameter.
 3 */
 4
 5 public class PassArg
 6 {
 7 public static void main(String[] args)
 8 {
 9 int x = 10;
10
11 System.out.println("I am passing values to displayValue.");
12 displayValue(5); // Pass 5
13 displayValue(x); // Pass 10
14 displayValue(x * 4); // Pass 40
15 displayValue(Integer.parseInt("700")); // Pass 700

Figure 5-7 Passing 5 to the displayValue method

 5.2 Passing Arguments to a Method 281

16 System.out.println("Now I am back in main.");
17 }
18
19 /**
20 The displayValue method displays the value
21 of its integer parameter.
22 */
23
24 public static void displayValue(int num)
25 {
26 System.out.println("The value is " + num);
27 }
28 }

program output

I am passing values to displayValue.
The value is 5
The value is 10
The value is 40
The value is 700
Now I am back in main.

WARning! When passing a variable as an argument, simply write the variable name
inside the parentheses of the method call. Do not write the data type of the argument
variable in the method call. For example, the following statement will cause an error:

displayValue(int x); // Error!

The method call should appear as follows:

displayValue(x); // Correct

noTe: In this text, the values that are passed into a method are called arguments, and
the variables that receive those values are called parameters. There are several variations
of these terms in use. In some circles these terms are switched in meaning. Also, some call
the arguments actual parameters and call the parameters formal parameters. Others use
the terms actual argument and formal argument. Regardless of which set of terms you
use, it is important to be consistent.

Argument and parameter Data Type compatibility
When you pass an argument to a method, be sure that the argument’s data type is compat-
ible with the parameter variable’s data type. Java will automatically perform a widening
conversion if the argument’s data type is ranked lower than the parameter variable’s data

282 Chapter 5 Methods

type. For example, the displayValue method has an int parameter variable. Both of the
 following code segments will work because the short and byte arguments are automatically
converted to an int:

short s = 1;
displayValue(s); // Converts short to int

byte b = 2;
displayValue(b); // Converts byte to int

However, Java will not automatically convert an argument to a lower-ranking data type.
This means that a long, float, or double value cannot be passed to a method that has an
int parameter variable. For example, the following code will cause a compiler error:

double d = 1.0;
displayValue(d); // Error! Can’t convert double to int.

Tip: You can use a cast operator to convert a value manually to a lower-ranking data
type. For example, the following code will compile:

double d = 1.0;
displayValue((int)d); // This will work.

parameter Variable scope
Recall from Chapter 2 that a variable’s scope is the part of the program where the variable
may be accessed by its name. A variable is visible only to statements inside the variable’s
scope. A parameter variable’s scope is the method in which the parameter is declared. No
statement outside the method can access the parameter variable by its name.

passing Multiple Arguments
Often it is useful to pass more than one argument to a method. Here is a method that
accepts two arguments:

public static void showSum(double num1, double num2)
{
 double sum; // To hold the sum

 sum = num1 + num2;
 System.out.println("The sum is " + sum);
}

Notice that two parameter variables, num1 and num2, are declared inside the parentheses in
the method header. This is often referred to as a parameter list. Also notice that a comma
separates the declarations. Here is an example of a statement that calls the method:

showSum(5, 10);

 5.2 Passing Arguments to a Method 283

This statement passes the arguments 5 and 10 into the method. The arguments are passed
into the parameter variables in the order that they appear in the method call. In other
words, the first argument is passed into the first parameter variable, the second argument is
passed into the second parameter variable, and so forth. So, this statement causes 5 to be
passed into the num1 parameter and 10 to be passed into the num2 parameter. This is illus-
trated in Figure 5-8.

Figure 5-8 Multiple arguments passed into multiple parameters

Suppose we were to reverse the order in which the arguments are listed in the method call,
as shown here:

showSum(10, 5);

This would cause 10 to be passed into the num1 parameter and 5 to be passed into the num2
parameter. The following code segment shows one more example. This time we are passing
variables as arguments.

double value1 = 2.5;
double value2 = 3.5;
showSum(value1, value2);

When the showSum methods executes as a result of this code, the num1 parameter will contain
2.5 and the num2 parameter will contain 3.5.

WARning! Each parameter variable in a parameter list must have a data type listed
before its name. For example, a compiler error would occur if the parameter list for the
showSum method were defined as shown in the following header:

public static void showSum(double num1, num2) // Error!

A data type for both the num1 and num2 parameter variables must be listed, as shown here:

public static void showSum(double num1, double num2)

284 Chapter 5 Methods

Arguments Are passed by Value
In Java, all arguments of the primitive data types are passed by value, which means that
only a copy of an argument’s value is passed into a parameter variable. A method’s param-
eter variables are separate and distinct from the arguments that are listed inside the paren-
theses of a method call. If a parameter variable is changed inside a method, it has no effect
on the original argument. For example, look at the program in Code Listing 5-6.

code Listing 5-6 (PassByValue.java)

 1 /**
 2 This program demonstrates that only a copy of an argument
 3 is passed into a method.
 4 */
 5
 6 public class PassByValue
 7 {
 8 public static void main(String[] args)
 9 {
10 int number = 99; // number starts with 99
11
12 // Display the value in number.
13 System.out.println("number is " + number);
14
15 // Call changeMe, passing the value in number
16 // as an argument.
17 changeMe(number);
18
19 // Display the value in number again.
20 System.out.println("number is " + number);
21 }
22
23 /**
24 The changeMe method accepts an argument and then
25 changes the value of the parameter.
26 */
27
28 public static void changeMe(int myValue)
29 {
30 System.out.println("I am changing the value.");
31
32 // Change the myValue parameter variable to 0.
33 myValue = 0;

See the program TwoArgs.java in this chapter’s source code folder for a complete pro-
gram that demonstrates the showSum method. You can download the book’s source code
from www.pearsonhighered.com/gaddis.

http://www.pearsonhighered.com/gaddis

 5.2 Passing Arguments to a Method 285

34
35 // Display the value in myValue.
36 System.out.println("Now the value is " + myValue);
37 }
38 }

program output

number is 99
I am changing the value.
Now the value is 0
number is 99

Even though the parameter variable myValue is changed in the changeMe method, the argument
number is not modified. The myValue variable contains only a copy of the number variable.

passing object References to a Method
So far you’ve seen examples of methods that accept primitive values as arguments. You can
also write methods that accept references to objects as arguments. For example, look at the
following method:

public static void showLength(String str)
{
 System.out.println(str + " is " + str.length() +
 " characters long.");
}

This method accepts a String object reference as its argument, and displays a message
showing the number of characters in the object. The following code shows an example of
how to call the method:

String name = "Warren";
showLength(name);

When this code executes, the showLength method will display the following:

Warren is 6 characters long.

When an object, such as a String, is passed as an argument, it is actually a reference to the
object that is passed. In this example code, the name variable is a String reference variable. It
is passed as an argument to the showLength method. The showLength method has a parame-
ter variable, str, which is also a String reference variable, that receives the argument.

Recall that a reference variable holds the memory address of an object. When the showLength
method is called, the address that is stored in name is passed into the str parameter variable.
This is illustrated in Figure 5-9. This means that when the showLength method is executing,
both name and str reference the same object. This is illustrated in Figure 5-10.

286 Chapter 5 Methods

This might lead you to the conclusion that a method can change the contents of any String
object that has been passed to it as an argument. After all, the parameter variable references
the same object as the argument. However, String objects in Java are immutable, which
means that they cannot be changed. For example, look at the program in Code Listing 5-7.
It passes a String object to a method, which appears to change the object. In reality, the
object is not changed.

code Listing 5-7 (PassString.java)

 1 /**
 2 This program demonstrates that String arguments
 3 cannot be changed.
 4 */
 5
 6 public class PassString
 7 {
 8 public static void main(String[] args)

Figure 5-9 Passing a reference as an argument

Figure 5-10 Both name and str reference the same object

 5.2 Passing Arguments to a Method 287

 9 {
10 // Create a String object containing "Shakespeare".
11 // The name variable references the object.
12 String name = "Shakespeare";
13
14 // Display the String referenced by the name variable.
15 System.out.println("In main, the name is " +
16 name);
17
18 // Call the changeName method, passing the
19 // contents of the name variable as an argument.
20 changeName(name);
21
22 // Display the String referenced by the name variable.
23 System.out.println("Back in main, the name is " +
24 name);
25 }
26
27 /**
28 The changeName method accepts a String as its argument
29 and assigns the str parameter to a new String.
30 */
31
32 public static void changeName(String str)
33 {
34 // Create a String object containing "Dickens".
35 // Assign its address to the str parameter variable.
36 str = "Dickens";
37
38 // Display the String referenced by str.
39 System.out.println("In changeName, the name " +
40 "is now " + str);
41 }
42 }

program output

In main, the name is Shakespeare
In changeName, the name is now Dickens
Back in main, the name is Shakespeare

Let’s take a closer look at this program. After line 12 executes, the name variable references
a String object containing "Shakespeare". In line 20 the changeName method is called and
the name variable is passed as an argument. This passes the address of the String object into
the str parameter variable. At this point, both name and str reference the same object, as
shown in Figure 5-11.

288 Chapter 5 Methods

In the changeName method, line 36 executes as follows:

str = "Dickens";

At first, you might think that this statement changes the String object’s contents to
"Dickens". What actually happens is that a new String object containing "Dickens" is
created and its address is stored in the str variable. After this statement executes, the
name variable and the str parameter variable reference different objects. This is shown in
Figure 5-12.

The name variable holds
the address of a
String object.

address

The str parameter variable
holds the address of the

same String object.
address

A String object

"Shakespeare"

Before Line 36 executes:

Figure 5-11 Before line 36 executes, both name and str reference the same object

After Line 36 executes:

The name variable holds
the address of a
String object.

address

The str parameter variable
holds the address of a

different String object.

A String object

"Shakespeare"

address

A String object

"Dickens"

Figure 5-12 After line 36 executes, name and str reference different objects

In Chapter 9 we will discuss the immutability of String objects in greater detail. Until then,
just remember the following point: String objects cannot be changed. Any time you use the
= operator to assign a string literal to a String reference variable, a new String object is
created in memory.

Using the @param Tag in Documentation comments
When writing the documentation comments for a method, you can provide a description of
each parameter by using a @param tag. When the javadoc utility sees a @param tag inside a

 5.2 Passing Arguments to a Method 289

method’s documentation comments, it knows that the documentation for a parameter
 variable appears next. The file TwoArgs2.java, in this chapter’s source code (available at
www.pearsonhighered.com/gaddis), has the following method, which uses @param tags in its
documentation comments:

/**
 The showSum method displays the sum of two numbers.
 @param num1 The first number.
 @param num2 The second number.
*/

 public static void showSum(double num1, double num2)
 {
 double sum; // To hold the sum

 sum = num1 + num2;
 System.out.println("The sum is " + sum);
 }

The general format of a @param tag comment is as follows:

@param parameterName Description

In the general format, parameterName is the name of the parameter and Description is a
description of the parameter. Remember the following points about @param tag comments:

•	 All	@param tags in a method’s documentation comment must appear after the general
description of the method.

•	 The	description	can	span	several	lines.	It	ends	at	the	end	of	the	documentation	com-
ment (the */ symbol), or at the beginning of another tag.

When a method’s documentation comments contain one or more @param tags, the javadoc
utility will create a Parameters section in the method’s documentation. This is where the
descriptions of the method’s parameters will be listed. Figure 5-13 shows the documenta-
tion generated by javadoc for the showSum method in the TwoArgs2.java file.

Figure 5-13 Documentation for the showSum method in TwoArgs2.java

http://www.pearsonhighered.com/gaddis

290 Chapter 5 Methods

checkpoint

www.myprogramminglab.com

5.6 What is the difference between an argument and a parameter?

5.7 Look at the following method header:

public static void myMethod(int num)

 Which of the following calls to the method will cause a compiler error?
a) myMethod(7);
b) myMethod(6.2);
c) long x = 99;
 myMethod(x);
d) short s = 2;
 myMethod(s);

5.8 Suppose a method named showValues accepts two int arguments. Which of the
 following method headers is written correctly?
a) public static void showValues()
b) public static void showValues(int num1, num2)
c) public static void showValues(num1, num2)
d) public static void showValues(int num1, int num2)

5.9 In Java, method arguments are passed by value. What does this mean?

5.10 What will the following program display?

public class Checkpoint
{
 public static void main(String[] args)
 {
 int num1 = 99;
 double num2 = 1.5;

 System.out.println(num1 + " " + num2);
 myMethod(num1, num2);
 System.out.println(num1 + " " + num2);
 }

 public static void myMethod(int i, double d)
 {
 System.out.println(i + " " + d);
 i = 0;
 d = 0.0;
 System.out.println(i + " " + d);
 }
}

http://www.myprogramminglab.com

 5.3 More about Local Variables 291

5.3 More about Local Variables

concepT: A local variable is declared inside a method and is not accessible to
statements outside the method. Different methods can have local
variables with the same names because the methods cannot see each
other’s local variables.

In Chapter 2 we introduced the concept of local variables, which are variables that are
declared inside a method. They are called local because they are local to the method in
which they are declared. Statements outside a method cannot access that method’s
local variables.

Because a method’s local variables are hidden from other methods, the other methods may
have their own local variables with the same name. For example, look at the program in
Code Listing 5-8. In addition to the main method, this program has two other methods:
texas and california. These two methods each have a local variable named birds.

code Listing 5-8 (LocalVars.java)

 1 /**
 2 This program demonstrates that two methods may have
 3 local variables with the same name.
 4 */
 5
 6 public class LocalVars
 7 {
 8 public static void main(String[] args)
 9 {
10 texas();
11 california();
12 }
13
14 /**
15 The texas method has a local variable named birds.
16 */
17
18 public static void texas()
19 {
20 int birds = 5000;
21
22 System.out.println("In texas there are " +
23 birds + " birds.");
24 }
25
26 /**
27 The california method also has a local variable named birds.
28 */

292 Chapter 5 Methods

29 public static void california()
30 {
31 int birds = 3500;
32
33 System.out.println("In california there are " +
34 birds + " birds.");
35 }
36 }

program output

In texas there are 5000 birds.
In california there are 3500 birds.

Although there are two variables named birds, the program can see only one of them at a
time because they are in different methods. When the texas method is executing, the birds
variable declared inside texas is visible. When the california method is executing, the
birds variable declared inside california is visible.

Local Variable Lifetime
A method’s local variables exist only while the method is executing. This is known as the
lifetime of a local variable. When the method begins, its local variables and its parameter
variables are created in memory, and when the method ends, the local variables and
parameter variables are destroyed. This means that any value stored in a local variable is
lost between calls to the method in which the variable is declared.

initializing Local Variables with parameter Values
It is possible to use a parameter variable to initialize a local variable. Sometimes this simplifies
the code in a method. For example, recall the following showSum method we discussed earlier:

public static void showSum(double num1, double num2)
{
 double sum; // To hold the sum

 sum = num1 + num2;
 System.out.println("The sum is " + sum);
}

In the body of the method, the sum variable is declared and then a separate assignment state-
ment assigns num1 + num2 to sum. We can combine these statements into one, as shown in
the following modified version of the method.

public static void showSum(double num1, double num2)
{
 double sum = num1 + num2;
 System.out.println("The sum is " + sum);
}

 5.4 Returning a Value from a Method 293

Because the scope of a parameter variable is the entire method in which it is declared, we
can use parameter variables to initialize local variables.

WARning! Local variables are not automatically initialized with a default value. They
must be given a value before they can be used. If you attempt to use a local variable
before it has been given a value, a compiler error will result. For example, look at the
 following method:

public static void myMethod()
{
 int x;
 System.out.println(x); //Error! x has no value.
}

This code will cause a compiler error because the variable x has not been given a value,
and it is being used as an argument to the System.out.println method.

5.4 Returning a Value from a Method

concepT: A method may send a value back to the statement that called the method.

You’ve seen that data may be passed into a method by way of parameter variables. Data
may also be returned from a method, back to the statement that called it. Methods that
return a value are appropriately known as value-returning methods.

You are already experienced at using value-returning methods. For instance, you have used
the wrapper class parse methods, such as Integer.parseInt. Here is an example:

int num;
num = Integer.parseInt(“700”);

The second line in this code calls the Integer.parseInt method, passing "700" as the argu-
ment. The method returns the integer value 700, which is assigned to the num variable by the =
operator. You have also seen the Math.pow method, which returns a value. Here is an example:

double x;
x = Math.pow(4.0, 2.0);

The second line in this code calls the Math.pow method, passing 4.0 and 2.0 as arguments.
The method calculates the value of 4.0 raised to the power of 2.0 and returns that value.
The value, which is 16.0, is assigned to the x variable by the = operator.

In this section, we will discuss how you can write your own value-returning methods.

Defining a Value-Returning Method
When you are writing a value-returning method, you must decide what type of value the
method will return. This is because you must specify the data type of the return value in the

Returning a
Value from
a Method

VideoNote

294 Chapter 5 Methods

method header. Recall that a void method, which does not return a value, uses the key word
void as its return type in the method header. A value-returning method will use int, double,
boolean, or any other valid data type in its header. Here is an example of a method that
returns an int value:

public static int sum(int num1, int num2)
{
 int result;

 result = num1 + num2;
 return result;
}

The name of this method is sum. Notice in the method header that the return type is int, as
shown in Figure 5-14.

Figure 5-14 Return type in the method header

This code defines a method named sum that accepts two int arguments. The arguments are
passed into the parameter variables num1 and num2. Inside the method, a local variable,
result, is declared. The parameter variables num1 and num2 are added, and their sum is
assigned to the result variable. The last statement in the method is as follows:

return result;

This is a return statement. You must have a return statement in a value-returning method.
It causes the method to end execution and it returns a value to the statement that called
the method. In a value-returning method, the general format of the return statement is as
follows:

return Expression;

Expression is the value to be returned. It can be any expression that has a value, such as a
variable, literal, or mathematical expression. In this case, the sum method returns the value
in the result variable. However, we could have eliminated the result variable and returned
the expression num1 + num2, as shown in the following code:

public static int sum(int num1, int num2)
{
 return num1 + num2;
}

noTe: The return statement’s expression must be of the same data type as the return
type specified in the method header, or compatible with it. Otherwise, a compiler error
will occur. Java will automatically widen the value of the return expression, if necessary,
but it will not automatically narrow it.

 5.4 Returning a Value from a Method 295

calling a Value-Returning Method
The program in Code Listing 5-9 shows an example of how to call the sum method. Notice
that the documentation comments for the sum method have a new tag, @return. This tag will
be explained later.

code Listing 5-9 (ValueReturn.java)

 1 /**
 2 This program demonstrates a value-returning method.
 3 */
 4
 5 public class ValueReturn
 6 {
 7 public static void main(String[] args)
 8 {
 9 int total, value1 = 20, value2 = 40;
10
11 // Call the sum method, passing the contents of
12 // value1 and value2 as arguments. Assign the
13 // return value to the total variable.
14 total = sum(value1, value2);
15
16 // Display the contents of all these variables.
17 System.out.println("The sum of " + value1 +
18 " and " + value2 + " is " +
19 total);
20 }
21
22 /**
23 The sum method returns the sum of its two parameters.
24 @param num1 The first number to be added.
25 @param num2 The second number to be added.
26 @return The sum of num1 and num2.
27 */
28
29 public static int sum(int num1, int num2)
30 {
31 int result; // result is a local variable
32
33 // Assign the value of num1 + num2 to result.
34 result = num1 + num2;
35
36 // Return the value in the result variable.
37 return result;
38 }
39 }

program output

The sum of 20 and 40 is 60

296 Chapter 5 Methods

The statement in line 14 calls the sum method, passing value1 and value2 as arguments. It
assigns the value returned by the sum method to the total variable. In this case, the method
will return 60. Figure 5-15 shows how the arguments are passed into the method and how
a value is passed back from the method.

Figure 5-15 Arguments passed to sum and a value returned

When you call a value-returning method, you usually want to do something meaningful
with the value it returns. The ValueReturn.java program shows a method’s return value
being assigned to a variable. This is commonly how return values are used, but you can do
many other things with them. For example, the following code shows a math expression
that uses a call to the sum method:

int x = 10, y = 15;
double average;
average = sum(x, y) / 2.0;

In the last statement, the sum method is called with x and y as its arguments. The method’s
return value, which is 25, is divided by 2.0. The result, 12.5, is assigned to average. Here is
another example:

int x = 10, y = 15;
System.out.println("The sum is " + sum(x, y));

This code sends the sum method’s return value to System.out.println, so it can be dis-
played on the screen. The message “The sum is 25” will be displayed.

Remember, a value-returning method returns a value of a specific data type. You can use the
method’s return value anywhere that you can use a regular value of the same data type. This
means that anywhere an int value can be used, a call to an int value-returning method can
be used. Likewise, anywhere a double value can be used, a call to a double value-returning
method can be used. The same is true for all other data types.

Using the @return Tag in Documentation comments
When writing the documentation comments for a value-returning method, you can provide
a description of the return value by using a @return tag. When the javadoc utility sees a
@return tag inside a method’s documentation comments, it knows that a description of the
method’s return value appears next.

 5.4 Returning a Value from a Method 297

The general format of a @return tag comment is as follows:

@return Description

Description is a description of the return value. Remember the following points about
@return tag comments:

•	 The	@return tag in a method’s documentation comment must appear after the general
description of the method.

•	 The	description	can	span	several	lines.	It	ends	at	the	end	of	the	documentation	com-
ment (the */ symbol), or at the beginning of another tag.

When a method’s documentation comments contain a @return tag, the javadoc utility will
create a Returns section in the method’s documentation. This is where the description of the
method’s return value will be listed. Figure 5-16 shows the documentation generated by
javadoc for the sum method in the ValueReturn.java file.

Figure 5-16 Documentation for the sum method in ValueReturn.java

in the spotlight:
Using Methods
Your friend Michael runs a catering company. Some of the ingredients that his recipes
require are measured in cups. When he goes to the grocery store to buy those ingredients,
however, they are sold only by the fluid ounce. He has asked you to write a simple program
that converts cups to fluid ounces.

You design the following algorithm:

 1. Get the number of cups from the user.
 2. Convert the number of cups to fluid ounces.
 3. Display the result.

This algorithm lists the top level of tasks that the program needs to perform, and becomes
the basis of the class’s main method. The class will also have the following methods:

•	 getCups—This method will prompt the user to enter the number of cups, and then
return that value as a double.

•	 cupsToOunces—This method will accept the number of cups as an argument and then
return the equivalent number of fluid ounces as a double.

•	 displayResults—This method displays a message indicating the results of the conversion.

Code Listing 5-10 shows the program. Figure 5-17 shows interaction with the program
during execution.

code Listing 5-10 (CupConverter.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program converts cups to fluid ounces.
 5 */
 6
 7 public class CupConverter
 8 {
 9 public static void main(String[] args)
10 {
11 double cups; // To hold the number of cups
12 double ounces; // To hold the number of ounces
13
14 // Get the number of cups.
15 cups = getCups();
16
17 // Convert the cups to fluid ounces.
18 ounces = cupsToOunces(cups);
19
20 // Display the results.
21 displayResults(cups, ounces);
22 System.exit(0);
23 }
24
25 /**
26 The getCups method prompts the user to enter a number
27 of cups.
28 @return The number of cups entered by the user.
29 */
30
31 public static double getCups()
32 {
33 String input; // To hold input.
34 double numCups; // To hold cups.
35

298 Chapter 5 Methods

 5.4 Returning a Value from a Method 299

36 // Get the number of cups from the user.
37 input = JOptionPane.showInputDialog(
38 "This program converts measurements\n" +
39 "in cups to fluid ounces. For your\n" +
40 "reference the formula is:\n" +
41 " 1 cup = 8 fluid ounces\n\n" +
42 "Enter the number of cups.");
43
44 // Convert the input to a double.
45 numCups = Double.parseDouble(input);
46
47 // Return the number of cups.
48 return numCups;
49 }
50
51 /**
52 The cupsToOunces method converts a number of
53 cups to fluid ounces, using the formula
54 1 cup = 8 fluid ounces.
55 @param numCups The number of cups to convert.
56 @return The number of ounces.
57 */
58
59 public static double cupsToOunces(double numCups)
60 {
61 return numCups * 8.0;
62 }
63
64 /**
65 The displayResults method displays a message showing
66 the results of the conversion.
67 @param cups A number of cups.
68 @param ounces A number of ounces.
69 */
70
71 public static void displayResults(double cups, double ounces)
72 {
73 // Display the number of ounces.
74 JOptionPane.showMessageDialog(null,
75 cups + " cups equals " +
76 ounces + " fluid ounces.");
77 }
78 }

Returning a boolean Value
Frequently there is a need for a method that tests an argument and returns a true or false
value indicating whether or not a condition exists. Such a method would return a boolean
value. For example, the following method accepts an argument and returns true if the argu-
ment is within the range of 1 through 100, or false otherwise:

public static boolean isValid(int number)
{
 boolean status;

 if (number >= 1 && number <= 100)
 status = true;
 else
 status = false;
 return status;
}

The following code shows an if-else statement that uses a call to the method:

int value = 20;
if (isValid(value))
 System.out.println("The value is within range.");
else
 System.out.println("The value is out of range.");

When this code executes, the message “The value is within range.” will be displayed.

Returning a Reference to an object
A value-returning method can also return a reference to a non-primitive type, such as a
String object. The program in Code Listing 5-11 shows such an example.

300 Chapter 5 Methods

This input dialog appears first.
The user enters 2 and clicks OK.

This message dialog shows
the results.

Figure 5-17 Interaction with the CupConverter program

 5.4 Returning a Value from a Method 301

code Listing 5-11 (ReturnString.java)

 1 /**
 2 This program demonstrates a method that
 3 returns a reference to a String object.
 4 */
 5
 6 public class ReturnString
 7 {
 8 public static void main(String[] args)
 9 {
10 String customerName;
11
12 customerName = fullName("John", "Martin");
13 System.out.println(customerName);
14 }
15
16 /**
17 The fullName method accepts two String arguments
18 containing a first and last name. It concatenates
19 them into a single String object.
20 @param first The first name.
21 @param last The last name.
22 @return A reference to a String object containing
23 the first and last names.
24 */
25
26 public static String fullName(String first, String last)
27 {
28 String name;
29
30 name = first + " " + last;
31 return name;
32 }
33 }

program output

John Martin

Line 12 calls the fullName method, passing "John" and "Martin" as arguments. The method
returns a reference to a String object containing "John Martin". The reference is assigned
to the customerName variable. This is illustrated in Figure 5-18.

302 Chapter 5 Methods

Figure 5-18 The fullName method returning a reference to a String object

checkpoint

 www.myprogramminglab.com

5.11 Look at the following method header. What type of value does the method return?

public static double getValue(int a, float b, String c)

5.12 Write the header for a method named days. The method should return an int and
have three int parameter variables: years, months, and weeks.

5.13 Write the header for a method named distance. The method should return a
double and have two double parameter variables: rate and time.

5.14 Write the header for a method named lightYears. The method should return a
long and have one long parameter variable: miles.

5.5 problem solving with Methods

concepT: A large, complex problem can be solved a piece at a time by methods.

At the beginning of this chapter we introduced the idea of using methods to “divide and
conquer” a problem. Often the best way to solve a complex problem is to break it down
into smaller problems, and then solve the smaller problems. The process of breaking down
a problem into smaller pieces is called functional decomposition.

In functional decomposition, instead of writing one long method that contains all of the
statements necessary to solve a problem, small methods are written, which each solve a
specific part of the problem. These small methods can then be executed in the desired order
to solve the problem.

Let’s look at an example. The program in Code Listing 5-12 reads 30 days of sales amounts
from a file, and then displays the total sales and average daily sales. Here’s a brief pseudo-
code model of the algorithm:

Ask the user to enter the name of the file.
Get the total of the sales amounts in the file.
Calculate the average daily sales.
Display the total and average daily sales.

http://www.myprogramminglab.com

 5.5 Problem Solving with Methods 303

code Listing 5-12 (SalesReport.java)

 1 import java.util.Scanner; // For the Scanner class
 2 import java.io.*; // For file I/O classes
 3 import javax.swing.JOptionPane; // For the JOptionPane class
 4
 5 /**
 6 This program opens a file containing the sales
 7 amounts for 30 days. It calculates and displays
 8 the total sales and average daily sales.
 9 */
 10
 11 public class SalesReport
 12 {
 13 public static void main(String[] args) throws IOException
 14 {
 15 final int NUM_DAYS = 30; // Number of days of sales
 16 String filename; // The name of the file to open
 17 double totalSales; // Total sales for period
 18 double averageSales; // Average daily sales
 19
 20 // Get the name of the file.
 21 filename = getFileName();
 22
 23 // Get the total sales from the file.
 24 totalSales = getTotalSales(filename);
 25
 26 // Calculate the average.
 27 averageSales = totalSales / NUM_DAYS;
 28
 29 // Display the total and average.
 30 displayResults(totalSales, averageSales);
 31
 32 System.exit(0);
 33 }
 34
 35 /**
 36 The getFileName method prompts the user to enter
 37 the name of the file to open.
 38 @return A reference to a String object containing
 39 the name of the file.
 40 */

The file MonthlySales.txt, in this chapter’s source code (available at www.pearsonhighered.
com/gaddis), is used to test the program. Figure 5-19 shows interaction with the program
during execution.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

304 Chapter 5 Methods

 41
 42 public static String getFileName()
 43 {
 44 String file; // To hold the file name
 45
 46 // Prompt the user to enter a file name.
 47 file = JOptionPane.showInputDialog(
 48 "Enter the name of the file\n" +
 49 "containing 30 days of sales amounts.");
 50
 51 // Return the name.
 52 return file;
 53 }
 54
 55 /**
 56 The getTotalSales method opens a file and
 57 reads the daily sales amounts, accumulating
 58 the total. The total is returned.
 59 @param filename The name of the file to open.
 60 @return The total of the sales amounts.
 61 */
 62
 63 public static double getTotalSales(String filename) throws IOException
 64 {
 65 double total = 0.0; // Accumulator
 66 double sales; // A daily sales amount
 67
 68 // Open the file.
 69 File file = new File(filename);
 70 Scanner inputFile = new Scanner(file);
 71
 72 // This loop processes the lines read from the file,
 73 // until the end of the file is encountered.
 74 while (inputFile.hasNext())
 75 {
 76 // Read a double from the file.
 77 sales = inputFile.nextDouble();
 78
 79 // Add sales to the value already in total.
 80 total += sales;
 81 }
 82
 83 // Close the file.
 84 inputFile.close();
 85
 86 // Return the total sales.
 87 return total;

 5.5 Problem Solving with Methods 305

 88 }
 89
 90 /**
 91 The displayResults method displays the total and
 92 average daily sales.
 93 @param total The total sales.
 94 @param avg The average daily sales.
 95 */
 96
 97 public static void displayResults(double total, double avg)
 98 {
 99 // Display the formatted total and average sales.
100 JOptionPane.showMessageDialog(null,
101 String.format("The total sales for the period is $%,.2f\n" +
102 "The average daily sales were $%,.2f",
103 total, avg));
104 }
105 }

Instead of writing the entire program in the main method, the algorithm was broken down
into the following methods:

•	 getFileName—This method displays an input dialog box asking the user to enter the
name of the file containing 30 days of sales amounts. The method returns a reference
to a String object containing the name entered by the user.

•	 getTotalSales—This method accepts the name of a file as an argument. The file is
opened, the sales amounts are read from it, and the total of the sales amounts is
 accumulated. The method returns the total as a double.

•	 displayResults—This method accepts as arguments the total sales and the average
daily sales. It displays a message dialog box indicating these values.

1

2

Figure 5-19 Interaction with the SalesReport.java program

306 Chapter 5 Methods

calling Methods That Throw exceptions
One last thing about the SalesReport.java program should be discussed. Notice that the main
method header (in line 13) and the getTotalSales method header (in line 63) both have a
throws IOException clause. The getTotalSales method has the clause because it uses a
Scanner object to open a file. As you know from Chapter 4, any method that uses a Scanner
object to open a file should have a throws IOException clause in its header. Let’s quickly
review why this is so.

When a Scanner object has a problem opening a file, it throws an exception known as
IOException. Java requires that either (a) the exception is handled in the method that caused
it to occur, or (b) the method terminates and throws the exception again. For now you must
write your methods to throw the exception again because you will not learn how to handle
exceptions until Chapter 11. By writing a throws IOException clause in a method’s header,
you are telling the compiler that the method does not handle the exception. Instead, it
throws the exception again.

That explains why the getTotalSales method has the throws IOException clause, but it
doesn’t explain why the main method has one. After all, main doesn’t use a Scanner object to
perform any file operations. The reason main has to have the clause is because main calls the
getTotalSales method. If the Scanner object in getTotalSales throws an IOException, the
getTotalSales method terminates and throws the IOException again. That means that main
must either handle the exception, or terminate and throw it once again. When the main
method throws the exception, the JVM displays an error message on the screen.

Tip: Until you learn how to handle exceptions in Chapter 11, just remember this when
writing programs that throw exceptions: If a method calls another method that has a
throws clause in its header, then the calling method should have the same throws clause.

5.6 common errors to Avoid
•	 Putting a semicolon at the end of a method header. Method headers are never termi-

nated with a semicolon.
•	 Writing modifiers or return types in a method call statement. Method modifiers and

return types are written in method headers, but never in method calls.
•	 Forgetting to write the empty parentheses in a call to a method that accepts no argu-

ments. You must always write the parentheses in a method call statement, even if the
method doesn’t accept arguments.

•	 Forgetting to pass arguments to methods that require them. If a method has parame-
ter variables, you must provide arguments when calling the method.

•	 Passing an argument of a data type that cannot be automatically converted to the data
type of the parameter variable. Java will automatically perform a widening conversion
if the argument’s data type is ranked lower than the parameter variable’s data type.
But Java will not automatically convert an argument to a lower-ranking data type.

•	 Attempting to access a parameter variable with code outside the method where the variable
is declared. A parameter variable is visible only within the method it is declared in.

 Review Questions and Exercises 307

•	 Not writing the data type of each parameter variable in a method header. Each param-
eter variable declaration inside the parentheses of a method header must include the
variable’s data type.

•	 Changing the contents of a method’s parameter variable and expecting the argument
that was passed into the parameter to change as well. Method arguments are passed
by value, which means that a copy of the argument is passed into a parameter vari-
able. Changes to the parameter variable have no effect on the argument.

•	 Using a variable to receive a method’s return value when the variable’s data type is
incompatible with the data type of the return value. A variable that receives a meth-
od’s return value must be of a data type that is compatible with the data type of the
return value.

•	 Not writing a return statement in a value-returning method. If a method’s return type
is anything other than void, it should return a value.

•	 Not writing a required throws clause in a method that calls another method. Any
method that calls a method with a throws clause in its header must either handle the
potential exception or have the same throws clause. You will learn how to handle
exceptions in Chapter 11.

Review Questions and exercises
Multiple choice and True/False

 1. This type of method does not return a value.
a. null
b. void
c. empty
d. anonymous

 2. This appears at the beginning of a method definition.
a. semicolon
b. parentheses
c. body
d. header

 3. The body of a method is enclosed in __________.
a. curly braces { }
b. square brackets []
c. parentheses ()
d. quotation marks ""

 4. A method header can contain __________.
a. method modifiers
b. the method return type
c. the method name
d. a list of parameter declarations
e. all of these
f. none of these

308 Chapter 5 Methods

 5. A value that is passed into a method when it is called is known as a(n) __________.
a. parameter
b. argument
c. signal
d. return value

 6. A variable that receives a value that is passed into a method is known as a(n)
__________.
a. parameter
b. argument
c. signal
d. return value

 7. This javadoc tag is used to document a parameter variable.
a. @parameter
b. @param
c. @paramvar
d. @arg

 8. This statement causes a method to end and sends a value back to the statement that
called the method.
a. end
b. send
c. exit
d. return

 9. This javadoc tag is used to document a method’s return value.
a. @methodreturn
b. @ret
c. @return
d. @returnval

 10. True or False: You terminate a method header with a semicolon.

 11. True or False: When passing an argument to a method, Java will automatically per-
form a widening conversion (convert the argument to a higher-ranking data type), if
necessary.

 12. True or False: When passing an argument to a method, Java will automatically per-
form a narrowing conversion (convert the argument to a lower-ranking data type), if
necessary.

 13. True or False: A parameter variable’s scope is the entire program that contains the
method in which the parameter is declared.

 14. True or False: When code in a method changes the value of a parameter, it also
changes the value of the argument that was passed into the parameter.

 15. True or False: When an object, such as a String, is passed as an argument, it is actu-
ally a reference to the object that is passed.

 Review Questions and Exercises 309

 16. True or False: The contents of a String object cannot be changed.

 17. True or False: When passing multiple arguments to a method, the order in which the
arguments are passed is not important.

 18. True or False: No two methods in the same program can have a local variable with
the same name.

 19. True or False: It is possible for one method to access a local variable that is declared
in another method.

 20. True or False: You must have a return statement in a value-returning method.

Find the error

 1. Find the error in the following method definition:

// This method has an error!
public static void sayHello();
{
 System.out.println("Hello");
}

 2. Look at the following method header:

public static void showValue(int x)

 The following code has a call to the showValue method. Find the error.

int x = 8;
showValue(int x); // Error!

 3. Find the error in the following method definition:

// This method has an error!
public static double timesTwo(double num)
{
 double result = num * 2;
}

 4. Find the error in the following method definition:

// This method has an error!
public static int half(double num)
{
 double result = num / 2.0;
 return result;
}

Algorithm Workbench

 1. Examine the following method header, and then write an example call to the method:

public static void doSomething(int x)

310 Chapter 5 Methods

 2. Here is the code for the displayValue method, shown earlier in this chapter:

public static void displayValue(int num)
{
 System.out.println("The value is " + num);
}

 For each of the following code segments, indicate whether it will successfully compile
or cause an error:

a. displayValue(100);
b. displayValue(6.0);
c. short s = 5;
 displayValue(s);
d. long num = 1;
 displayValue(num);
e. displayValue(6.2f);
f. displayValue((int) 7.5);

 3. Look at the following method header:

public static void myMethod(int a, int b, int c)

 Now look at the following call to myMethod:

myMethod(3, 2, 1);

 When this call executes, what value will be stored in a? What value will be stored in b?
What value will be stored in c?

 4. What will the following program display?

public class ChangeParam
{
 public static void main(String[] args)
 {
 int x = 1;
 double y = 3.4;
 System.out.println(x + " " + y);
 changeUs(x, y);
 System.out.println(x + " " + y);
 }

 public static void changeUs(int a, double b)
 {
 a = 0;
 b = 0.0;
 System.out.println(a + " " + b);
 }
}

 Review Questions and Exercises 311

 5. A program contains the following method definition:

public static int cube(int num)
{
 return num * num * num;
}

 Write a statement that passes the value 4 to this method and assigns its return value
to a variable named result.

 6. A program contains the following method:

public static void display(int arg1, double arg2, char arg3)
{
 System.out.println("The values are " + arg1 + ", " +
 arg2 + ", and " + arg3);
}

 Write a statement that calls this method and passes the following variables as
 arguments:

char initial = 'T';
int age = 25;
double income = 50000.00;

 7. Write a method named timesTen. The method should accept a double argument, and
return a double value that is ten times the value of the argument.

 8. Write a method named square that accepts an integer argument and returns the square
of that argument.

 9. Write a method named getName that prompts the user to enter his or her first name,
and then returns the user’s input.

 10. Write a method named quartersToDollars. The method should accept an int argu-
ment that is a number of quarters, and return the equivalent number of dollars as a
double. For example, if you pass 4 as an argument, the method should return 1.0; and
if you pass 7 as an argument, the method should return 1.75.

short Answer

 1. What is the “divide and conquer” approach to problem solving?

 2. What is the difference between a void method and a value-returning method?

 3. What is the difference between an argument and a parameter variable?

 4. Where do you declare a parameter variable?

 5. Explain what is meant by the phrase “pass by value.”

 6. Why do local variables lose their values between calls to the method in which they are
declared?

312 Chapter 5 Methods

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. showChar Method

Write a method named showChar. The method should accept two arguments: a reference to
a String object and an integer. The integer argument is a character position within the
String, with the first character being at position 0. When the method executes, it should
display the character at that character position. Here is an example of a call to the method:

showChar("New York", 2);

In this call, the method will display the character w because it is in position 2. Demonstrate
the method in a complete program.

2. Retail price calculator

Write a program that asks the user to enter an item’s wholesale cost and its markup percent-
age. It should then display the item’s retail price. For example:

•	 If	an	item’s	wholesale	cost	is	5.00	and	its	markup	percentage	is	100	percent,	then	the	
item’s retail price is 10.00.

•	 If	an	item’s	wholesale	cost	is	5.00	and	its	markup	percentage	is	50	percent,	then	the	
item’s retail price is 7.50.

The program should have a method named calculateRetail that receives the wholesale
cost and the markup percentage as arguments, and returns the retail price of the item.

3. Rectangle Area—complete the program

If you have downloaded the book’s source code from www.pearsonhighered.com/gaddis,
you will find a partially written program named AreaRectangle.java in this chapter’s
source code folder. Your job is to complete the program. When it is complete, the program
will ask the user to enter the width and length of a rectangle, and then display the rectan-
gle’s area. The program calls the following methods, which have not been written:

•	 getLength—This method should ask the user to enter the rectangle’s length, and then
return that value as a double.

•	 getWidth—This method should ask the user to enter the rectangle’s width, and then
return that value as a double.

•	 getArea—This method should accept the rectangle’s length and width as arguments, and
return the rectangle’s area. The area is calculated by multiplying the length by the width.

•	 displayData—This method should accept the rectangle’s length, width, and area as
arguments, and display them in an appropriate message on the screen.

4. paint Job estimator

A painting company has determined that for every 115 square feet of wall space, one gallon
of paint and eight hours of labor will be required. The company charges $18.00 per hour
for labor. Write a program that allows the user to enter the number of rooms to be painted
and the price of the paint per gallon. It should also ask for the square feet of wall space in
each room. The program should have methods that return the following data:

•	 The	number	of	gallons	of	paint	required
•	 The	hours	of	labor	required

The Retail
Price

Calculator
Problem

VideoNote

http://www.pearsonhighered.com/gaddis
http://www.myprogramminglab.com

 Programming Challenges 313

•	 The	cost	of	the	paint
•	 The	labor	charges
•	 The	total	cost	of	the	paint	job

Then it should display the data on the screen.

5. Falling Distance

When an object is falling because of gravity, the following formula can be used to determine
the distance the object falls in a specific time period:

d 5 ½ gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and t is the
amount of time, in seconds, that the object has been falling.

Write a method named fallingDistance that accepts an object’s falling time (in seconds) as
an argument. The method should return the distance, in meters, that the object has fallen
during that time interval. Demonstrate the method by calling it in a loop that passes the
values 1 through 10 as arguments, and displays the return value.

6. celsius Temperature Table

The formula for converting a temperature from Fahrenheit to Celsius is

C 5 5
9

 (F 2 32)

where F is the Fahrenheit temperature and C is the Celsius temperature. Write a method
named celsius that accepts a Fahrenheit temperature as an argument. The method
should return the temperature, converted to Celsius. Demonstrate the method by calling
it in a loop that displays a table of the Fahrenheit temperatures 0 through 20 and their
Celsius equivalents.

7. Test Average and grade

Write a program that asks the user to enter five test scores. The program should display
a letter grade for each score and the average test score. Write the following methods in
the program:

•	 calcAverage—This method should accept five test scores as arguments and return the
average of the scores.

•	 determineGrade—This method should accept a test score as an argument and return a
letter grade for the score, based on the following grading scale:

Score Letter Grade

90–100 A

80–89 B
70–79 C
60–69 D
Below 60 F

314 Chapter 5 Methods

8. conversion program

Write a program that asks the user to enter a distance in meters. The program will then pre-
sent the following menu of selections:

1. Convert to kilometers
2. Convert to inches
3. Convert to feet
4. Quit the program

The program will convert the distance to kilometers, inches, or feet, depending on the user’s
selection. Here are the specific requirements:

•	 Write	a	void method named showKilometers, which accepts the number of meters as
an argument. The method should display the argument converted to kilometers. Con-
vert the meters to kilometers using the following formula:

kilometers = meters * 0.001

•	 Write	a	void method named showInches, which accepts the number of meters as an
argument. The method should display the argument converted to inches. Convert the
meters to inches using the following formula:

inches = meters * 39.37

•	 Write	a	void method named showFeet, which accepts the number of meters as an
argument. The method should display the argument converted to feet. Convert the
meters to feet using the following formula:

feet = meters * 3.281

•	 Write	a	void method named menu that displays the menu of selections. This method
should not accept any arguments.

•	 The	program	should	continue	to	display	the	menu	until	the	user	enters	4	to	quit	the	
program.

•	 The	program	should	not	accept	negative	numbers	for	the	distance	in	meters.
•	 If	the	user	selects	an	invalid	choice	from	the	menu,	the	program	should	display	an	

error message.

Here is an example session with the program, using console input. The user’s input is shown
in bold.

Enter a distance in meters: 500 [enter]
1. Convert to kilometers
2. Convert to inches
3. Convert to feet
4. Quit the program

Enter your choice: 1 [enter]
500 meters is 0.5 kilometers.

1. Convert to kilometers
2. Convert to inches
3. Convert to feet
4. Quit the program

 Programming Challenges 315

Enter your choice: 3 [enter]
500 meters is 1640.5 feet.

1. Convert to kilometers
2. Convert to inches
3. Convert to feet
4. Quit the program

Enter your choice: 4 [enter]
Bye!

9. Distance Traveled Modification

The distance a vehicle travels can be calculated as follows:

Distance 5 Speed * Time

Write a method named distance that accepts a vehicle’s speed and time as arguments, and
returns the distance the vehicle has traveled. Modify the “Distance Traveled” program you
wrote in Chapter 4 (Programming Challenge 2) to use the method.

10. stock profit

The profit from the sale of a stock can be calculated as follows:

Profit 5 ((NS 3 SP) 2 SC) 2 ((NS 3 PP) 1 PC)

where NS is the number of shares, PP is the purchase price per share, PC is the purchase
commission paid, SP is the sale price per share, and SC is the sale commission paid. If the
calculation yields a positive value, then the sale of the stock resulted in a profit. If the cal-
culation yields a negative number, then the sale resulted in a loss.

Write a method that accepts as arguments the number of shares, the purchase price per
share, the purchase commission paid, the sale price per share, and the sale commission
paid. The method should return the profit (or loss) from the sale of stock. Demonstrate the
method in a program that asks the user to enter the necessary data and displays the amount
of the profit or loss.

11. Multiple stock sales

Use the method that you wrote for Programming Challenge 10 (Stock Profit) in a program
that calculates the total profit or loss from the sale of multiple stocks. The program should
ask the user for the number of stock sales, and the necessary data for each stock sale. It
should accumulate the profit or loss for each stock sale and then display the total.

12. Kinetic energy

In physics, an object that is in motion is said to have kinetic energy. The following formula
can be used to determine a moving object’s kinetic energy:

KE 5 ½ mv2

The variables in the formula are as follows: KE is the kinetic energy, m is the object’s mass
in kilograms, and v is the object’s velocity, in meters per second.

316 Chapter 5 Methods

Write a method named kineticEnergy that accepts an object’s mass (in kilograms) and
velocity (in meters per second) as arguments. The method should return the amount of
kinetic energy that the object has. Demonstrate the method by calling it in a program that
asks the user to enter values for mass and velocity.

13. isPrime Method

A prime number is a number that is evenly divisible only by itself and 1. For example, the
number 5 is prime because it can be evenly divided only by 1 and 5. The number 6, however,
is not prime because it can be divided evenly by 1, 2, 3, and 6.

Write a method named isPrime, which takes an integer as an argument and returns true if
the argument is a prime number, or false otherwise. Demonstrate the method in a complete
program.

Tip: Recall that the % operator divides one number by another, and returns the remain-
der of the division. In an expression such as num1 % num2, the % operator will return 0 if
num1 is evenly divisible by num2.

14. prime number List

Use the isPrime method that you wrote in Programming Challenge 13 in a program that
stores a list of all the prime numbers from 1 through 100 in a file.

15. even/odd counter

You can use the following logic to determine whether a number is even or odd:

if ((number % 2) == 0)
{
 // The number is even.
}
else
{
 // The number is odd.
}

Write a program with a method named isEven that accepts an int argument. The method
should return true if the argument is even, or false otherwise. The program’s main method
should use a loop to generate 100 random integers. It should use the isEven method to
determine whether each random number is even, or odd. When the loop is finished, the
program should display the number of even numbers that were generated, and the number
of odd numbers.

16. present Value

Suppose you want to deposit a certain amount of money into a savings account, and then
leave it alone to draw interest for the next 10 years. At the end of 10 years, you would like
to have $10,000 in the account. How much do you need to deposit today to make that
 happen? You can use the following formula, which is known as the present value formula,
to find out:

P 5
F

(1 1 r)n

 Programming Challenges 317

The terms in the formula are as follows:

•	 P is the present value, or the amount that you need to deposit today.
•	 F is the future value that you want in the account. (In this case, F is $10,000.)
•	 r is the annual interest rate.
•	 n is the number of years that you plan to let the money sit in the account.

Write a method named presentValue that performs this calculation. The method should
accept the future value, annual interest rate, and number of years as arguments. It should
return the present value, which is the amount that you need to deposit today. Demonstrate
the method in a program that lets the user experiment with different values for the for-
mula’s terms.

17. Rock, paper, scissors game

Write a program that lets the user play the game of Rock, Paper, Scissors against the com-
puter. The program should work as follows.

1. When the program begins, a random number in the range of 1 through 3 is generated. If
the number is 1, then the computer has chosen rock. If the number is 2, then the com-
puter has chosen paper. If the number is 3, then the computer has chosen scissors. (Don’t
display the computer’s choice yet.)

2. The user enters his or her choice of “rock”, “paper”, or “scissors” at the keyboard. (You
can use a menu if you prefer.)

3. The computer’s choice is displayed.
4. A winner is selected according to the following rules:

•	 If	one	player	chooses	rock	and	the	other	player	chooses	scissors,	then	rock	wins.	(The	
rock smashes the scissors.)

•	 If	one	player	chooses	scissors	and	the	other	player	chooses	paper,	then	scissors	wins.	
(Scissors cuts paper.)

•	 If	one	player	chooses	paper	and	the	other	player	chooses	rock,	then	paper	wins.	(Paper	
wraps rock.)

•	 If	both	players	make	the	same	choice,	the	game	must	be	played	again	to	determine	
the winner.

Be sure to divide the program into methods that perform each major task.

18. esp game

Write a program that tests your ESP (extrasensory perception). The program should ran-
domly select the name of a color from the following list of words:

Red, Green, Blue, Orange, Yellow

To select a word, the program can generate a random number. For example, if the number
is 0, the selected word is Red; if the number is 1, the selected word is Green; and so forth.

Next, the program should ask the user to enter the color that the computer has selected.
After the user has entered his or her guess, the program should display the name of the ran-
domly selected color. The program should repeat this 10 times and then display the number
of times the user correctly guessed the selected color. Be sure to modularize the program
into methods that perform each major task.

This page intentionally left blank

319

A First Look at Classes

C
H

A
P

T
E

R

6
Topics

 6.1 Objects and Classes
 6.2 Writing a Simple Class, Step by Step
 6.3 Instance Fields and Methods
 6.4 Constructors
 6.5 Passing Objects as Arguments
 6.6 Overloading Methods and

Constructors
 6.7 Scope of Instance Fields

 6.8 Packages and import Statements
 6.9 Focus on Object-Oriented Design:

Finding the Classes and Their
Responsibilities

 On the Web: Case Study––
The Amortization Class

 6.10 Common Errors to Avoid

6.1 objects and classes

concepT: An object is a software component that exists in memory and serves a
specific purpose in a program. An object is created from a class that
contains code describing the object.

If you have ever driven a car, you know that a car consists of a lot of components. It has a
steering wheel, an accelerator pedal, a brake pedal, a gear shifter, a speedometer, and numer-
ous other devices that the driver interacts with. There are also a lot of components under
the hood, such as the engine, the battery, the radiator, and so forth. So, a car is not just one
single object, but rather a collection of objects that work together.

This same notion applies to computer programming as well. Most programming lan-
guages in use today are object-oriented. With an object-oriented language, such as Java,
you create programs that are made of objects. In programming, however, an object isn’t a
physical device, like a steering wheel or a brake pedal; it’s a software component that
exists in the computer’s memory and performs a specific task. In software, an object has two
general capabilities:

•	 An	object	can	store	data.	The	data	stored	in	an	object	are	commonly	called	fields.
•	 An	object	can	perform	operations.	The	operations	that	an	object	can	perform	are	

called methods.

320 Chapter 6 A First Look at Classes

Objects are very important in Java. Here are some examples of objects that you have previ-
ously learned about:

•	 If	you	need	to	read	input	from	the	keyboard,	or	from	a	file,	you	can	use	a	Scanner object.
•	 If	you	need	to	generate	random	numbers,	you	can	use	a	Random object.
•	 If	you	need	to	write	output	to	a	file,	you	can	use	a	PrintWriter object.

When a program needs the services of a particular type of object, it creates that object in
memory, and then calls that object’s methods as necessary.

classes: Where objects come From
Objects are very useful, but they don’t just magically appear in your program. Before a spe-
cific	type	of	object	can	be	used	by	a	program,	that	object	has	to	be	created	in	memory.	And,	
before an object can be created in memory, you must have a class for the object.

A	class is code that describes a particular type of object. It specifies the data that an object
can hold (the object’s fields), and the actions that an object can perform (the object’s meth-
ods). You can think of a class as a code “blueprint” that can be used to create a particular
type of object. It serves a purpose similar to that of the blueprint for a house. The blueprint
itself is not a house, but rather a detailed description of a house. When we use the blueprint
to build an actual house, we could say we are building an instance of the house described by
the blueprint. If we so desire, we can build several identical houses from the same blueprint.
Each house is a separate instance of the house described by the blueprint. This idea is illus-
trated in Figure 6-1.

House Plan

Living Room

Bedroom

Blueprint that describes a house

Instances of the house described by the blueprint

Figure 6-1 A blueprint and houses built from the blueprint

So, a class is not an object, but a description of an object. When a program is running, it can
use the class to create, in memory, as many objects of a specific type as needed. Each object
that is created from a class is called an instance of the class.

 6.1 Objects and Classes 321

classes in the Java Api
So far, the objects that you have used in your programs are created from classes in the Java
API.	For	example,	each	time	you	create	a	Scanner object, you are creating an instance of a
class named Scanner,	which	is	in	the	Java	API.	Likewise,	when	you	create	a	Random object,
you are creating an instance of a class named Random,	which	is	in	the	Java	API.	The	same	is	
true for PrintWriter objects. When you need to write data to a file, you create an instance
of the PrintWriter	class,	which	is	in	the	Java	API.	Look	at	Code	Listing	6-1,	a	program	that	
uses all of these types of objects.

code Listing 6-1 (ObjectDemo.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2 import java.util.Random; // Needed for the Random class
 3 import java.io.*; // Needed for file I/O classes
 4
 5 /**
 6 This program writes random numbers to a file.
 7 */
 8
 9 public class ObjectDemo
10 {
11 public static void main(String[] args) throws IOException
12 {
13 int maxNumbers; // Max number of random numbers
14 int number; // To hold a random number
15
16 // Create a Scanner object for keyboard input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Create a Random object to generate random numbers.
20 Random rand = new Random();
21
22 // Create a PrintWriter object to open the file.
23 PrintWriter outputFile = new PrintWriter("numbers.txt");
24
25 // Get the number of random numbers to write.
26 System.out.print("How many random numbers should I write? ");
27 maxNumbers = keyboard.nextInt();
28

noTe: Up to this chapter, you have used classes for a different purpose: as containers
for	a	program’s	methods.	All	of	the	Java	programs	that	you	have	written	so	far	have	had	
a class containing a main method, and possibly other methods. In this chapter, you will
learn how to write classes from which objects can be created.

322 Chapter 6 A First Look at Classes

29 // Write the random numbers to the file.
30 for (int count = 0; count < maxNumbers; count++)
31 {
32 // Generate a random integer.
33 number = rand.nextInt();
34
35 // Write the random integer to the file.
36 outputFile.println(number);
37 }
38
39 // Close the file.
40 outputFile.close();
41 System.out.println("Done");
42 }
43 }

program output with example input shown in Bold

How many random numbers should I write? 10 [enter]
Done

In a nutshell, this program writes a specified number of random numbers to a file
named numbers.txt. When the program runs, it asks the user for the number of ran-
dom numbers to write. It then writes that many numbers to the file. To do its job, it creates
three objects:

•	 In	line	17	it	creates	an	instance	of	the	Scanner class, and assigns the object’s address to
a variable named keyboard. The object will be used to read keyboard input.

•	 In	line	20	it	creates	an	instance	of	the	Random class, and assigns the object’s address to
a variable named rand. The object will be used to generate random numbers.

•	 In	line	23	it	creates	an	instance	of	the	PrintWriter class, and assigns the object’s
address to a variable named outputFile. The object will be used to write output to the
numbers.txt file.

Figure	6-2	illustrates	the	three	objects	that	the	program	creates.	As	the	program	runs,	it	uses	
these objects to accomplish certain tasks. For example:

•	 In	line	27	the	Scanner object’s nextInt method is called to read the user’s input (which
is the number of random numbers to generate). The value that is returned from the
method is assigned to the maxNumbers variable.

•	 In	line	33	the	Random object’s nextInt method is called to get a random integer. The
value that is returned from the method is assigned to the number variable.

•	 In	line	36	the	PrintWriter object’s println method is called to write the value of the
number variable to the file.

•	 In	line	40	the	PrintWriter object’s close method is called to close the file.

This	simple	example	demonstrates	how	most	programs	work.	A	program	creates	the	vari-
ous objects that it needs to complete its job. Each object has a set of methods that can be
called, causing the object to perform an operation. When the program needs an object to do
something, it calls the appropriate method.

 6.1 Objects and Classes 323

primitive Variables vs. objects
Chapter	2	introduced	you	to	the	Java	primitive	data	types:	byte, short, int, long, char,
float, double, and boolean. By now you have seen many programs that use both primitive
data	types	and	objects.	In	fact,	the	program	in	Code	Listing	6-1	uses	two	primitive	variables	
(maxNumbers and number, both int variables), as well as a Scanner object, a Random object,
and a PrintWriter object.

You’ve probably noticed that the steps required to create an object differ from the steps
required to create a primitive variable. For example, to create an int variable, you simply
need a declaration such as the following:

int wholeNumber;

But, to create an object, you have to write some extra code. For example, the following
statement creates a Random object:

Random rand = new Rand();

Primitive	variables,	such	as	ints, doubles, and so forth, are simply storage locations in
the	computer’s	memory.	A	primitive	data	type	is	called	“primitive”	because	a	variable	
created with a primitive data type has no built-in capabilities other than storing a value.
When you declare a primitive variable, the compiler sets aside, or allocates, a chunk of
memory that is big enough for that variable. For example, look at the following vari-
able declarations:

int wholeNumber;
double realNumber;

Recall	from	Chapter	2	that	an	int	uses	4	bytes	of	memory	and	a	double uses 8 bytes of
memory. These declaration statements will cause memory to be allocated as shown in
Figure	6-3.

keyboard
variable

Scanner object

outputFile
variable

PrintWriter object

rand
variable

Random object

Figure 6-2 Objects created by the ObjectDemo program

noTe: The import	statements	that	appear	in	lines	1	through	3	of	Code	Listing	6-1	
make the Scanner, Random, and PrintWriter classes available to the program. You will
learn	more	about	how	the	Java	API	is	organized,	and	why	you	need	these	import state-
ments later in this chapter.

324 Chapter 6 A First Look at Classes

The memory that is allocated for a primitive variable is the actual location that will hold
any value that is assigned to that variable. For example, suppose we use the following state-
ments	to	assign	values	to	the	variables	shown	in	Figure	6-3:

wholeNumber = 99;
realNumber = 123.45;

Figure	6-4	shows	how	the	assigned	values	are	stored	in	each	variable’s	memory	location.

int wholeNumber;

double realNumber;

4 bytes

8 bytes

Figure 6-3 Memory allocation

int wholeNumber;

99

double realNumber;

123.45

Figure 6-4 Values assigned to the variables

As	you	can	see	from	these	illustrations,	primitive	variables	are	very	straightforward.	When	
you are working with a primitive variable, you are using a storage location that holds a
piece of data.

This is different from the way that objects work. When you are working with an object, you
are typically using two things:

•	 The	object	itself,	which	must	be	created	in	memory
•	 A	reference	variable	that	refers	to	the	object

The object that is created in memory holds data of some sort and performs operations of
some sort. (Exactly what the data and operations are depends on what kind of object it is.)
In order to work with the object in code, you need some way to refer to the object. That’s
where the reference variable comes in. The reference variable doesn’t hold an actual piece of
data that your program will work with. Instead, it holds the object’s memory address. We
say that the variable references the object. When you want to work with the object, you use
the variable that references it.

Reference variables, also known as class type variables, can be used only to reference
objects. Figure 6-5 illustrates two objects that have been created in memory, each referenced
by a variable.

 6.1 Objects and Classes 325

To understand how reference variables and objects work together, think about flying a kite.
In order to fly a kite, you need a spool of string attached to it. When the kite is airborne, you
use the spool of string to hold on to the kite and control it. This is similar to the relationship
between	an	object	and	the	variable	that	references	the	object.	As	shown	in	Figure	6-6,	the	
object is like the kite, and the variable that references the object is like the spool of string.

Object

Reference
variable

Object

Reference
variable

Figure 6-5 Two objects referenced by variables

Object

Variable referencing
the object

Figure 6-6 The kite and string metaphor

Creating	an	object	typically	requires	the	following	two	steps:

 1. You declare a reference variable.
	 2.	 You create the object in memory, and assign its memory address to the reference variable.

After	you	have	performed	these	steps,	you	can	use	the	reference	variable	to	work	with	the	
object. Once again, here is the familiar example of how you create an object from the
Random class:

Random rand = new Random();

Let’s	look	at	the	different	parts	of	this	statement:

•	 The	first	part	of	the	statement,	appearing	on	the	left	side	of	the	= operator, reads
Random rand. This declares a variable named rand, which can be used to reference an
object of the Random type.

•	 The	second	part	of	the	statement,	appearing	on	the	right	side	of	the	= operator, reads
new Random(). The new operator creates an object in memory, and returns that object’s
memory address. So, the expression new Random() creates an object from the Random
class, and returns that object’s memory address.

326 Chapter 6 A First Look at Classes

•	 The	= operator assigns the memory address that was returned from the new operator
to the rand variable.

After	this	statement	executes,	the	rand variable will reference a Random object, as shown in
Figure	6-7.	The	rand variable can then be used to perform operations with the object, such
as generating random numbers.

Random object
rand

Figure 6-7 The rand variable references a Random object

checkpoint

www.myprogramminglab.com

6.1 What does an object use its fields for?

6.2	 What are an object’s methods?

6.3	 How is a class like a blueprint?

6.4	 You have programs that create Scanner, Random, and PrintWriter objects. Where
are the Scanner, Random, and PrintWriter classes?

6.5 What does the new operator do?

6.6 What values do reference variables hold?

6.7	 How is the relationship between an object and a reference variable similar to a kite
and a spool of string?

6.2 Writing a simple class, step by step

concepT: You can write your own classes to create the objects that you need in a
program. We will go through the process of writing a class in a step-by-
step fashion.

The	Java	API	provides	many	prewritten	classes,	ready	for	use	in	your	programs.	Sometimes,	
however, you will wish you had an object to perform a specific task, and no such class will
exist	in	the	Java	API.	This	is	not	a	problem,	because	you	can	write	your	own	classes	with	the	
specific fields and methods that you need for any situation.

In this section we will write a class named Rectangle. Each object that is created from the
Rectangle class will be able to hold data about a rectangle. Specifically, a Rectangle object
will have the following fields:

•	 	length. The length field will hold the rectangle’s length.
•	 	width. The width field will hold the rectangle’s width.

The Rectangle class will also have the following methods:

•	 	setLength. The setLength method will store a value in an object’s length field.
•	 	setWidth. The setWidth method will store a value in an object’s width field.

http://www.myprogramminglab.com

	 6.2	 Writing a Simple Class, Step by Step 327

•	 	getLength. The getLength method will return the value in an object’s length field.
•	 	getWidth. The getWidth method will return the value in an object’s width field.
•	 	getArea. The getArea method will return the area of the rectangle, which is the result

of an object’s length multiplied by its width.

When	designing	a	class	it	is	often	helpful	to	draw	a	UML	diagram.	UML	stands	for	Unified	
Modeling	Language.	It	provides	a	set	of	standard	diagrams	for	graphically	depicting	object-
oriented	systems.	Figure	6-8	shows	the	general	layout	of	a	UML	diagram	for	a	class.	Notice	
that the diagram is a box that is divided into three sections. The top section is where you
write the name of the class. The middle section holds a list of the class’s fields. The bottom
section holds a list of the class’s methods.

Figure 6-8 General layout of a UML diagram for a class

Following	this	layout,	Figure	6-9	shows	a	UML	diagram	for	our	Rectangle class. Throughout
this	book	we	frequently	use	UML	diagrams	to	illustrate	classes.

Figure 6-9 UML diagram for the Rectangle class

Writing the code for a class

Now	that	we	have	identified	the	fields	and	methods	that	we	want	the	Rectangle class to
have, let’s write the Java code. First, we use an editor to create a new file named Rectangle.
java. In the Rectangle.java file we will start by writing a general class “skeleton” as follows:

public class Rectangle
{
}

The key word public,	which	appears	in	the	first	line,	is	an	access	specifier.	An	access	speci-
fier indicates how the class may be accessed. The public access specifier indicates that the
class will be publicly available to code that is written outside the Rectangle.java	file.	Almost	
all of the classes that we write in this book are public.

Writing Classes and
Creating Objects

VideoNote

328 Chapter 6 A First Look at Classes

Following the access specifier is the key word class, followed by Rectangle, which is the
name of the class. On the next line an opening brace appears, which is followed by a closing
brace. The contents of the class, which are the fields and methods, will be written inside
these braces. The general format of a class definition is as follows:

AccessSpecifier class Name
{
 Members
}

In general terms, the fields and methods that belong to a class are referred to as the class’s
members.

Writing the code for the class Fields

Let’s	continue	writing	our	Rectangle class by filling in the code for some of its members.
First we will write the code for the class’s two fields, length and width. We will use variables
of the double data type for the fields. The new lines of code are shown in bold, as follows:

public class Rectangle
{
 private double length;
 private double width;
}

These two lines of code that we have added declare the variables length and width.	Notice	
that both declarations begin with the key word private, preceding the data type. The key
word private is an access specifier. It indicates that these variables may not be accessed by
statements outside the class.

By using the private access modifier, a class can hide its data from code outside the class.
When a class’s fields are hidden from outside code, the data is protected from accidental
corruption. It is a common practice to make all of a class’s fields private and to provide
access to those fields through methods only. In other words, a class usually has private
fields, and public	methods	that	access	those	fields.	Table	6-1	summarizes	the	difference	
between the private and public access specifiers.

Table 6-1 Summary of the private and public access specifiers for class members

Access Specifier Description

private When the private access specifier is applied to a class member, the
member cannot be accessed by code outside the class. The member
can be accessed only by methods that are members of the same class.

public When the public access specifier is applied to a class member, the
member can be accessed by code inside the class or outside.

Writing the setLength Method

Now	we	will	begin	writing	the	class	methods.	We	will	start	with	the	setLength method.
This method will allow code outside the class to store a value in the length field.

	 6.2	 Writing a Simple Class, Step by Step 329

Code	Listing	6-2	shows	the	Rectangle class at this stage of its development. The setLength
method	 is	 in	 lines	17	 through	20.	 (This	 file	 is	 in	 the	source	code	 folder	Chapter 06\
Rectangle Class Phase 1.)

code Listing 6-2 (Rectangle.java)

 1 /**
 2 Rectangle class, phase 1
 3 Under construction!
 4 */
 5
 6 public class Rectangle
 7 {
 8 private double length;
 9 private double width;
10
11 /**
12 The setLength method stores a value in the
13 length field.
14 @param len The value to store in length.
15 */
16
17 public void setLength(double len)
18 {
19 length = len;
20 }
21 }

In lines 11 through 15, we write a block comment that gives a brief description of the
method. It’s important always to write comments that describe a class’s methods so that in
the future, anyone reading the code will understand it. The definition of the method appears
in	lines	17	through	20.	Here	is	the	method	header:

public void setLength(double len)

The method header looks very much like any other method header that you learned to write
in	Chapter	5.	Let’s	look	at	the	parts	as	follows:

•	 public. The key word public is an access specifier. It indicates that the method may
be called by statements outside the class.

•	 void. This is the method’s return type. The key word void indicates that the method
returns no data to the statement that called it.

•	 setLength. This is the name of the method.
•	 (double len). This is the declaration of a parameter variable of the double data type,

named len.

Figure	6-10	labels	each	part	of	the	header	for	the	setLength method.

330 Chapter 6 A First Look at Classes

Notice	that	the	word	static does not appear in the method header. When a method is
designed to work on an instance of a class, it is referred to as an instance method, and you
do not write the word static in the header. Because this method will store a value in the
length field of an instance of the Rectangle class, it is an instance method. We will discuss
this in greater detail later.

After	the	header,	the	body	of	the	method	appears	inside	a	set	of	braces:

{
 length = len;
}

The body of this method has only one statement, which assigns the value of len to the
length field. When the method executes, the len parameter variable will hold the value of
an argument that is passed to the method. That value is assigned to the length field.

Before adding the other methods to the class, it might help if we demonstrate how the
setLength method works. First, notice that the Rectangle class does not have a main method.
This class is not a complete program, but is a blueprint that Rectangle objects may be cre-
ated from. Other programs will use the Rectangle class to create objects. The programs that
create and use these objects will have their own main methods. We can demonstrate the
class’s setLength method by saving the current contents of the Rectangle.java file and then
creating	the	program	shown	in	Code	Listing	6-3.

code Listing 6-3 (LengthDemo.java)

 1 /**
 2 This program demonstrates the Rectangle class's
 3 setLength method.
 4 */
 5
 6 public class LengthDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a Rectangle object and assign its
11 // address to the box variable.

Access Specifier

Return Type

Method Name

Parameter Variable Declaration

Figure 6-10 Header for the setLength method

	 6.2	 Writing a Simple Class, Step by Step 331

12 Rectangle box = new Rectangle();
13
14 // Indicate what we are doing.
15 System.out.println("Sending the value 10.0 " +
16 "to the setLength method.");
17
18 // Call the box object's setLength method.
19 box.setLength(10.0);
20
21 // Indicate we are done.
22 System.out.println("Done.");
23 }
24 }

program output

Sending the value 10.0 to the setLength method.
Done.

The	program	in	Code	Listing	6-3	must	be	saved	as	LengthDemo.java in the same folder or
directory as the file Rectangle.java. The following command can then be used with the Sun
JDK to compile the program:

javac LengthDemo.java

When the compiler reads the source code for LengthDemo.java and sees that a class named
Rectangle is being used, it looks in the current folder or directory for the file Rectangle.
class. That file does not exist, however, because we have not yet compiled Rectangle.java.
So, the compiler searches for the file Rectangle.java and compiles it. This creates the file
Rectangle.class, which makes the Rectangle class available. The compiler then finishes
compiling LengthDemo.java. The resulting LengthDemo.class file may be executed with the
following command:

java LengthDemo

The	output	of	the	program	is	shown	at	the	bottom	of	Code	Listing	6-3.

Let’s	look	at	each	statement	in	this	program’s	main method. First, the program uses the fol-
lowing	statement,	in	line	12,	to	create	a	Rectangle object and associate it with a variable:

Rectangle box = new Rectangle();

Let’s	dissect	the	statement	into	two	parts.	The	first	part	of	the	statement,

Rectangle box

declares a variable named box. The data type of the variable is Rectangle. (Because the
word Rectangle is not the name of a primitive data type, Java assumes it to be the name of
a class.) Recall that a variable of a class type is a reference variable, and it holds the memory
address of an object. When a reference variable holds an object’s memory address, it is said

332 Chapter 6 A First Look at Classes

that the variable references the object. So, the variable box will be used to reference a
Rectangle object. The second part of the statement is as follows:

= new Rectangle();

This part of the statement uses the key word new,	which	creates	an	object	in	memory.	After	
the word new, the name of a class followed by a set of parentheses appears. This specifies the
class that the object should be created from. In this case, an object of the Rectangle class is
created. The memory address of the object is then assigned (by the = operator) to the vari-
able box.	After	the	statement	executes,	the	variable	box will reference the object that was
created in memory. This is illustrated in Figure 6-11.

Notice	that	Figure	6-11	shows	the	Rectangle object’s length and width	fields	set	to	0.	All	of	
a	class’s	numeric	fields	are	initialized	to	0	by	default.

The statement in lines 15 and 16 uses the System.out.println method to display a mes-
sage on the screen. The next statement, in line 19, calls the box object’s setLength method
as follows:

box.setLength(10.0);

This	statement	passes	the	argument	10.0	to	the	setLength method. When the method exe-
cutes,	the	value	10.0	is	copied	into	the	len parameter variable. The method assigns the value
of len to the length	field	and	then	terminates.	Figure	6-12	shows	the	state	of	the	box object
after the method executes.

Figure 6-12 The state of the box object after the setLength method executes

Figure 6-11 The box variable references a Rectangle class object

Tip: The parentheses in this statement are required. It would be an error to write the
statement as follows:

Rectangle box = new Rectangle; // ERROR!!

	 6.2	 Writing a Simple Class, Step by Step 333

Writing the setWidth Method

Now	that	we’ve	seen	how	the	setLength method works, let’s add the setWidth method to
the Rectangle class. The setWidth method is similar to setLength. It accepts an argument,
which is assigned to the width	field.	Code	Listing	6-4	shows	the	updated	Rectangle class.
The setWidth	method	is	in	lines	28	through	31.	(This	file	is	stored	in	the	source	code	folder	
Chapter 06\Rectangle Class Phase 2.)

code Listing 6-4 (Rectangle.java)

 1 /**
 2 Rectangle class, phase 2
 3 Under construction!
 4 */
 5
 6 public class Rectangle
 7 {
 8 private double length;
 9 private double width;
10
11 /**
12 The setLength method stores a value in the
13 length field.
14 @param len The value to store in length.
15 */
16
17 public void setLength(double len)
18 {
19 length = len;
20 }
21
22 /**
23 The setWidth method stores a value in the
24 width field.
25 @param w The value to store in width.
26 */
27
28 public void setWidth(double w)
29 {
30 width = w;
31 }
32 }

334 Chapter 6 A First Look at Classes

The setWidth method has a parameter variable named w, which is assigned to the width
field. For example, assume that box references a Rectangle object and the following state-
ment is executed:

box.setWidth(20.0);

After	this	statement	executes,	the	box object’s width	field	will	be	set	to	20.0.

Writing the getLength and getWidth Methods

Because the length and width fields are private, we wrote the setLength and setWidth
methods to allow code outside the Rectangle class to store values in the fields. We must also
write methods that allow code outside the class to get the values that are stored in these
fields. That’s what the getLength and getWidth methods will do. The getLength method will
return the value stored in the length field, and the getWidth method will return the value
stored in the width field.

Here is the code for the getLength method:

public double getLength()
{
 return length;
}

Assume	that	size is a double variable and that box references a Rectangle object, and the
following statement is executed:

size = box.getLength();

This statement assigns the value that is returned from the getLength method to the size
variable.	After	this	statement	executes,	the	size variable will contain the same value as the
box object’s length field.

The getWidth method is similar to getLength. The code for the method follows:

public double getWidth()
{
 return width;
}

This method returns the value that is stored in the width field. For example, assume that
size is a double variable and that box references a Rectangle object, and the following
statement is executed:

size = box.getWidth();

This statement assigns the value that is returned from the getWidth method to the size vari-
able.	After	this	statement	executes,	the	size variable will contain the same value as the box
object’s width field.

Code	Listing	6-5	shows	the	Rectangle class with all of the members we have discussed so
far. The code for the getLength and getWidth	methods	is	shown	in	lines	33	through	53.	
(This file is stored in the source code folder Chapter 06\Rectangle Class Phase 3.)

	 6.2	 Writing a Simple Class, Step by Step 335

code Listing 6-5 (Rectangle.java)

 1 /**
 2 Rectangle class, phase 3
 3 Under construction!
 4 */
 5
 6 public class Rectangle
 7 {
 8 private double length;
 9 private double width;
10
11 /**
12 The setLength method stores a value in the
13 length field.
14 @param len The value to store in length.
15 */
16
17 public void setLength(double len)
18 {
19 length = len;
20 }
21
22 /**
23 The setWidth method stores a value in the
24 width field.
25 @param w The value to store in width.
26 */
27
28 public void setWidth(double w)
29 {
30 width = w;
31 }
32
33 /**
34 The getLength method returns a Rectangle
35 object's length.
36 @return The value in the length field.
37 */
38
39 public double getLength()
40 {
41 return length;
42 }
43
44 /**
45 The getWidth method returns a Rectangle
46 object's width.

336 Chapter 6 A First Look at Classes

47 @return The value in the width field.
48 */
49
50 public double getWidth()
51 {
52 return width;
53 }
54 }

Before	continuing	we	should	demonstrate	how	these	methods	work.	Look	at	the	program	in	
Code	Listing	6-6.	(This	file	is	also	stored	in	the	source	code	folder	Chapter 06\Rectangle
Class Phase 3.)

code Listing 6-6 (LengthWidthDemo.java)

 1 /**
 2 This program demonstrates the Rectangle class's
 3 setLength, setWidth, getLength, and getWidth methods.
 4 */
 5
 6 public class LengthWidthDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a Rectangle object.
11 Rectangle box = new Rectangle();
12
13 // Call the object's setLength method, passing 10.0
14 // as an argument.
15 box.setLength(10.0);
16
17 // Call the object's setWidth method, passing 20.0
18 // as an argument.
19 box.setWidth(20.0);
20
21 // Display the object's length and width.
22 System.out.println("The box's length is " +
23 box.getLength());
24 System.out.println("The box's width is " +
25 box.getWidth());
26 }
27 }

program output

The box's length is 10.0
The box's width is 20.0

	 6.2	 Writing a Simple Class, Step by Step 337

Let’s	take	a	closer	look	at	the	program.	In	line	11,	this	program	creates	a	Rectangle object,
which is referenced by the box variable. Then the following statements execute in lines 15
and 19:

box.setLength(10.0);
box.setWidth(20.0);

After	these	statements	execute,	the	box object’s length	field	is	set	to	10.0	and	its	width field
is	set	to	20.0.	The	state	of	the	object	is	shown	in	Figure	6-13.

Next,	the	following	statement	in	lines	22	and	23	executes	as	follows:

System.out.println("The box's length is " +
 box.getLength());

This statement calls the box.getLength()	method,	which	returns	the	value	10.0.	The	follow-
ing message is displayed on the screen:

The box's length is 10.0

Then	the	following	statement	executes	in	lines	24	and	25:

System.out.println("The box's width is " +
 box.getWidth());

This statement calls the box.getWidth()	method,	which	returns	the	value	20.0.	The	follow-
ing message is displayed on the screen:

The box's width is 20.0

Writing the getArea Method

The last method we will write for the Rectangle class is getArea. This method returns the
area of a rectangle, which is its length multiplied by its width. Here is the code for the
getArea method:

public double getArea()
{
 return length * width;
}

This method returns the result of the mathematical expression length * width. For exam-
ple, assume that area is a double variable and that box references a Rectangle object, and
the following code is executed:

box.setLength(10.0);
box.setWidth(20.0);
area = box.getArea();

Figure 6-13 State of the box object

338 Chapter 6 A First Look at Classes

The last statement assigns the value that is returned from the getArea method to the area
variable.	After	this	statement	executes,	the	area	variable	will	contain	the	value	200.0.

Code	Listing	6-7	shows	the	Rectangle class with all of the members we have discussed so
far. The getArea	method	appears	in	lines	61	through	64.	(This	file	is	stored	in	the	source	
code folder Chapter 06\Rectangle Class Phase 4.)

code Listing 6-7 (Rectangle.java)

 1 /**
 2 Rectangle class, phase 4
 3 Under construction!
 4 */
 5
 6 public class Rectangle
 7 {
 8 private double length;
 9 private double width;
10
11 /**
12 The setLength method stores a value in the
13 length field.
14 @param len The value to store in length.
15 */
16
17 public void setLength(double len)
18 {
19 length = len;
20 }
21
22 /**
23 The setWidth method stores a value in the
24 width field.
25 @param w The value to store in width.
26 */
27
28 public void setWidth(double w)
29 {
30 width = w;
31 }
32
33 /**
34 The getLength method returns a Rectangle
35 object's length.
36 @return The value in the length field.
37 */
38

	 6.2	 Writing a Simple Class, Step by Step 339

39 public double getLength()
40 {
41 return length;
42 }
43
44 /**
45 The getWidth method returns a Rectangle
46 object's width.
47 @return The value in the width field.
48 */
49
50 public double getWidth()
51 {
52 return width;
53 }
54
55 /**
56 The getArea method returns a Rectangle
57 object's area.
58 @return The product of length times width.
59 */
60
61 public double getArea()
62 {
63 return length * width;
64 }
65 }

The	program	in	Code	Listing	6-8	demonstrates	all	the	methods	of	the	Rectangle class,
including getArea. (This file is also stored in the source code folder Chapter 06\Rectangle
Class Phase 4.)

code Listing 6-8 (RectangleDemo.java)

 1 /**
 2 This program demonstrates the Rectangle class's
 3 setLength, setWidth, getLength, getWidth, and
 4 getArea methods.
 5 */
 6
 7 public class RectangleDemo
 8 {
 9 public static void main(String[] args)
10 {
11 // Create a Rectangle object.
12 Rectangle box = new Rectangle();
13

340 Chapter 6 A First Look at Classes

14 // Set length to 10.0 and width to 20.0.
15 box.setLength(10.0);
16 box.setWidth(20.0);
17
18 // Display the length.
19 System.out.println("The box's length is " +
20 box.getLength());
21
22 // Display the width.
23 System.out.println("The box's width is " +
24 box.getWidth());
25
26 // Display the area.
27 System.out.println("The box's area is " +
28 box.getArea());
29 }
30 }

program output

The box's length is 10.0
The box's width is 20.0
The box's area is 200.0

Accessor and Mutator Methods
As	mentioned	earlier,	 it	 is	common	practice	to	make	all	of	a	class’s	fields	private	and	to	
provide public methods for accessing and changing those fields. This ensures that the object
owning	those	fields	is	in	control	of	all	changes	being	made	to	them.	A	method	that	gets	a	
value from a class’s field but does not change it is known as an accessor method.	A	method	
that stores a value in a field or changes the value of a field in some other way is known as a
mutator method. In the Rectangle class, the methods getLength and getWidth are accessors,
and the methods setLength and setWidth are mutators.

noTe: Mutator methods are sometimes called “setters” and accessor methods are
sometimes called “getters.”

The importance of Data Hiding
Data hiding	is	an	important	concept	in	object-oriented	programming.	An	object	hides	its	
internal data from code that is outside the class that the object is an instance of. Only the
class’s methods may directly access and make changes to the object’s internal data. You hide
an object’s internal data by making the class’s fields private, and making the methods that
access those fields public.

As	a	beginning	student,	you	might	be	wondering	why	you	would	want	to	hide	the	data	that	
is	inside	the	classes	you	create.	As	you	learn	to	program,	you	will	be	the	user	of	your	own	
classes, so it might seem that you are putting forth a great effort to hide data from yourself.
If you write software in industry, however, the classes that you create will be used as com-
ponents in large software systems, and programmers other than yourself will be using your

	 6.2	 Writing a Simple Class, Step by Step 341

classes. By hiding a class’s data, and allowing it to be accessed only through the class’s meth-
ods, you can better ensure that the class will operate as you intended it to.

Avoiding stale Data
In the Rectangle class, the getLength and getWidth methods return the values stored in
fields, but the getArea method returns the result of a calculation. You might be wondering
why the area of the rectangle is not stored in a field, like the length and the width. The area
is not stored in a field because it could potentially become stale. When the value of an item is
dependent on other data and that item is not updated when the other data is changed, it is
said that the item has become stale. If the area of the rectangle were stored in a field, the
value of the field would become incorrect as soon as either the length or width field changed.

When designing a class, you should take care not to store in a field calculated data that can
potentially become stale. Instead, provide a method that returns the result of the calculation.

showing Access specification in UML Diagrams
In	Figure	6-9	we	presented	a	UML	diagram	for	the	Rectangle class. The diagram listed all
of the members of the class but did not indicate which members were private and which
were	public.	In	a	UML	diagram,	you	have	the	option	to	place	a	- character before a member
name to indicate that it is private, or a +	character	to	indicate	that	it	is	public.	Figure	6-14	
shows	the	UML	diagram	modified	to	include	this	notation.

Data Type and parameter notation in UML Diagrams
The	Unified	Modeling	Language	also	provides	notation	that	you	may	use	to	indicate	the	
data types of fields, methods, and parameter variables. To indicate the data type of a field,
place a colon followed by the name of the data type after the name of the field. For example,
the length field in the Rectangle class is a double.	It	could	be	listed	in	the	UML	diagram	
as follows:

- length : double

The	return	type	of	a	method	can	be	listed	in	the	same	manner:	After	the	method’s	name,	
place a colon followed by the return type. The Rectangle class’s getLength method returns
a double,	so	it	could	be	listed	in	the	UML	diagram	as	follows:

+ getLength() : double

Figure 6-14 UML diagram for the Rectangle class

342 Chapter 6 A First Look at Classes

Parameter	variables	and	their	data	types	may	be	listed	inside	a	method’s	parentheses.	For	
example, the Rectangle class’s setLength method has a double parameter named len, so it
could	be	listed	in	the	UML	diagram	as	follows:

+ setLength(len : double) : void

Figure	6-15	shows	a	UML	diagram	for	the	Rectangle class with parameter and data type
notation.

Layout of class Members
Notice	that	in	the	Rectangle class, the field variables are declared first and then the meth-
ods are defined. You are not required to write field declarations before the method defini-
tions. In fact, some programmers prefer to write the definitions for the public methods first
and write the declarations for the private fields last. Regardless of the style you use, you
should be consistent. In this book, we always write the field declarations first, followed by
the method definitions. Figure 6-16 shows this layout.

checkpoint

www.myprogramminglab.com

6.8 You	hear	someone	make	the	following	comment:	“A	blueprint	is	a	design	for	a	
house.	A	carpenter	can	use	the	blueprint	to	build	the	house.	If	the	carpenter	wishes,	
he or she can build several identical houses from the same blueprint.” Think of this

Figure 6-16 Typical layout of class members

Figure 6-15 UML diagram for the Rectangle class with parameter and data type notation

http://www.myprogramminglab.com

	 6.3	 Instance Fields and Methods 343

as a metaphor for classes and objects. Does the blueprint represent a class, or does
it represent an object?

6.9 In this chapter we used the metaphor of a kite attached to a spool of string to
describe the relationship between an object and a reference variable. In this metaphor,
does the kite represent an object, or a reference variable?

6.10	 When a variable is said to reference an object, what is actually stored in the variable?

6.11 A	string	literal,	such	as	"Joe", causes what type of object to be created?

6.12	 Look	at	the	UML	diagram	in	Figure	6-17	and	answer	the	following	questions:
a) What is the name of the class?
b) What are the fields?
c) What are the methods?
d) What are the private members?
e) What are the public members?

6.13	 Assume	that	limo	is	a	variable	that	references	an	instance	of	the	class	shown	in	
Figure	6-17.	Write	a	statement	that	calls	setMake and passes the argument "Cadillac".

6.14	 What does the key word new do?

6.15 What is an accessor? What is a mutator?

6.16 What is a stale data item?

6.3 instance Fields and Methods

concepT: Each instance of a class has its own set of fields, which are known as
instance fields. You can create several instances of a class and store
different values in each instance’s fields. The methods that operate on an
instance of a class are known as instance methods.

The	program	in	Code	Listing	6-8	creates	one	instance	of	the	Rectangle class. It is possible
to create many instances of the same class, each with its own data. For example, the
RoomAreas.java	program	in	Code	Listing	6-9	creates	three	instances	of	the	Rectangle class,
referenced by the variables kitchen, bedroom, and den. Figure 6-18 shows example interac-
tion	with	the	program.	(The	file	 in	Code	Listing	6-9	is	stored	in	the	source	code	folder	
Chapter 06\Rectangle Class Phase 4.)

Figure 6-17 UML diagram

344 Chapter 6 A First Look at Classes

code Listing 6-9 (RoomAreas.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program creates three instances of the
 5 Rectangle class.
 6 */
 7
 8 public class RoomAreas
 9 {
10 public static void main(String[] args)
11 {
12 double number; // To hold a number
13 double totalArea; // The total area
14 String input; // To hold user input
15
16 // Create three Rectangle objects.
17 Rectangle kitchen = new Rectangle();
18 Rectangle bedroom = new Rectangle();
19 Rectangle den = new Rectangle();
20
21 // Get and store the dimensions of the kitchen.
22 input = JOptionPane.showInputDialog("What is the " +
23 "kitchen's length?");
24 number = Double.parseDouble(input);
25 kitchen.setLength(number);
26 input = JOptionPane.showInputDialog("What is the " +
27 "kitchen's width?");
28 number = Double.parseDouble(input);
29 kitchen.setWidth(number);
30
31 // Get and store the dimensions of the bedroom.
32 input = JOptionPane.showInputDialog("What is the " +
33 "bedroom's length?");
34 number = Double.parseDouble(input);
35 bedroom.setLength(number);
36 input = JOptionPane.showInputDialog("What is the " +
37 "bedroom's width?");
38 number = Double.parseDouble(input);
39 bedroom.setWidth(number);
40
41 // Get and store the dimensions of the den.
42 input = JOptionPane.showInputDialog("What is the " +
43 "den's length?");
44 number = Double.parseDouble(input);
45 den.setLength(number);

	 6.3	 Instance Fields and Methods 345

46 input = JOptionPane.showInputDialog("What is the " +
47 "den's width?");
48 number = Double.parseDouble(input);
49 den.setWidth(number);
50
51 // Calculate the total area of the rooms.
52 totalArea = kitchen.getArea() + bedroom.getArea()
53 + den.getArea();
54
55 // Display the total area of the rooms.
56 JOptionPane.showMessageDialog(null, "The total area " +
57 "of the rooms is " + totalArea);
58
59 System.exit(0);
60 }
61 }

1 2

3 4

5 6

7

Figure 6-18 Interaction with the RoomAreas.java program

346 Chapter 6 A First Look at Classes

In	lines	17,	18,	and	19,	the	following	code	creates	three	objects,	each	an	instance	of	the	
Rectangle class:

Rectangle kitchen = new Rectangle();
Rectangle bedroom = new Rectangle();
Rectangle den = new Rectangle();

Figure 6-19 illustrates how the kitchen, bedroom, and den variables reference the objects.

In	the	example	session	with	the	program,	the	user	enters	10	and	14	as	the	length	and	width	
of	the	kitchen,	15	and	12	as	the	length	and	width	of	the	bedroom,	and	20	and	30	as	the	
length	and	width	of	the	den.	Figure	6-20	shows	the	states	of	the	objects	after	these	values	
are stored in them.

Figure 6-19 The kitchen, bedroom, and den variables reference Rectangle objects

Figure 6-20 States of the objects after data has been stored in them

	 6.3	 Instance Fields and Methods 347

Notice	from	Figure	6-20	that	each	instance	of	the	Rectangle class has its own length and
width variables. For this reason, the variables are known as instance variables, or instance
fields. Every instance of a class has its own set of instance fields and can store its own values
in those fields.

The methods that operate on an instance of a class are known as instance methods.	All	of	
the methods in the Rectangle class are instance methods because they perform operations
on	specific	instances	of	the	class.	For	example,	look	at	the	following	statement	in	line	25	of	
the RoomAreas.java program:

kitchen.setLength(number);

This statement calls the setLength method, which stores a value in the kitchen object’s
length	field.	Now	look	at	the	following	statement	in	line	35:

bedroom.setLength(number);

This statement also calls the setLength method, but this time it stores a value in the bedroom
object’s length	field.	Likewise,	the	following	statement	in	line	45	calls	the	setLength method
to store a value in the den object’s length field:

den.setLength(number);

The setLength method stores a value in a specific instance of the Rectangle class. This is
true of all of the methods that are members of the Rectangle class.

checkpoint

www.myprogramminglab.com

6.17	 Assume	that	r1 and r2 are variables that reference Rectangle objects, and the fol-
lowing statements are executed:

r1.setLength(5.0);
r2.setLength(10.0);
r1.setWidth(20.0);
r2.setWidth(15.0);

	 Fill	in	the	boxes	in	Figure	6-21	that	represent	each	object’s	length	and	width	fields.

noTe: As	previously	mentioned,	instance	methods	do	not	have	the	key	word	static
in their headers.

Figure 6-21 Fill in the boxes for each field

http://www.myprogramminglab.com

348 Chapter 6 A First Look at Classes

6.4 constructors

concepT: A constructor is a method that is automatically called when an object is
created.

A	constructor	is	a	method	that	is	automatically	called	when	an	instance	of	a	class	is	created.	
Constructors	normally	perform	initialization	or	setup	operations,	such	as	storing	initial	
values in instance fields. They are called “constructors” because they help construct an
object.

A	constructor	method	has	the	same	name	as	the	class.	For	example,	Code	Listing	6-10	
shows the first few lines of a new version of the Rectangle class. In this version of the class,
a constructor has been added. (This file is stored in the source code folder Chapter 06\
Rectangle Class Phase 5.)

code Listing 6-10 (Rectangle.java)

 1 /**
 2 Rectangle class, phase 5
 3 */
 4
 5 public class Rectangle
 6 {
 7 private double length;
 8 private double width;
 9
10 /**
11 Constructor
12 @param len The length of the rectangle.
13 @param w The width of the rectangle.
14 */
15
16 public Rectangle(double len, double w)
17 {
18 length = len;
19 width = w;
20 }

. . . The remainder of the class has not changed, and is not shown.

This constructor accepts two arguments, which are passed into the len and w parameter
variables. The parameter variables are then assigned to the length and width fields.

Notice	that	the	constructor’s	header	doesn’t	specify	a	return	type—not	even	void. This is
because constructors are not executed by explicit method calls and cannot return a value.

Initializing an
Object with a

Constructor

VideoNote

	 6.4	 Constructors 349

The method header for a constructor takes the following general format:

AccessSpecifier ClassName(Parameters...)

Here is an example statement that declares the variable box, creates a Rectangle object, and
passes	the	values	7.0	and	14.0	to	the	constructor.

Rectangle box = new Rectangle(7.0, 14.0);

After	this	statement	executes,	box will reference a Rectangle object whose length field is set
to	7	and	whose	width	field	is	set	to	14.	The	program	in	Code	Listing	6-11	demonstrates	the	
Rectangle class constructor. (This file is also stored in the source code folder Chapter 06\
Rectangle Class Phase 5.)

code Listing 6-11 (ConstructorDemo.java)

 1 /**
 2 This program demonstrates the Rectangle class's
 3 constructor.
 4 */
 5
 6 public class ConstructorDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a Rectangle object, passing 5.0 and
11 // 15.0 as arguments to the constructor.
12 Rectangle box = new Rectangle(5.0, 15.0);
13
14 // Display the length.
15 System.out.println("The box's length is " +
16 box.getLength());
17
18 // Display the width.
19 System.out.println("The box's width is " +
20 box.getWidth());
21
22 // Display the area.
23 System.out.println("The box's area is " +
24 box.getArea());
25 }
26 }

program output

The box's length is 5.0
The box's width is 15.0
The box's area is 75.0

350 Chapter 6 A First Look at Classes

showing constructors in a UML Diagram
There	is	more	than	one	accepted	way	of	showing	a	class’s	constructor	in	a	UML	diagram.	
In this book, we simply show a constructor just as any other method, except we list no
return	type.	Figure	6-22	shows	a	UML	diagram	for	the	Rectangle class with the construc-
tor listed.

Figure 6-22 UML diagram for the Rectangle class showing the constructor

Uninitialized Local Reference Variables
The	program	in	Code	Listing	6-11	initializes	the	box variable with the address of a Rectangle
object.	Reference	variables	can	also	be	declared	without	being	initialized,	as	in	the	follow-
ing statement:

Rectangle box;

Note	that	this	statement	does	not	create	a	Rectangle object. It only declares a variable
named box that can be used to reference a Rectangle object. Because the box variable does
not yet hold an object’s address, it is an uninitialized reference variable.

After	declaring	the	reference	variable,	the	following	statement	can	be	used	to	assign	it	the	
address of an object. This statement creates a Rectangle	object,	passes	the	values	7.0	and	
14.0	to	its	constructor,	and	assigns	the	object’s	address	to	the	box variable:

box = new Rectangle(7.0, 14.0);

Once this statement executes, the box variable will reference a Rectangle object.

You	need	to	be	careful	when	using	uninitialized	reference	variables.	Recall	from	Chapter	5	
that local variables must	be	initialized	or	assigned	a	value	before	they	can	be	used.	This	is	
also	true	for	local	reference	variables.	A	local	reference	variable	must	reference	an	object	
before it can be used. Otherwise a compiler error will occur.

The Default constructor
When an object is created, its constructor is always called. But what if we do not write a
constructor in the object’s class? If you do not write a constructor in a class, Java automati-
cally provides one when the class is compiled. The constructor that Java provides is known

	 6.4	 Constructors 351

as the default constructor. The default constructor doesn’t accept arguments. It sets all of
the	object’s	numeric	fields	to	0	and	boolean fields to false. If the object has any fields that
are reference variables, the default constructor sets them to the special value null, which
means that they do not reference anything.

The only time that Java provides a default constructor is when you do not write your
own constructor for a class. For example, at the beginning of this chapter we devel-
oped the Rectangle class without writing a constructor for it. When we compiled the
class, the compiler generated a default constructor that set both the length and width
fields	to	0.0.	Assume	that	the	following	code	uses	that	version	of	the	class	to	create	a	
Rectangle object:

// We wrote no constructor for the Rectangle class.
Rectangle r = new Rectangle(); // Calls the default constructor

When we created Rectangle objects using that version of the class, we did not pass any argu-
ments to the default constructor because the default constructor doesn’t accept arguments.

Later	we	added	our	own	constructor	to	the	class.	The	constructor	that	we	added	accepts	
arguments for the length and width fields. When we compiled the class at that point, Java
did not provide a default constructor. The constructor that we added became the only con-
structor that the class has. When we create Rectangle objects with that version of the class,
we must pass the length and width arguments to the constructor. Using that version of the
class, the following statement would cause an error because we have not provided argu-
ments for the constructor:

// Now we wrote our own constructor for the Rectangle class.
Rectangle box = new Rectangle(); // Error! Must now pass arguments.

Because we have added our own constructor, which requires two arguments, the class no
longer has a default constructor.

Writing Your own no-Arg constructor
A	constructor	that	does	not	accept	arguments	is	known	as	a	no-arg constructor. The default
constructor doesn’t accept arguments, so it is considered a no-arg constructor. In addition,
you can write your own no-arg constructor. For example, suppose we wrote the following
constructor for the Rectangle class:

public Rectangle()
{
 length = 1.0;
 width = 1.0;
}

If we were using this constructor in our Rectangle class, we would not pass any arguments
when creating a Rectangle	object.	The	following	code	shows	an	example.	After	this	code	
executes, the Rectangle object’s length and width	fields	would	both	be	set	to	1.0.

// Now we have written our own no-arg constructor.
Rectangle r = new Rectangle(); // Calls the no-arg constructor

352 Chapter 6 A First Look at Classes

The String class constructor
Earlier in this chapter (in Section 6.1) we discussed the difference between creating a primi-
tive variable and creating an object. You create primitive variables with simple declaration
statements, and you create objects with the new operator. There is one class, however, that
can be instantiated without the new operator: the String class.

Because string operations are so common, Java allows you to create String objects in the
same way that you create primitive variables. Here is an example:

String name = "Joe Mahoney";

This statement creates a String	 object	 in	 memory,	 initialized	 with	 the	 string	 literal	
"Joe Mahoney". The object is referenced by the name variable. If you wish, you can use the
new operator to create a String	object,	and	initialize	the	object	by	passing	a	string	literal	to	
the constructor, as shown here:

String name = new String("Joe Mahoney");

noTe: String objects are a special case in Java. Because they are so commonly used,
Java provides numerous shortcut operations with String objects that are not possible
with objects of other types. In addition to creating a String object without using the new
operator, you can use the = operator to assign values to String objects, the + operator to
concatenate	strings,	and	so	forth.	Chapter	9	discusses	several	of	the	String class methods.

in the spotlight:
Creating the CellPhone Class
Wireless Solutions, Inc., is a business that sells cell phones and wireless service. You are a
programmer in the company’s information technology (IT) department, and your team is
designing a program to manage all of the cell phones that are in inventory. You have been
asked to design a class that represents a cell phone. The data that should be kept as fields in
the class are as follows:

•	 The	name	of	the	phone’s	manufacturer	will	be	assigned	to	the	manufact field.
•	 The	phone’s	model	number	will	be	assigned	to	the	model field.
•	 The	phone’s	retail	price	will	be	assigned	to	the	retailPrice field.

The class will also have the following methods:

•	 A	constructor	that	accepts	arguments	for	the	manufacturer,	model	number,	and	retail	price.
•	 A	setManufact method that accepts an argument for the manufacturer. This method

will allow us to change the value of the manufact field after the object has been cre-
ated, if necessary.

•	 A	setModel method that accepts an argument for the model. This method will allow
us to change the value of the model field after the object has been created, if necessary.

•	 A	setRetailPrice method that accepts an argument for the retail price. This method
will allow us to change the value of the retailPrice field after the object has been
created, if necessary.

	 6.4	 Constructors 353

•	 A	getManufact method that returns the phone’s manufacturer.
•	 A	getModel method that returns the phone’s model number.
•	 A	getRetailPrice method that returns the phone’s retail price.

Figure	6-23	shows	a	UML	diagram	for	the	class.	Code	Listing	6-12	shows	the	class	definition.

CellPhone

– manufact : String
– model : String
– retailPrice : double

+ CellPhone(man : String, mod : String,
 price : double);
+ setManufact(man : String) : void
+ setModel(mod : String) : void
+ setRetailPrice(price : double) : void
+ getManufact() : String
+ getModel() : String
+ getRetailPrice() : double

Figure 6-23 UML diagram for the CellPhone class

code Listing 6-12 (CellPhone.java)

 1 /**
 2 The CellPhone class holds data about a cell phone.
 3 */
 4
 5 public class CellPhone
 6 {
 7 // Fields
 8 private String manufact; // Manufacturer
 9 private String model; // Model
10 private double retailPrice; // Retail price
11
12 /**
13 Constructor
14 @param man The phone's manufacturer.
15 @param mod The phone's model number.
16 @param price The phone's retail price.
17 */
18
19 public CellPhone(String man, String mod, double price)
20 {
21 manufact = man;
22 model = mod;
23 retailPrice = price;
24 }

354 Chapter 6 A First Look at Classes

25
26 /**
27 The setManufact method sets the phone's
28 manufacturer name.
29 @param man The phone's manufacturer.
30 */
31
32 public void setManufact(String man)
33 {
34 manufact = man;
35 }
36
37 /**
38 The setModel method sets the phone's
39 model number.
40 @param mod The phone's model number.
41 */
42
43 public void setMod(String mod)
44 {
45 model = mod;
46 }
47
48 /**
49 The setRetailPrice method sets the phone's
50 retail price.
51 @param price The phone's retail price.
52 */
53
54 public void setRetailPrice(double price)
55 {
56 retailPrice = price;
57 }
58
59 /**
60 getManufact method
61 @return The name of the phone's manufacturer.
62 */
63
64 public String getManufact()
65 {
66 return manufact;
67 }
68
69 /**
70 getModel method
71 @return The phone's model number.
72 */
73

	 6.4	 Constructors 355

74 public String getModel()
75 {
76 return model;
77 }
78
79 /**
80 getretailPrice method
81 @return The phone's retail price.
82 */
83
84 public double getRetailPrice()
85 {
86 return retailPrice;
87 }
88 }

The CellPhone class will be used by several programs that your team is developing. To per-
form	a	simple	test	of	the	class,	you	write	the	program	shown	in	Code	Listing	6-13.	This	is	a	
simple program that prompts the user for the phone’s manufacturer, model number, and retail
price.	An	instance	of	the	CellPhone class is created and the data is assigned to its attributes.

code Listing 6-13 (CellPhoneTest.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program runs a simple test
 5 of the CellPhone class.
 6 */
 7
 8 public class CellPhoneTest
 9 {
10 public static void main(String[] args)
11 {
12 String testMan; // To hold a manufacturer
13 String testMod; // To hold a model number
14 double testPrice; // To hold a price
15
16 // Create a Scanner object for keyboard input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Get the manufacturer name.
20 System.out.print("Enter the manufacturer: ");
21 testMan = keyboard.nextLine();
22
23 // Get the model number.
24 System.out.print("Enter the model number: ");
25 testMod = keyboard.nextLine();

26
27 // Get the retail price.
28 System.out.print("Enter the retail price: ");
29 testPrice = keyboard.nextDouble();
30
31 // Create an instance of the CellPhone class,
32 // passing the data that was entered as arguments
33 // to the constructor.
34 CellPhone phone = new CellPhone(testMan, testMod, testPrice);
35
36 // Get the data from the phone and display it.
37 System.out.println();
38 System.out.println("Here is the data that you provided:");
39 System.out.println("Manufacturer: " + phone.getManufact());
40 System.out.println("Model number: " + phone.getModel());
41 System.out.println("Retail price: " + phone.getRetailPrice());
42 }
43 }

program output with example input shown in Bold

Enter the manufacturer: Acme electronics [enter]
Enter the model number: M1000 [enter]
Enter the retail price: 199.99 [enter]

Here is the data that you provided:
Manufacturer: Acme Electronics
Model number: M1000
Retail price: $199.99

in the spotlight:
Simulating Dice with Objects
Dice traditionally have six sides, representing the values 1 through 6. Some games, however,
use	specialized	dice	that	have	a	different	number	of	sides.	For	example,	the	fantasy	role-
playing game Dungeons and Dragons® uses dice with four, six, eight, ten, twelve, and
twenty sides.

Suppose you are writing a program that needs to roll simulated dice with various numbers
of	sides.	A	simple	approach	would	be	to	write	a	Die class with a constructor that accepts the
number of sides as an argument. The class would also have appropriate methods for rolling
the	die,	and	getting	the	die’s	value.	Figure	6-24	shows	the	UML	diagram	for	such	a	class,	
and	Code	Listing	6-14	shows	the	code.

356 Chapter 6 A First Look at Classes

	 6.4	 Constructors 357

code Listing 6-14 (Die.java)

 1 import java.util.Random;
 2
 3 /**
 4 The Die class simulates a six-sided die.
 5 */
 6
 7 public class Die
 8 {
 9 private int sides; // Number of sides
10 private int value; // The die's value
11
12 /**
13 The constructor performs an initial
14 roll of the die.
15 @param numSides The number of sides for this die.
16 */
17
18 public Die(int numSides)
19 {
20 sides = numSides;
21 roll();
22 }
23
24 /**
25 The roll method simulates the rolling of
26 the die.
27 */
28
29 public void roll()
30 {
31 // Create a Random object.
32 Random rand = new Random();
33
34 // Get a random value for the die.
35 value = rand.nextInt(sides) + 1;
36 }

Die

– sides : int
– value : int

+ Die(numSides : int)
+ roll() : void
+ getSides() : int
+ getValue() : int

Figure 6-24 UML diagram for the Die class

358 Chapter 6 A First Look at Classes

37
38 /**
39 getSides method
40 @return The number of sides for this die.
41 */
42
43 public int getSides()
44 {
45 return sides;
46 }
47
48 /**
49 getValue method
50 @return The value of the die.
51 */
52
53 public int getValue()
54 {
55 return value;
56 }
57 }

Let’s	take	a	closer	look	at	the	code	for	the	class:

Lines 9 and 10: These statements declare two int fields. The sides field will hold the num-
ber of sides that the die has, and the value field will hold the value of the
die once it has been rolled.

Lines 18–22:	 	This	is	the	constructor.	Notice	that	the	constructor	has	a	parameter	for	the	
number of sides. The parameter is assigned to the sides	field	in	line	20.	
Line	21	calls	the	roll method, which simulates the rolling of the die.

Lines 29–36: This is the roll	method,	which	simulates	the	rolling	of	the	die.	In	line	32	a	
Random object is created, and it is referenced by the rand	variable.	Line	35	
uses the Random object to get a random number that is in the appropriate
range for this particular die. For example, if the sides field is set to 6, the
expression rand.nextInt(sides) + 1 will return a random integer in the
range of 1 through 6. The random number is assigned to the value field.

Lines 43–46: This is the getSides method, an accessor that returns the sides field.

Lines 53–56: This is the getValue method, an accessor that returns the value field.

The	program	in	Code	Listing	6-15	demonstrates	the	class.	It	creates	two	instances	of	the	Die
class: one with six sides, and the other with twelve sides. It then simulates five rolls of the dice.

code Listing 6-15 (DiceDemo.java)

 1 /**
 2 This program simulates the rolling of dice.
 3 */

	 6.4	 Constructors 359

 4
 5 public class DiceDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 final int DIE1_SIDES = 6; // Number of sides for die #1
10 final int DIE2_SIDES = 12; // Number of sides for die #2
11 final int MAX_ROLLS = 5; // Number of times to roll
12
13 // Create two instances of the Die class.
14 Die die1 = new Die(DIE1_SIDES);
15 Die die2 = new Die(DIE2_SIDES);
16
17 // Display the initial state of the dice.
18 System.out.println("This simulates the rolling of a " +
19 DIE1_SIDES + " sided die and a " +
20 DIE2_SIDES + " sided die.");
21
22 System.out.println("Initial value of the dice:");
23 System.out.println(die1.getValue() + " " + die2.getValue());
24
25 // Roll the dice five times.
26 System.out.println("Rolling the dice " + MAX_ROLLS + " times.");
27
28 for (int i = 0; i < MAX_ROLLS; i++)
29 {
30 // Roll the dice.
31 die1.roll();
32 die2.roll();
33
34 // Display the values of the dice.
35 System.out.println(die1.getValue() + " " + die2.getValue());
36 }
37 }
38 }

program output

This simulates the rolling of a 6 sided die and a 12 sided die.
Initial value of the dice:
2 7
Rolling the dice 5 times.
3 5
5 2
2 1
4 1
5 9

360 Chapter 6 A First Look at Classes

Let’s	take	a	closer	look	at	the	program:

Lines 9–11: These statements declare three constants. DIE1_SIDES is the number of
sides for the first die (6), DIE2_SIDES is the number of sides for the second
die	(12),	and	MAX_ROLLS is the number of times to roll the die (5).

Lines 14–15: These statements create two instances of the Die	 class.	 Notice	 that	
DIE1_SIDES,	 which	 is	 6,	 is	 passed	 to	 the	 constructor	 in	 line	 14,	 and	
DIE2_SIDES,	which	is	12,	is	passed	to	the	constructor	in	line	15.	As	a	result,	
die1 will reference a Die object with six sides, and die2 will reference a Die
object with twelve sides.

Lines 23: This statement displays the initial value of both Die objects. (Recall that
the Die class constructor performs an initial roll of the die.)

Lines 28–36: This for	loop	iterates	five	times.	Each	time	the	loop	iterates,	line	31	calls	
the die1 object’s roll	method,	and	 line	32	calls	 the	die2 object’s roll
method.	Line	35	displays	the	value	of	both	dice.

checkpoint

www.myprogramminglab.com

6.18 How is a constructor named?

6.19 What is a constructor’s return type?

6.20	 Assume	that	the	following	is	a	constructor,	which	appears	in	a	class:

ClassAct(int number)
{
 item = number;
}

a) What is the name of the class that this constructor appears in?
b)	 Write	a	statement	that	creates	an	object	from	the	class	and	passes	the	value	25	

as an argument to the constructor.

6.5 passing objects as Arguments

concepT: When an object is passed as an argument to a method, the object’s
address is passed into the method’s parameter variable. As a result, the
parameter references the object.

When you are developing applications that work with objects, you will often need to write
methods that accept objects as arguments. For example, suppose that a program is using the
Die	class	that	was	previously	shown	in	Code	Listing	6-14.	The	following	code	shows	a	
method named showDieSides that accepts a Die object as an argument:

void showDieSides(Die d)
{
 System.out.println("This die has " + d.getSides() +
 " sides.");
}

http://www.myprogramminglab.com

 6.5 Passing Objects as Arguments 361

The following code sample shows how we might create a Die object, and then pass it as an
argument to the showDieSides method:

Die myDie = new Die(6);
showDieSides(myDie)

When you pass an object as an argument, the thing that is passed into the parameter vari-
able	is	the	object’s	memory	address.	As	a	result,	the	parameter	variable	references	the	object,	
and the method has access to the object.

The	program	shown	in	Code	Listing	6-16	gives	a	complete	demonstration.	 It	creates	
two Die objects: one with six sides, and the other with twenty sides. It passes each
object to a method named rollDie that displays the die’s sides, rolls the die, and displays
the die’s value.

code Listing 6-16 (DieArgument.java)

 1 /**
 2 This program rolls a 6-sided die and
 3 a 20-sided die.
 4 */
 5
 6 public class DieArgument
 7 {
 8 public static void main(String[] args)
 9 {
10 final int SIX_SIDES = 6;
11 final int TWENTY_SIDES = 20;
12
13 // Create a 6-sided die.
14 Die sixDie = new Die(SIX_SIDES);
15
16 // Create a 20-sided die.
17 Die twentyDie = new Die(TWENTY_SIDES);
18
19 // Roll the dice.
20 rollDie(sixDie);
21 rollDie(twentyDie);
22 }
23
24 /**
25 This method simulates a die roll, displaying
26 the die's number of sides and value.
27 @param d The Die object to roll.
28 */
29
30 public static void rollDie(Die d)
31 {
32 // Display the number of sides.

362 Chapter 6 A First Look at Classes

33 System.out.println("Rolling a " + d.getSides() +
34 " sided die.");
35
36 // Roll the die.
37 d.roll();
38
39 // Display the die's value.
40 System.out.println("The die's value: " + d.getValue());
41 }
42 }

program output

Rolling a 6 sided die.
The die's value: 3
Rolling a 20 sided die.
The die's value: 19

in the spotlight:
Simulating the Game of Cho-Han
Cho-Han	is	a	traditional	Japanese	gambling	game	in	which	a	dealer	uses	a	cup	to	roll	two	
six-sided dice. The cup is placed upside down on a table so that the value of the dice is
concealed.	Players	then	wager	on	whether	the	sum	of	the	dice	values	is	even	(Cho)	or	odd	
(Han). The winner or winners take all of the wagers, or the house takes them if there are
no winners.

We will develop a program that simulates a simplified variation of the game. The simulated
game will have a dealer and two players. The players will not wager money, but will simply
guess	whether	the	sum	of	the	dice	values	is	even	(Cho)	or	odd	(Han).	One	point	will	be	
awarded to the player, or players, correctly guessing the outcome. The game will play for
five rounds, and the player with the most points is the grand winner.

In the program, we will use the Die	class	that	was	introduced	in	Code	Listing	6-14.	We	will	
create two instances of the class to represent two six-sided dice. In addition to the Die class,
we will write the following classes:

•	 Dealer class: We will create an instance of this class to represent the dealer. It will have
the ability to roll the dice, report the value of the dice, and report whether the total
dice	value	is	Cho	or	Han.

•	 Player class: We will create two instances of this class to represent the players.
Instances of the Player	class	can	store	the	player’s	name,	make	a	guess	between	Cho	
and Han, and be awarded points.

First, let’s look at the Dealer	class.	Figure	6-25	shows	a	UML	diagram	for	the	class,	and	
Code	Listing	6-17	shows	the	code.

 6.5 Passing Objects as Arguments 363

code Listing 6-17 (Dealer.java)

 1 /**
 2 Dealer class for the game of Cho-Han
 3 */
 4
 5 public class Dealer
 6 {
 7 private int die1Value; // The value of die #1
 8 private int die2Value; // The value of die #2
 9
10 /**
11 Constructor
12 */
13
14 public Dealer()
15 {
16 die1Value = 0;
17 die2Value = 0;
18 }
19
20 /**
21 The rollDice method rolls the dice and saves
22 their values.
23 */
24
25 public void rollDice()
26 {
27 final int SIDES = 6; // Number of sides for the dice
28
29 // Create the two dice. (This also rolls them.)
30 Die die1 = new Die(SIDES);
31 Die die2 = new Die(SIDES);
32
33 // Record their values.
34 die1Value = die1.getValue();

Dealer

– die1Value : int
– die2Value : int

+ Dealer()
+ rollDice() : void
+ getChoOrHan() : String
+ getDie1Value() : int
+ getDie2Value() : int

Figure 6-25 UML diagram for the Dealer class

35 die2Value = die2.getValue();
36 }
37
38 /**
39 The getChoOrHan method returns the result of
40 the dice roll, Cho or Han.
41 @return Either "Cho (even)" or "Han (odd)"
42 */
43
44 public String getChoOrHan()
45 {
46 String result; // To hold the result
47
48 // Get the sum of the dice.
49 int sum = die1Value + die2Value;
50
51 // Determine even or odd.
52 if (sum % 2 == 0)
53 result = "Cho (even)";
54 else
55 result = "Han (odd)";
56
57 // Return the result.
58 return result;
59 }
60
61 /**
62 The getDie1Value method returns the value of
63 die #1.
64 @return The die1Value field
65 */
66
67 public int getDie1Value()
68 {
69 return die1Value;
70 }
71
72 /**
73 The getDie2Value method returns the value of
74 die #2.
75 @return The die2Value field
76 */
77
78 public int getDie2Value()
79 {
80 return die2Value;
81 }
82 }

364 Chapter 6 A First Look at Classes

 6.5 Passing Objects as Arguments 365

Let’s	take	a	closer	look	at	the	code	for	the	Dealer class:

•	 Lines	7	and	8	declare	the	fields	die1Value and die2Value. These fields will hold the
value of the two dice after they have been rolled.

•	 The	constructor,	in	lines	14	through	18,	initializes	the	die1Value and die2Value fields
to	0.

•	 The	rollDice	method,	in	lines	25	through	36,	simulates	the	rolling	of	the	dice.	Lines	
30	and	31	create	two	Die objects. Recall that the Die class constructor performs an
initial roll of the die, so there is no need to call the Die objects’ roll	method.	Lines	34	
and	35	save	the	value	of	the	dice	in	the	die1Value and die2Value fields.

•	 The	getChoOrHan	method,	in	lines	44	through	59,	returns	a	string	indicating	whether	
the	sum	of	the	dice	is	Cho	(even)	or	Han	(odd).

•	 The	getDie1Value	method,	in	lines	67	through	70,	returns	the	value	of	the	first	die	
(stored in the die1Value field).

•	 The	getDie2Value	method,	in	lines	78	through	81,	returns	the	value	of	the	second	die	
(stored in the die2Value field).

Now	let’s	look	at	the	Player	class.	Figure	6-26	shows	a	UML	diagram	for	the	class,	and	
Code	Listing	6-18	shows	the	code.

Player

– name : String
– guess : String
– points : int

+ Player(playerName : String)
+ makeGuess() : void
+ addPoints(newPoints : int) : void
+ getName() : String
+ getGuess() : String
+ getPoints() : int

Figure 6-26 UML diagram for the Player class

code Listing 6-18 (Player.java)

 1 import java.util.Random;
 2
 3 /**
 4 Player class for the game of Cho-Han
 5 */
 6
 7 public class Player
 8 {
 9 private String name; // The player's name
10 private String guess; // The player's guess
11 private int points; // The player's points
12
13 /**
14 Constructor

15 @param playerName The player's name.
16 */
17
18 public Player(String playerName)
19 {
20 name = playerName;
21 guess = "";
22 points = 0;
23 }
24
25 /**
26 The makeGuess method causes the player to guess
27 either "Cho (even)" or "Han (odd)".
28 */
29
30 public void makeGuess()
31 {
32 // Create a Random object.
33 Random rand = new Random();
34
35 // Get a random number, either 0 or 1.
36 int guessNumber = rand.nextInt(2);
37
38 // Convert the random number to a guess of
39 // either "Cho (even)" or "Han (odd)".
40 if (guessNumber == 0)
41 guess = "Cho (even)";
42 else
43 guess = "Han (odd)";
44 }
45
46 /**
47 The addPoints method adds a specified number of
48 points to the player's current balance.
49 @newPoints The points to add.
50 */
51
52 public void addPoints(int newPoints)
53 {
54 points += newPoints;
55 }
56
57 /**
58 The getName method returns the player's name.
59 @return The value of the name field.
60 */
61

366 Chapter 6 A First Look at Classes

 6.5 Passing Objects as Arguments 367

62 public String getName()
63 {
64 return name;
65 }
66
67 /**
68 The getGuess method returns the player's guess.
69 @return The value of the guess field.
70 */
71
72 public String getGuess()
73 {
74 return guess;
75 }
76
77 /**
78 The getPoints method returns the player's points
79 @return The value of the points field.
80 */
81
82 public int getPoints()
83 {
84 return points;
85 }
86 }

Here’s a summary of the code for the Player class:

•	 Lines	9	through	11	declare	the	fields	name, guess, and points. These fields will hold
the player’s name, the player’s guess, and the number of points the player has earned.

•	 The	constructor,	in	lines	18	through	23,	accepts	an	argument	for	the	player’s	name,	
which is assigned to the name field. The guess field is assigned an empty string, and the
points	field	is	set	to	0.

•	 The	makeGuess	method,	in	lines	30	through	44,	causes	the	player	to	make	a	guess.	The	
method	generates	a	random	number	that	is	either	a	0	or	a	1.	The	if statement that
begins	at	line	40	assigns	the	string	“Cho	(even)”	to	the	guess field if the random num-
ber	is	0,	or	it	assigns	the	string	“Han	(odd)”	to	the	guess field if the random number
is 1.

•	 The	addPoints	method,	in	lines	52	through	55,	adds	the	number	of	points	specified	by	
the argument to the player’s point field.

•	 The	getName	method,	in	lines	62	through	65,	returns	the	player’s	name.
•	 The	getGuess	method,	in	lines	72	through	75,	returns	the	player’s	guess.
•	 The	getPoints	method,	in	lines	82	through	85,	returns	the	player’s	points.

Code	Listing	6-19	shows	the	program	that	uses	these	classes	to	simulate	the	game.	The	main
method simulates five rounds of the game, displaying the results of each round, and then
displays the overall game results.

code Listing 6-19 (ChoHan.java)

 1 import java.util.Scanner;
 2
 3 public class ChoHan
 4 {
 5 public static void main(String[] args)
 6 {
 7 final int MAX_ROUNDS = 5; // Number of rounds
 8 String player1Name; // First player's name
 9 String player2Name; // Second player's name
 10
 11 // Create a Scanner object for keyboard input.
 12 Scanner keyboard = new Scanner(System.in);
 13
 14 // Get the players' names.
 15 System.out.print("Enter the first player's name: ");
 16 player1Name = keyboard.nextLine();
 17 System.out.print("Enter the second player's name: ");
 18 player2Name = keyboard.nextLine();
 19
 20 // Create the dealer.
 21 Dealer dealer = new Dealer();
 22
 23 // Create the two players.
 24 Player player1 = new Player(player1Name);
 25 Player player2 = new Player(player2Name);
 26
 27 // Play the rounds.
 28 for (int round = 0; round < MAX_ROUNDS; round++)
 29 {
 30 System.out.println("----------------------------");
 31 System.out.printf("Now playing round %d.\n", round + 1);
 32
 33 // Roll the dice.
 34 dealer.rollDice();
 35
 36 // The players make their guesses.
 37 player1.makeGuess();
 38 player2.makeGuess();
 39
 40 // Determine the winner of this round.
 41 roundResults(dealer, player1, player2);
 42 }
 43
 44 // Display the grand winner.
 45 displayGrandWinner(player1, player2);
 46 }

368 Chapter 6 A First Look at Classes

 6.5 Passing Objects as Arguments 369

 47
 48 /**
 49 The roundResults method determines the results of
 50 the current round.
 51 @param dealer The Dealer object
 52 @param player1 Player #1 object
 53 @param player2 Player #2 object
 54 */
 55
 56 public static void roundResults(Dealer dealer, Player player1,
 57 Player player2)
 58 {
 59 // Show the dice values.
 60 System.out.printf("The dealer rolled %d and %d.\n",
 61 dealer.getDie1Value(), dealer.getDie2Value());
 62 System.out.printf("Result: %s\n", dealer.getChoOrHan());
 63
 64 // Check each player's guess and award points.
 65 checkGuess(player1, dealer);
 66 checkGuess(player2, dealer);
 67 }
 68
 69 /**
 70 The checkGuess method checks a player's guess against
 71 the dealer's result.
 72 @param player The Player object to check.
 73 @param dealer The Dealer object.
 74 */
 75
 76 public static void checkGuess(Player player, Dealer dealer)
 77 {
 78 final int POINTS_TO_ADD = 1; // Points to award winner
 79 String guess = player.getGuess(); // Player's guess
 80 String choHanResult = dealer.getChoOrHan(); // Cho or Han
 81
 82 // Display the player's guess.
 83 System.out.printf("The player %s guessed %s.\n",
 84 player.getName(), player.getGuess());
 85
 86 // Award points if the player guessed correctly.
 87 if (guess.equalsIgnoreCase(choHanResult))
 88 {
 89 player.addPoints(POINTS_TO_ADD);
 90 System.out.printf("Awarding %d point(s) to %s.\n",
 91 POINTS_TO_ADD, player.getName());
 92 }
 93 }
 94

 95 /**
 96 The displayGrandWinner method displays the game's grand winner.
 97 @param player1 Player #1
 98 @param player2 Player #2
 99 */
100
101 public static void displayGrandWinner(Player player1, Player player2)
102 {
103 System.out.println("----------------------------");
104 System.out.println("Game over. Here are the results:");
105 System.out.printf("%s: %d points.\n", player1.getName(),
106 player1.getPoints());
107 System.out.printf("%s: %d points.\n", player2.getName(),
108 player2.getPoints());
109
110 if (player1.getPoints() > player2.getPoints())
111 System.out.println(player1.getName() + " is the grand winner!");
112 else if (player2.getPoints() > player1.getPoints())
113 System.out.println(player2.getName() + " is the grand winner!");
114 else
115 System.out.println("Both players are tied!");
116 }
117 }

program output with example input shown in Bold

Enter the first player's name: Chelsea [enter]
Enter the second player's name: Chris [enter]

Now playing round 1.
The dealer rolled 3 and 6.
Result: Han (odd)
The player Chelsea guessed Han (odd).
Awarding 1 point(s) to Chelsea.
The player Chris guessed Han (odd).
Awarding 1 point(s) to Chris.

Now playing round 2.
The dealer rolled 4 and 5.
Result: Han (odd)
The player Chelsea guessed Cho (even).
The player Chris guessed Cho (even).

Now playing round 3.
The dealer rolled 5 and 6.
Result: Han (odd)
The player Chelsea guessed Cho (even).
The player Chris guessed Han (odd).
Awarding 1 point(s) to Chris.

370 Chapter 6 A First Look at Classes

 6.5 Passing Objects as Arguments 371

Now playing round 4.
The dealer rolled 1 and 6.
Result: Han (odd)
The player Chelsea guessed Cho (even).
The player Chris guessed Cho (even).

Now playing round 5.
The dealer rolled 6 and 6.
Result: Cho (even)
The player Chelsea guessed Han (odd).
The player Chris guessed Cho (even).
Awarding 1 point(s) to Chris.

Game over. Here are the results:
Chelsea: 1 points.
Chris: 3 points.
Chris is the grand winner!

Let’s	look	at	the	code.	Here	is	a	summary	of	the	main method:

•	 Lines	7	 through	9	make	 the	 following	declarations:	MAX_ROUNDS—the	number	of	
rounds to play, player1Name—to	hold	the	name	of	player	#1,	and	player2Name—to	
hold	the	name	of	player	#2.

•	 Lines	15	through	18	prompt	the	user	to	enter	the	players’	names.
•	 Line	21	creates	an	instance	of	the	Dealer class. The object represents the dealer, and is

referenced by the dealer variable.
•	 Line	24	creates	an	instance	of	the	Player	class.	The	object	represents	player	#1,	and	is	

referenced by the player1	variable.	Notice	that	player1Name is passed as an argument
to the constructor.

•	 Line	25	creates	another	instance	of	the	Player	class.	The	object	represents	player	#2,	
and is referenced by the player2	variable.	Notice	that	player2Name is passed as an
argument to the constructor.

•	 The	for	loop	that	begins	in	line	28	iterates	five	times,	causing	the	simulation	of	five	
rounds of the game. The loop performs the following actions:
•	 Line	34	causes	the	dealer	to	roll	the	dice.
•	 Line	37	causes	player	#1	to	make	a	guess	(Cho	or	Han).
•	 Line	38	causes	player	#2	to	make	a	guess	(Cho	or	Han).
•	 Line	41	passes	 the	dealer, player1, and player2 objects to the roundResults

method. The method displays the results of this round.
•	 Line	45	passes	the	player1 and player2 objects to the displayGrandWinner method,

which displays the grand winner of the game.

The roundResults method, which displays the results of a round, appears in lines 56 through
67.	Here	is	a	summary	of	the	method:

•	 The	method	 accepts	 references	 to	 the	 dealer, player1, and player2 objects as
 arguments.

•	 The	statement	in	lines	60	and	61	displays	the	value	of	the	two	dice.

•	 Line	62	calls	 the	dealer object’s getChoOrHan	method	to	display	 the	results,	Cho	
or Han.

•	 Line	65	calls	the	checkGuess method, passing the player1 and dealer objects as argu-
ments. The checkGuess	method	compares	a	player’s	guess	to	the	dealer’s	result	(Cho	or	
Han), and awards points to the player, if the guess is correct.

•	 Line	 66	 calls	 the	 checkGuess method, passing the player2 and dealer objects
as arguments.

The checkGuess method, which compares a player’s guess to the dealer’s result, awarding
points	to	the	player	for	a	correct	guess,	appears	in	lines	76	through	93.	Here	is	a	summary	
of the method:

•	 The	method	accepts	references	to	a	Player object and the Dealer object as arguments.
•	 Line	78	declares	the	constant	POINTS_TO_ADD, set to the value 1, which is the number

of points to add to the player’s balance if the player’s guess is correct.
•	 Line	79	assigns	the	player’s	guess	to	the	String object guess.
•	 Line	80	assigns	the	dealer’s	results	(Cho	or	Han)	to	the	String object choHanResult.
•	 The	statement	in	lines	83	and	84	displays	the	player’s	name	and	guess.
•	 The	if	statement	in	line	87	compares	the	player’s	guess	to	the	dealer’s	result.	If	they	

match, then the player guessed correctly, and line 89 awards points to the player.

The displayGrandWinner method, which displays the grand winner of the game, appears in
lines	101	through	116.	Here	is	a	summary	of	the	method:

•	 The	method	accepts	references	to	the	player1 and player2 objects.
•	 The	statements	in	lines	105	through	108	display	both	players’	names	and	points.
•	 The	if-else-if	statement	that	begins	in	line	110	determines	which	of	the	two	players	

has the highest score, and displays that player’s name as the grand winner. If both
players have the same score, a tie is declared.

6.6 overloading Methods and constructors

concepT: Two or more methods in a class may have the same name as long as their
parameter lists are different. This also applies to constructors.

Method overloading is an important part of object-oriented programming. When a method
is overloaded, it means that multiple methods in the same class have the same name, but use
different types of parameters. Method overloading is important because sometimes you
need several different ways to perform the same operation. For example, suppose a class has
the following two methods:

public int add(int num1, int num2)
{
 int sum = num1 + num2;
 return sum;
}

372 Chapter 6 A First Look at Classes

 6.6 Overloading Methods and Constructors 373

public String add(String str1, String str2)
{
 String combined = str1 + str2;
 return combined;
}

Both of these methods are named add. They both take two arguments, which are added
together. The first one accepts two int arguments and returns their sum. The second accepts
two String references and returns a reference to a String that is a concatenation of the two
arguments. When we write a call to the add method, the compiler must determine which one
of the overloaded methods we intended to call.

The process of matching a method call with the correct method is known as binding. When
an overloaded method is being called, Java uses the method’s name and parameter list to
determine which method to bind the call to. If two int arguments are passed to the add
method, the version of the method with two int	parameters	is	called.	Likewise,	when	two	
String arguments are passed to add, the version with two String parameters is called.

Java	uses	a	method’s	signature	to	distinguish	it	from	other	methods	of	the	same	name.	A	
method’s signature consists of the method’s name and the data types of the method’s param-
eters, in the order that they appear. For example, here are the signatures of the add methods
that were previously shown:

add(int, int)
add(String, String)

Note	that	the	method’s	return	type	is	not part of the signature. For this reason, the follow-
ing add method cannot be added to the same class with the previous ones:

public int add(String str1, String str2)
{
 int sum = Integer.parstInt(str1) + Integer.parseInt(str2);
 return sum;
}

Because the return type is not part of the signature, this method’s signature is the same as
that of the other add method that takes two String arguments. For this reason, an error
message will be issued when a class containing all of these methods is compiled.

Constructors	can	also	be	overloaded,	which	means	 that	a	class	can	have	more	 than	
one constructor. The rules for overloading constructors are the same for overloading
other methods: Each version of the constructor must have a different parameter list.
As	long	as	each	constructor	has	a	unique	signature,	the	compiler	can	tell	them	apart.	
For example, the Rectangle class that we discussed earlier could have the following
two constructors:

public Rectangle()
{
 length = 0.0;
 width = 0.0;
}

374 Chapter 6 A First Look at Classes

public Rectangle(double len, double w)
{
 length = len;
 width = w;
}

The	first	constructor	shown	here	accepts	no	arguments,	and	assigns	0.0	to	the	length
and width fields. The second constructor accepts two arguments, which are assigned to
the length and width fields. The following code shows an example of how each constructor
is called:

Rectangle box1 = new Rectangle();
Rectangle box2 = new Rectangle(5.0, 10.0);

The first statement creates a Rectangle object, referenced by the box1 variable, and executes
the no-arg constructor. Its length and width	fields	will	be	set	to	0.0.	The	second	statement	
creates another Rectangle object, referenced by the box2 variable, and executes the second
constructor. Its length and width	fields	will	be	set	to	5.0	and	10.0,	respectively.

Recall that Java provides a default constructor only when you do not write any construc-
tors for a class. If a class has a constructor that accepts arguments, but it does not have a
no-arg constructor, you cannot create an instance of the class without passing arguments to
the constructor. Therefore, any time you write a constructor for a class, and that construc-
tor accepts arguments, you should also write a no-arg constructor if you want to be able to
create instances of the class without passing arguments to the constructor.

The BankAccount class
Now	we	will	look	at	the	BankAccount class. Objects that are created from this class will
simulate bank accounts, allowing us to have a starting balance, make deposits, make with-
drawals,	and	get	the	current	balance.	A	UML	diagram	for	the	BankAccount class is shown in
Figure	6-27.	In	the	figure,	the	overloaded	constructors	and	overloaded	methods	are	pointed	
out.	Note	that	the	extra	annotation	is	not	part	of	the	UML	diagram.	It	is	there	to	draw	
attention to the items that are overloaded.

Figure 6-27 UML diagram for the BankAccount class

 6.6 Overloading Methods and Constructors 375

As	you	can	see	from	the	diagram,	the	class	has	three	overloaded	constructors.	Also,	the	class	
has two overloaded methods named deposit, two overloaded methods named withdraw,
and two overloaded methods named setBalance. The last method, getBalance, is not over-
loaded.	Code	Listing	6-20	shows	the	code	for	the	class.

code Listing 6-20 (BankAccount.java)

 1 /**
 2 The BankAccount class simulates a bank account.
 3 */
 4
 5 public class BankAccount
 6 {
 7 private double balance; // Account balance
 8
 9 /**
 10 This constructor sets the starting balance
 11 at 0.0.
 12 */
 13
 14 public BankAccount()
 15 {
 16 balance = 0.0;
 17 }
 18
 19 /**
 20 This constructor sets the starting balance
 21 to the value passed as an argument.
 22 @param startBalance The starting balance.
 23 */
 24
 25 public BankAccount(double startBalance)
 26 {
 27 balance = startBalance;
 28 }
 29
 30 /**
 31 This constructor sets the starting balance
 32 to the value in the String argument.
 33 @param str The starting balance, as a String.
 34 */
 35
 36 public BankAccount(String str)
 37 {
 38 balance = Double.parseDouble(str);
 39 }
 40

376 Chapter 6 A First Look at Classes

 41 /**
 42 The deposit method makes a deposit into
 43 the account.
 44 @param amount The amount to add to the
 45 balance field.
 46 */
 47
 48 public void deposit(double amount)
 49 {
 50 balance += amount;
 51 }
 52
 53 /**
 54 The deposit method makes a deposit into
 55 the account.
 56 @param str The amount to add to the
 57 balance field, as a String.
 58 */
 59
 60 public void deposit(String str)
 61 {
 62 balance += Double.parseDouble(str);
 63 }
 64
 65 /**
 66 The withdraw method withdraws an amount
 67 from the account.
 68 @param amount The amount to subtract from
 69 the balance field.
 70 */
 71
 72 public void withdraw(double amount)
 73 {
 74 balance -= amount;
 75 }
 76
 77 /**
 78 The withdraw method withdraws an amount
 79 from the account.
 80 @param str The amount to subtract from
 81 the balance field, as a String.
 82 */
 83
 84 public void withdraw(String str)
 85 {
 86 balance -= Double.parseDouble(str);
 87 }
 88

 6.6 Overloading Methods and Constructors 377

 89 /**
 90 The setBalance method sets the account balance.
 91 @param b The value to store in the balance field.
 92 */
 93
 94 public void setBalance(double b)
 95 {
 96 balance = b;
 97 }
 98
 99 /**
100 The setBalance method sets the account balance.
101 @param str The value, as a String, to store in
102 the balance field.
103 */
104
105 public void setBalance(String str)
106 {
107 balance = Double.parseDouble(str);
108 }
109
110 /**
111 The getBalance method returns the
112 account balance.
113 @return The value in the balance field.
114 */
115
116 public double getBalance()
117 {
118 return balance;
119 }
120 }

The class has one field, balance, which is a double. This field holds an account’s current
 balance. Here is a summary of the class’s overloaded constructors:

•	 The	first	constructor	is	a	no-arg	constructor.	It	sets	the	balance	field	to	0.0.	If	we	
wish to execute this constructor when we create an instance of the class, we simply
pass no constructor arguments. Here is an example:

BankAccount account = new BankAccount();

•	 The	second	constructor	has	a	double parameter variable, startBalance, which is
assigned to the balance field. If we wish to execute this constructor when we create
an instance of the class, we pass a double value as a constructor argument. Here is
an example:

BankAccount account = new BankAccount(1000.0);

378 Chapter 6 A First Look at Classes

•	 The	third	constructor	has	a	String parameter variable, str. It is assumed that the
String contains a string representation of the account’s balance. The method uses
the Double.parseDouble method to convert the string to a double, and then assigns
it to the balance field. If we wish to execute this constructor when we create an
instance of the class, we pass a reference to a String as a constructor argument.
Here is an example:

BankAccount account = new BankAccount("1000.0");

 This constructor is provided as a convenience. If the class is used in a program that
reads the account balance from a dialog box, or from a text file, the amount does not
have to be converted from a string before it is passed to the constructor.

Here is a summary of the overloaded deposit methods:

•	 The	 first	deposit method has a parameter, amount, which is a double. When the
method is called, an amount that is to be deposited into the account is passed into this
parameter. The value of the parameter is then added to value in the balance field.

•	 The	second	deposit method has a parameter, str, which is a reference to a String. It
is assumed that the String contains a string representation of the amount to be depos-
ited. The method uses the Double.parseDouble method to convert the string to a
double, and then adds it to the balance field. For example, if we call the method and
pass	“500.0”	as	the	argument,	it	will	add	500.0	to	the	balance	field.	As	with	the	over-
loaded constructors, this method is provided as a convenience for programs that read
the amount to be deposited from a dialog box or a text file.

Here is a summary of the overloaded withdraw methods:

•	 The	first	withdraw method has a parameter, amount, which is a double. When the
method is called, an amount that is to be withdrawn from the account is passed into
this parameter. The value of the parameter is then subtracted from the value in the
balance field.

•	 The	second	withdraw method has a parameter, str, which is a reference to a String. It
is assumed that the String contains a string representation of the amount to be with-
drawn. This amount is converted to a double, and then subtracted from the balance
field.	As	with	the	overloaded	constructors	and	deposit methods, this method is pro-
vided as a convenience.

Here is a summary of the overloaded setBalance methods:

•	 The	first	setBalance method accepts a double argument, which is assigned to the
balance field.

•	 The	 second	setBalance method accepts a String reference as an argument. It is
assumed that the String contains a string representation of the account’s balance. The
String is converted to a double and then assigned to the balance	field.	As	with	many	
of the other overloaded methods, this method is provided as a convenience.

The remaining method is getBalance. It returns the value in the balance field, which is the
current account balance. The AccountTest.java	program,	shown	in	Code	Listing	6-21,	
demonstrates the BankAccount	class.	Its	output	is	shown	in	Figure	6-28.

 6.6 Overloading Methods and Constructors 379

code Listing 6-21 (AccountTest.java)

 1 import javax.swing.JOptionPane; // For the JOptionPane class
 2
 3 /**
 4 This program demonstrates the BankAccount class.
 5 */
 6
 7 public class AccountTest
 8 {
 9 public static void main(String[] args)
10 {
11 String input; // To hold user input
12
13 // Get the starting balance.
14 input = JOptionPane.showInputDialog(
15 "What is your account's starting balance?");
16
17 // Create a BankAccount object.
18 BankAccount account = new BankAccount(input);
19
20 // Get the amount of pay.
21 input = JOptionPane.showInputDialog(
22 "How much were you paid this month?");
23
24 // Deposit the user's pay into the account.
25 account.deposit(input);
26
27 // Display the new balance.
28 JOptionPane.showMessageDialog(null,
29 String.format("Your pay has been deposited.\n" +
30 "Your current balance is $%,.2f",
31 account.getBalance()));
32
33 // Withdraw some cash from the account.
34 input = JOptionPane.showInputDialog(
35 "How much would you like to withdraw?");
36 account.withdraw(input);
37
38 // Display the new balance
39 JOptionPane.showMessageDialog(null,
40 String.format("Now your balance is $%,.2f",
41 account.getBalance()));
42
43 System.exit(0);
44 }
45 }

380 Chapter 6 A First Look at Classes

1 2

3 4

5

Figure 6-28 Interaction with the AccountTest program

overloaded Methods Make classes More Useful
You might be wondering why all those overloaded methods appear in the BankAccount
class,	especially	because	many	of	them	weren’t	used	by	the	demonstration	program	in	Code	
Listing	6-21.	After	all,	wouldn’t	it	be	simpler	if	the	class	had	only	the	methods	we	were	
going to use?

An	object’s	purpose	is	to	provide	a	specific	service.	The	service	provided	by	the	BankAccount
class	is	that	it	simulates	a	bank	account.	Any	program	that	needs	a	simulated	bank	account	
can simply create a BankAccount object and then use its methods to put the simulation into
action. Because the BankAccount class has numerous overloaded methods, it is much more
flexible than it would be if it provided only one way to perform every operation. By provid-
ing overloaded constructors, deposit methods, withdraw methods, and setBalance meth-
ods, we made the BankAccount class useful to programs other than our simple demonstration
program. This is an important consideration to keep in mind when you design classes of
your own.

6.7 scope of instance Fields

concepT: Instance fields are visible to all of the class’s instance methods.

Recall	from	Chapter	2	that	a	variable’s	scope	is	the	part	of	a	program	where	the	variable	
may	be	accessed	by	its	name.	A	variable’s	name	is	visible	only	to	statements	inside	the	vari-
able’s scope. The location of a variable’s declaration determines the variable’s scope.

In	 this	 chapter	 you	 have	 seen	 variables	 declared	 as	 instance	 fields	 in	 a	 class.	An	
instance field can be accessed by any instance method in the same class as the field. If

	 6.7	 Scope of Instance Fields 381

an instance field is declared with the public access specifier, it can also be accessed by
code outside the class.

shadowing
In	Chapter	2	you	saw	that	you	cannot	have	two	local	variables	with	the	same	name	in	the	
same	scope.	This	applies	to	parameter	variables	as	well.	A	parameter	variable	is,	in	essence,	
a local variable. So, you cannot give a parameter variable and a local variable in the same
method the same name.

However, you can have a local variable or a parameter variable with the same name as
a field. When you do, the name of the local or parameter variable shadows the name of the
field. This means that the field name is hidden by the name of the local or parameter variable.

For example, assume that the Rectangle class’s setLength method had been written in the
following manner:

public void setLength(double len)
{
 int length; // Local variable
 length = len;
}

In this code a local variable is given the same name as a field. Therefore, the local variable’s
name shadows the field’s name. When the statement length = len; is executed, the value of
len is assigned to the local variable length, not to the field. The unintentional shadowing of
field names can cause elusive bugs, so you need to be careful not to give local variables the
same names as fields.

checkpoint

www.myprogramminglab.com

6.21	 Is it required that overloaded methods have different return values, different
parameter lists, or both?

6.22	 What is a method’s signature?

6.23	 Look	at	the	following	class:

public class CheckPoint
{
 public void message(int x)
 {
 System.out.print("This is the first version ");
 System.out.println("of the method.");
 }
 public void message(String x)
 {
 System.out.print("This is the second version ");
 System.out.println("of the method.");
 }
}

http://www.myprogramminglab.com

382 Chapter 6 A First Look at Classes

 What will the following code display?

CheckPoint cp = new CheckPoint();
cp.message("1");
cp.message(1);

6.24	 How many default constructors may a class have?

6.8 packages and import statements

concepT: The classes in the Java API are organized into packages. An import
statement tells the compiler which package a class is located in.

In	Chapter	2	you	were	introduced	to	the	Java	API,	which	is	a	standard	library	of	prewritten	
classes.	Each	class	in	the	Java	API	is	designed	for	a	specific	purpose,	and	you	can	use	
the	classes	in	your	own	programs.	You’ve	already	used	a	few	classes	from	the	API,	such	as	
the String class, the Scanner class, the JOptionPane class, and the Random class.

All	of	the	classes	in	the	Java	API	are	organized	into	packages.	A	package is simply a group
of related classes. Each package also has a name. For example, the Scanner class is in the
java.util package.

Many	of	the	classes	in	the	Java	API	are	not	automatically	available	to	your	program.	Quite	
often, you have to import	an	API	class	in	order	to	use	it.	You	use	the	import key word to
import a class. For example, the following statement is required to import the Scanner class:

import java.util.Scanner;

This statement tells the compiler that the Scanner class is located in the java.util package.
Without this statement, the compiler will not be able to locate the Scanner class, and the
program will not compile.

explicit and Wildcard import statements
There are two types of import	statements:	explicit	and	wildcard.	An	explicit import state-
ment identifies the package location of a single class. For example, the following statement
explicitly identifies the location of the Scanner class:

import java.util.Scanner;

The java.util package contains several other classes as well as the Scanner class. For
example, the Random class is also part of the java.util package. If a program needs to use
the Scanner class and the Random class, it will have to import both of these classes. One way
to do this is to write explicit import statements for each class, as follows:

import java.util.Scanner;
import java.util.Random;

 6.8 Packages and import Statements 383

Another	way	to	import	both	of	these	classes	is	to	use	a	wildcard	import	statement.	A	wild-
card import statement tells the compiler to import all of the classes in a package. Here is
an example:

import java.util.*;

The .* that follows the package name tells the compiler to import all the classes that are
part of the java.util package. Using a wildcard import statement does not affect the per-
formance	or	the	size	of	your	program.	It	merely	tells	the	compiler	that	you	want	to	make	
every class in a particular package available to your program.

The java.lang package
The	Java	API	does	have	one	package,	java.lang, which is automatically imported into
every Java program. This package contains general classes, such as String and System, that
are fundamental to the Java programming language. You do not have to write an import
statement for any class that is part of the java.lang package.

other Api packages
There	are	numerous	packages	in	the	Java	API.	Table	6-2	lists	a	few	of	them.

Table 6-2 A few of the standard Java packages

Package Description

java.applet Provides	the	classes	necessary	to	create	an	applet.

java.awt Provides	classes	for	the	Abstract	Windowing	Toolkit.	These	classes	are	used	
in drawing images and creating graphical user interfaces.

java.io Provides	classes	that	perform	various	types	of	input	and	output.

java.lang Provides	general	classes	for	the	Java	language.	This	package	is	
automatically imported.

java.net Provides	classes	for	network	communications.

java.security Provides	classes	that	implement	security	features.

java.sql Provides	classes	for	accessing	databases	using	structured	query	language.

java.text Provides	various	classes	for	formatting	text.

java.util Provides	various	utility	classes.

javax.swing Provides	classes	for	creating	graphical	user	interfaces.

See	Appendix	H,	available	on	the	book’s	companion	Web	site	at	www.pearsonhighered.
com/gaddis, for a more detailed look at packages.

http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis

384 Chapter 6 A First Look at Classes

6.9 Focus on object-oriented Design: Finding the classes
and Their Responsibilities
So far you have learned the basics of writing a class, creating an object from the class, and
using	the	object	to	perform	operations.	Although	this	knowledge	is	necessary	to	create	an	
object-oriented	application,	it	is	not	the	first	step.	The	first	step	is	to	analyze	the	problem	
that you are trying to solve and determine the classes that you will need. In this section,
we will discuss a simple technique for finding the classes in a problem and determining
their responsibilities.

Finding the classes
When developing an object-oriented application, one of your first tasks is to identify the
classes that you will need to create. Typically, your goal is to identify the different types of
real-world objects that are present in the problem, and then create classes for those types of
objects within your application.

Over the years, software professionals have developed numerous techniques for finding the
classes in a given problem. One simple and popular technique involves the following steps:

 1. Get a written description of the problem domain.
	 2.	 Identify all the nouns (including pronouns and noun phrases) in the description. Each

of these is a potential class.
	 3.	 Refine the list to include only the classes that are relevant to the problem.

Let’s	take	a	closer	look	at	each	of	these	steps.

Writing a Description of the problem Domain

The problem domain is the set of real-world objects, parties, and major events related to the
problem. If you adequately understand the nature of the problem you are trying to solve,
you can write a description of the problem domain yourself. If you do not thoroughly
understand the nature of the problem, you should have an expert write the description
for you.

For example, suppose we are programming an application that the manager of Joe’s
Automotive	Shop	will	use	to	print	service	quotes	for	customers.	Here	is	a	description	that	
an expert, perhaps Joe himself, might have written:

Joe’s	Automotive	Shop	services	foreign	cars,	and	specializes	in	servicing	cars	made	by	
Mercedes,	Porsche,	and	BMW.	When	a	customer	brings	a	car	to	the	shop,	the	manager	
gets the customer’s name, address, and telephone number. Then the manager determines
the make, model, and year of the car, and gives the customer a service quote. The service
quote shows the estimated parts charges, estimated labor charges, sales tax, and total
estimated charges.

The problem domain description should include any of the following:

•	 Physical	objects	such	vehicles,	machines,	or	products
•	 Any	role	played	by	a	person,	such	as	manager,	employee,	customer,	teacher,	student,	

and so forth
•	 The	results	of	a	business	event,	such	as	a	customer	order,	or	in	this	case	a	service	quote
•	 Recordkeeping	items,	such	as	customer	histories	and	payroll	records

 6.9 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 385

identifying All of the nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them too.) Here’s another look at the previous problem domain descrip-
tion. This time the nouns and noun phrases appear in bold.

Joe’s Automotive Shop services foreign cars,	and	specializes	in	servicing	cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager
gets the customer’s name, address, and telephone number. Then the manager deter-
mines the make, model, and year of the car, and gives the customer a service quote.
The service quote shows the estimated parts charges, estimated labor charges, sales
tax, and total estimated charges.

Notice	that	some	of	the	nouns	are	repeated.	The	following	list	shows	all	of	the	nouns	with-
out duplication.

address	 foreign	cars	 Porsche

BMW	 Joe’s	Automotive	Shop	 sales	tax

car make service quote

cars manager shop

customer Mercedes telephone number

estimated labor charges model total estimated charges

estimated parts charges name year

Refining the List of nouns

The nouns that appear in the problem description are merely candidates to become classes.
It might not be necessary to make classes for them all. The next step is to refine the list to
include only the classes that are necessary to solve the particular problem at hand. We will
look at the common reasons that a noun can be eliminated from the list of potential classes.

1. some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:

•	 car, cars, and foreign cars
 These all refer to the general concept of a car.

•	 Joe’s Automotive Shop and shop
	 Both	of	these	refer	to	the	company	“Joe’s	Automotive	Shop.”

We can settle on a single class for each of these. In this example we will arbitrarily eliminate cars
and foreign cars from the list, and use the word car.	Likewise,	we	will	eliminate	Joe’s Automotive
Shop from the list and use the word shop. The updated list of potential classes is as follows:

address foreign cars	 Porsche

BMW Joe’s	Automotive	Shop sales tax

car make service quote

cars manager shop

customer Mercedes telephone number

estimated labor charges model total estimated charges

estimated parts charges name year

386 Chapter 6 A First Look at Classes

Because car, cars, and foreign cars mean the same thing in this problem, we have eliminated
cars and foreign cars.	Also,	because	Joe’s Automotive Shop and shop mean the same thing,
we have eliminated Joe’s Automotive Shop.

2. some nouns might represent items that we do not need to be concerned
with in order to solve the problem.

A	quick	review	of	the	problem	description	reminds	us	of	what	our	application	should	do:	
print a service quote. In this example we can eliminate two unnecessary classes from the list:

•	 We	can	cross	shop off the list because our application only needs to be concerned with
individual service quotes. It doesn’t need to work with or determine any company-
wide information. If the problem description asked us to keep a total of all the service
quotes, then it would make sense to have a class for the shop.

•	 We	will	not	need	a	class	for	the	manager because the problem statement does not
direct us to process any information about the manager. If there were multiple shop
managers, and the problem description had asked us to record which manager gener-
ated each service quote, then it would make sense to have a class for the manager.

At	this	point	the	updated	list	of	potential	classes	is	as	follows:

address foreign cars	 Porsche

BMW Joe’s	Automotive	Shop sales tax

car make service quote

cars manager shop

customer Mercedes telephone number

estimated labor charges model total estimated charges

estimated parts charges name year

Our problem description does not direct us to process any information about the shop, or
any information about the manager, so we have eliminated those from the list.

3. some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they all
represent specific cars, and can be considered instances of a car class. In the description it
refers to a specific car brought to the shop by a customer. Therefore, it would also represent
an instance of a cars	class.	At	this	point	the	updated	list	of	potential	classes	is	as	follows:

address foreign cars Porsche

BMW Joe’s	Automotive	Shop sales tax

car make service quote

cars manager shop

customer Mercedes telephone number

estimated labor charges model total estimated charges

estimated parts charges name year

We have eliminated Mercedes, Porsche, and BMW because they are all instances of a car
class. That means that these nouns identify objects, not classes.

 6.9 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 387

4. some of the nouns might represent simple values that can be stored in a
primitive variable and do not require a class.

Remember, a class contains fields and methods. Fields are related items that are stored
within an object of the class, and define the object’s state. Methods are actions or behaviors
that may be performed by an object of the class. If a noun represents a type of item that
would not have any identifiable fields or methods, then it can probably be eliminated from
the list. To help determine whether a noun represents an item that would have fields and
methods, ask the following questions about it:

•	 Would	you	use	a	group	of	related	values	to	represent	the	item’s	state?
•	 Are	there	any	obvious	actions	to	be	performed	by	the	item?

If the answers to both of these questions are no, then the noun probably represents a value
that can be stored in a primitive variable. If we apply this test to each of the nouns that
remain in our list, we can conclude that the following are probably not classes: address,
estimated labor charges, estimated parts charges, make, model, name, sales tax, telephone
number, total estimated charges, and year. These are all simple string or numeric values that
can be stored in primitive variables. Here is the updated list of potential classes:

address foreign cars Porsche

BMW Joe’s	Automotive	Shop sales tax

car make service quote

cars manager shop

customer Mercedes telephone number

estimated labor charges model total estimated charges

estimated parts charges name year

We have eliminated address, estimated labor charges, estimated parts charges, make, model,
name, sales tax, telephone number, total estimated charges, and year as classes because they
represent simple values that can be stored in primitive variables.

As	you	can	see	from	the	list,	we	have	eliminated	everything	except	cars, customer, and ser-
vice quote. This means that in our application, we will need classes to represent cars, cus-
tomers, and service quotes. Ultimately, we will write a Car class, a Customer class, and a
ServiceQuote class.

identifying a class’s Responsibilities
Once the classes have been identified, the next task is to identify each class’s responsibilities.
A	class’s	responsibilities are as follows:

•	 The	things	that	the	class	is	responsible	for	knowing
•	 The	actions	that	the	class	is	responsible	for	doing

Tip: Some object-oriented designers take note of whether a noun is plural or singular.
Sometimes a plural noun will indicate a class and a singular noun will indicate an object.

388 Chapter 6 A First Look at Classes

When you have identified the things that a class is responsible for knowing, you have identi-
fied	the	class’s	attributes.	These	values	will	be	stored	in	fields.	Likewise,	when	you	have	
identified the actions that a class is responsible for doing, you have identified its methods.

It is often helpful to ask the questions “In the context of this problem, what must the class
know? What must the class do?” The first place to look for the answers is in the description
of the problem domain. Many of the things that a class must know and do will be men-
tioned. Some class responsibilities, however, might not be directly mentioned in the problem
domain,	so	brainstorming	is	often	required.	Let’s	apply	this	methodology	to	the	classes	we	
previously identified from our problem domain.

The Customer class

In the context of our problem domain, what must the Customer class know? The description
directly mentions the following items, which are all attributes of a customer:

•	 The	customer’s	name
•	 The	customer’s	address
•	 The	customer’s	telephone	number

These are all values that can be represented as strings and stored in the class’s fields. The
Customer class can potentially know many other things. One mistake that can be made at
this point is to identify too many things that an object is responsible for knowing. In some
applications, a Customer class might know the customer’s email address. This particular
problem domain does not mention that the customer’s email address is used for any pur-
pose, so we should not include it as a responsibility.

Now	let’s	identify	the	class’s	methods.	In	the	context	of	our	problem	domain,	what	must	the	
Customer class do? The only obvious actions are as follows:

•	 Create	an	object	of	the	Customer class
•	 Set	and	get	the	customer’s	name
•	 Set	and	get	the	customer’s	address
•	 Set	and	get	the	customer’s	telephone	number

From this list we can see that the Customer class will have a constructor, as well as accessor
and	mutator	methods	for	each	of	 its	fields.	Figure	6-29	shows	a	UML	diagram	for	the	
Customer class.

Customer

– name : String
– address : String
– phone : String

+ Customer()
+ setName(n : String) : void
+ setAddress(a : String) : void
+ setPhone(p : String) : void
+ getName() : String
+ getAddress() : String
+ getPhone() : String

Figure 6-29 UML diagram for the Customer class

 6.9 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities 389

The Car class

In the context of our problem domain, what must an object of the Car class know? The fol-
lowing items are all attributes of a car, and are mentioned in the problem domain:

•	 The	car’s	make
•	 The	car’s	model
•	 The	car’s	year

Now	let’s	identify	the	class’s	methods.	In	the	context	of	our	problem	domain,	what	must	the	
Car class do? Once again, the only obvious actions are the standard set of methods that we
will find in most classes (constructors, accessors, and mutators). Specifically, the actions are:

•	 Create	an	object	of	the	Car class
•	 Set	and	get	the	car’s	make
•	 Set	and	get	the	car’s	model
•	 Set	and	get	the	car’s	year

Figure	6-30	shows	a	UML	diagram	for	the	Car class at this point.

Car

– make : String
– model : String
– year : int

+ Car()
+ setMake(m : String) : void
+ setModel(m : String) : void
+ setYear(y : int) : void
+ getMake() : String
+ getModel() : String
+ getYear() : int

Figure 6-30 UML diagram for the Car class

The ServiceQuote class

In the context of our problem domain, what must an object of the ServiceQuote class
know? The problem domain mentions the following items:

•	 The	estimated	parts	charges
•	 The	estimated	labor	charges
•	 The	sales	tax
•	 The	total	estimated	charges

Careful	thought	and	a	little	brainstorming	will	reveal	that	two	of	these	items	are	the	results	
of calculations: sales tax and total estimated charges. These items are dependent on the val-
ues of the estimated parts and labor charges. In order to avoid the risk of holding stale data,
we will not store these values in fields. Rather, we will provide methods that calculate these
values and return them. The other methods that we will need for this class are a constructor
and the accessors and mutators for the estimated parts charges and estimated labor charges
fields.	Figure	6-31	shows	a	UML	diagram	for	the	ServiceQuote class.

390 Chapter 6 A First Look at Classes

This is only the Beginning
You should consider the process that we have discussed in this section merely as a starting
point.	It’s	important	to	realize	that	designing	an	object-oriented	application	is	an	iterative	
process. It may take you several attempts to identify all of the classes that you will need, and
determine	all	of	their	responsibilities.	As	the	design	process	unfolds,	you	will	gain	a	deeper	
understanding of the problem, and consequently you will see ways to improve the design.

checkpoint

www.myprogramminglab.com

6.25	 What is a problem domain?

6.26	 When designing an object-oriented application, who should write a description of
the problem domain?

6.27	 How do you identify the potential classes in a problem domain description?

6.28	 What are a class’s responsibilities?

6.29	 What two questions should you ask to determine a class’s responsibilities?

6.30	 Will all of a class’s actions always be directly mentioned in the problem
domain description?

See the Amortization	Class	Case	Study,	available	on	the	book’s	companion	Web	site	at	
www.pearsonhighered.com/gaddis, for an in-depth example using this chapter’s topics.

6.10 common errors to Avoid
•	 Putting a semicolon at the end of a method header.	A	semicolon	never	appears	at	the	

end of a method header.
•	 Declaring a variable to reference an object, but forgetting to use the new key word to

create the object. Declaring a variable to reference an object does not create an object.
You must use the new key word to create the object.

ServiceQuote

– partsCharges : double
– laborCharges : double

+ ServiceQuote()
+ setPartsCharges(c : double):
 void
+ setLaborCharges(c : double):
 void
+ getPartsCharges() : double
+ getLaborCharges() : double
+ getSalesTax() : double
+ getTotalCharges() : double

Figure 6-31 UML diagram for the ServiceQuote class

http://www.pearsonhighered.com/gaddis
http://www.myprogramminglab.com

 Review Questions and Exercises 391

•	 Forgetting the parentheses that must appear after the class name, which appears after
the new key word. The name of a class appears after the new key word, and a set of
parentheses appears after the class name. You must write the parentheses even if no
arguments are passed to the constructor.

•	 Forgetting to provide arguments when a constructor requires them. When using a
constructor that has parameter variables, you must provide arguments for them.

•	 Trying to overload methods by giving them different return types. Overloaded meth-
ods must have unique parameter lists.

•	 Forgetting to write a no-arg constructor for a class that you want to be able to create
instances of without passing arguments to the constructor. If you write a constructor that
accepts arguments, you must also write a no-arg constructor for the same class if you want
to be able to create instances of the class without passing arguments to the constructor.

•	 Unintentionally declaring a local variable with the same name as a field of the same
class in a method. When a method’s local variable has the same name as a field in the
same class, the local variable’s name shadows the field’s name.

Review Questions and exercises
Multiple choice and True/False

 1. This is a collection of programming statements that specify the fields and methods
that a particular type of object may have.
a. class
b. method
c. parameter
d. instance

	 2.	 A	class	is	analogous	to	a(n)	__________.
a. house
b. blueprint
c. drafting table
d. architect

	 3.	 An	object	is	a(n)	__________.
a. blueprint
b. primitive data type
c. variable
d. instance of a class

	 4.	 This	is	a	class	member	that	holds	data.
a. method
b. instance
c. field
d. constructor

 5. This key word causes an object to be created in memory.
a. create
b. new
c. object
d. construct

392 Chapter 6 A First Look at Classes

 6. This is a method that gets a value from a class’s field, but does not change it.
a. accessor
b. constructor
c. void
d. mutator

	 7.	 This	is	a	method	that	stores	a	value	in	a	field	or	in	some	other	way	changes	the	value	
of a field.
a. accessor
b. constructor
c. void
d. mutator

 8. When the value of an item is dependent on other data, and that item is not updated
when the other data is changed, what has the value become?
a. bitter
b. stale
c. asynchronous
d. moldy

 9. This is a method that is automatically called when an instance of a class is created.
a. accessor
b. constructor
c. void
d. mutator

	10.	 When	a	local	variable	has	the	same	name	as	a	field,	the	local	variable’s	name	does	this	
to the field’s name.
a. shadows
b. complements
c. deletes
d. merges with

 11. This is automatically provided for a class if you do not write one yourself.
a. accessor method
b. default instance
c. default constructor
d. variable declaration

	12.	 Two	or	more	methods	in	a	class	may	have	the	same	name,	as	long	as	this	is	different.
a. their return values
b. their access specifier
c. their parameter lists
d. their memory address

	13.	 	The	 process	 of	 matching	 a	 method	 call	 with	 the	 correct	 method	 is	 known	 as	
__________.
a. matching
b. binding
c. linking
d. connecting

 Review Questions and Exercises 393

	14.	 A	class’s	responsibilities	are	__________.
a. the objects created from the class
b. things the class knows
c. actions the class performs
d. both b and c

 15. True or False: The new operator creates an instance of a class.

 16. True or False: Each instance of a class has its own set of instance fields.

	17.	 True or False: When you write a constructor for a class, it still has the default
 constructor that Java automatically provides.

 18. True or False:	A	class	may	not	have	more	than	one	constructor.

 19. True or False: To find the classes needed for an object-oriented application, you
 identify all of the verbs in a description of the problem domain.

Find the error

 1. Find the error in the following class:
public class MyClass
{
 private int x;
 private double y;
 public void MyClass(int a, double b)
 {
 x = a;
 y = b;
 }
}

	 2.	 Assume	that	the	following	method	is	a	member	of	a	class.	Find	the	error.
public void total(int value1, value2, value3)
{
 return value1 + value2 + value3;
}

	 3.	 The	following	statement	attempts	to	create	a	Rectangle object. Find the error.
Rectangle box = new Rectangle;

	 4.	 Find	the	error	in	the	following	class:
public class TwoValues
{
 private int x, y;
 public TwoValues()
 {
 x = 0;
 }
 public TwoValues()
 {
 x = 0;
 y = 0;
 }
}

394 Chapter 6 A First Look at Classes

 5. Find the error in the following class:
public class FindTheError
{
 public int square(int number)
 {
 return number * number;
 }
 public double square(int number)
 {
 return number * number;
 }
}

Algorithm Workbench

 1. Design a class named Pet, which should have the following fields:

•	 name. The name field holds the name of a pet.
•	 animal. The animal field holds the type of animal that a pet is. Example values are

“Dog”,	“Cat”,	and	“Bird”.
•	 age. The age field holds the pet’s age.

 The Pet class should also have the following methods:

•	 setName. The setName method stores a value in the name field.
•	 setAnimal. The setAnimal method stores a value in the animal field.
•	 setAge. The setAge method stores a value in the age field.
•	 getName. The getName method returns the value of the name field.
•	 getAnimal. The getAnimal method returns the value of the animal field.
•	 getAge. The getAge method returns the value of the age field.

a.	 Draw	a	UML	diagram	of	the	class.	Be	sure	to	include	notation	showing	each	field	
and	method’s	access	specification	and	data	type.	Also	include	notation	showing	any	
method parameters and their data types.

b. Write the Java code for the Pet class.

	 2.	 Look	at	the	following	partial	class	definition,	and	then	respond	to	the	questions	that	
follow it:
public class Book
{
 private String title;
 private String author;
 private String publisher;
 private int copiesSold;
}

a. Write a constructor for this class. The constructor should accept an argument for
each of the fields.

b. Write accessor and mutator methods for each field.
c.	 Draw	a	UML	diagram	for	the	class,	including	the	methods	you	have	written.

 Review Questions and Exercises 395

	 3.	 Consider	the	following	class	declaration:
public class Square
{
 private double sideLength;
 public double getArea()
 {
 return sideLength * sideLength;
 }
 public double getSideLength()
 {
 return sideLength;
 }
}

a. Write a no-arg constructor for this class. It should assign the sideLength field the
value	0.0.

b. Write an overloaded constructor for this class. It should accept an argument that is
copied into the sideLength field.

	 4.	 Look	at	the	following	description	of	a	problem	domain:

 The bank offers the following types of accounts to its customers: savings accounts,
checking	accounts,	and	money	market	accounts.	Customers	are	allowed	to	deposit	
money into an account (thereby increasing its balance), withdraw money from an
account (thereby decreasing its balance), and earn interest on the account. Each
account has an interest rate.

	 	 Assume	that	you	are	writing	an	application	that	will	calculate	the	amount	of	interest	
earned for a bank account.

a. Identify the potential classes in this problem domain.
b. Refine the list to include only the necessary class or classes for this problem.
c. Identify the responsibilities of the class or classes.

short Answer

 1. What is the difference between a class and an instance of a class?

	 2.	 A	contractor	uses	a	blueprint	to	build	a	set	of	identical	houses.	Are	classes	analogous	
to the blueprint or the houses?

	 3.	 What	is	an	accessor	method?	What	is	a	mutator	method?

	 4.	 Is	it	a	good	idea	to	make	fields	private?	Why	or	why	not?

 5. If a class has a private field, what has access to the field?

 6. What is the purpose of the new key word?

	 7.	 Assume	a	program	named	MailList.java is stored in the DataBase folder on your
hard drive. The program creates objects of the Customer and Account classes. Describe
the steps that the compiler goes through in locating and compiling the Customer and
Account classes.

 8. Why are constructors useful for performing “start-up” operations?

 9. Under what circumstances does Java automatically provide a default constructor for
a class?

	10.	 What	do	you	call	a	constructor	that	accepts	no	arguments?

396 Chapter 6 A First Look at Classes

 11. When the same name is used for two or more methods in the same class, how does
Java tell them apart?

	12.	 How	does	method	overloading	improve	the	usefulness	of	a	class?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Employee class

Write a class named Employee that has the following fields:

•	 name. The name field references a String object that holds the employee’s name.
•	 idNumber. The idNumber is an int variable that holds the employee’s ID number.
•	 department. The department field references a String object that holds the name of

the department where the employee works.
•	 position. The position field references a String object that holds the employee’s

job title.

The class should have the following constructors:

•	 A	constructor	that	accepts	the	following	values	as	arguments	and	assigns	them	to	the	
appropriate fields: employee’s name, employee’s ID number, department, and position.

•	 A	constructor	that	accepts	the	following	values	as	arguments	and	assigns	them	to	the	
appropriate fields: employee’s name and ID number. The department and position
fields should be assigned an empty string ("").

•	 A	no-arg	constructor	that	assigns	empty	strings	("") to the name, department, and
position	fields,	and	0	to	the	idNumber field.

Write appropriate mutator methods that store values in these fields and accessor methods
that return the values in these fields. Once you have written the class, write a separate pro-
gram that creates three Employee objects to hold the following data:

Name ID Number Department Position

Susan Meyers 47899 Accounting Vice	President

Mark Jones 39119 IT Programmer

Joy Rogers 81774 Manufacturing Engineer

The program should store this data in the three objects and then display the data for each
employee on the screen.

2. Car class

Write a class named Car that has the following fields:

•	 yearModel. The yearModel field is an int that holds the car’s year model.
•	 make. The make field references a String object that holds the make of the car.
•	 speed. The speed field is an int that holds the car’s current speed.

http://www.myprogramminglab.com

 Programming Challenges 397

In addition, the class should have the following constructor and other methods.

•	 Constructor.	The	constructor	should	accept	the	car’s	year	model	and	make	as	argu-
ments. These values should be assigned to the object’s yearModel and make fields. The
constructor	should	also	assign	0	to	the	speed field.

•	 Accessors.	Appropriate	accessor	methods	should	get	the	values	stored	in	an	object’s	
yearModel, make, and speed fields.

•	 accelerate. The accelerate method should add 5 to the speed field each time it is called.
•	 	brake. The brake method should subtract 5 from the speed field each time it is called.

Demonstrate the class in a program that creates a Car object, and then calls the accelerate
method	five	times.	After	each	call	to	the	accelerate method, get the current speed of the car
and display it. Then call the brake	method	five	times.	After	each	call	to	the	brake method,
get the current speed of the car and display it.

3. personal information class

Design a class that holds the following personal data: name, address, age, and phone num-
ber. Write appropriate accessor and mutator methods. Demonstrate the class by writing a
program that creates three instances of it. One instance should hold your information, and
the other two should hold your friends’ or family members’ information.

4. RetailItem class

Write a class named RetailItem that holds data about an item in a retail store. The class
should have the following fields:

•	 description. The description field references a String object that holds a brief
description of the item.

•	 unitsOnHand. The unitsOnHand field is an int variable that holds the number of units
currently in inventory.

•	 price. The price field is a double that holds the item’s retail price.

Write a constructor that accepts arguments for each field, appropriate mutator methods
that store values in these fields, and accessor methods that return the values in these fields.
Once you have written the class, write a separate program that creates three RetailItem
objects and stores the following data in them:

The Personal
Information

Class Problem

VideoNote

Description Units on Hand Price

Item	#1 Jacket 12 59.95

Item	#2 Designer Jeans 40 34.95

Item	#3 Shirt 20 24.95

5. Payroll class

Design a Payroll class that has fields for an employee’s name, ID number, hourly pay rate,
and number of hours worked. Write the appropriate accessor and mutator methods and
a constructor that accepts the employee’s name and ID number as arguments. The class
should also have a method that returns the employee’s gross pay, which is calculated as the
number of hours worked multiplied by the hourly pay rate. Write a program that demon-

398 Chapter 6 A First Look at Classes

strates the class by creating a Payroll object, then asking the user to enter the data for an
employee. The program should display the amount of gross pay earned.

6. TestScores class

Design a TestScores class that has fields to hold three test scores. The class should have
a constructor, accessor and mutator methods for the test score fields, and a method that
returns the average of the test scores. Demonstrate the class by writing a separate program
that creates an instance of the class. The program should ask the user to enter three test
scores, which are stored in the TestScores object. Then the program should display the
average of the scores, as reported by the TestScores object.

7. Circle class

Write a Circle class that has the following fields:

•	 radius: a double
•	 PI: a final double	initialized	with	the	value	3.14159

The class should have the following methods:

•	 Constructor.	Accepts	the	radius	of	the	circle	as	an	argument.
•	 Constructor.	A	no-arg	constructor	that	sets	the	radius	field	to	0.0.
•	 setRadius.	A	mutator	method	for	the	radius	field.
•	 getRadius.	An	accessor	method	for	the	radius	field.
•	 getArea. Returns the area of the circle, which is calculated as

area = PI * radius * radius
•	 getDiameter. Returns the diameter of the circle, which is calculated as

diameter = radius * 2
•	 getCircumference. Returns the circumference of the circle, which is calculated as

circumference = 2 * PI * radius

Write a program that demonstrates the Circle class by asking the user for the circle’s radius,
creating a Circle object, and then reporting the circle’s area, diameter, and circumference.

8. Temperature class

Write a Temperature class that will hold a temperature in Fahrenheit, and provide meth-
ods	 to	get	 the	 temperature	 in	Fahrenheit,	Celsius,	and	Kelvin.	The	class	 should	have	 the	
following field:

•	 ftemp	–	A	double that holds a Fahrenheit temperature.

The class should have the following methods:

•	 Constructor	–	The	constructor	accepts	a	Fahrenheit	temperature	(as	a	double) and
stores it in the ftemp field.

•	 setFahrenheit – The setFahrenheit method accepts a Fahrenheit temperature (as a
double) and stores it in the ftemp field.

•	 getFahrenheit – Returns the value of the ftemp field, as a Fahrenheit temperature (no
conversion required).

•	 getCelsius – Returns the value of the ftemp	field	converted	to	Celsius.
•	 getKelvin – Returns the value of the ftemp field converted to Kelvin.

 Programming Challenges 399

Use	the	following	formula	to	convert	the	Fahrenheit	temperature	to	Celsius:

 Celsius 5 (5/9) 3 (Fahrenheit 2	32)

Use the following formula to convert the Fahrenheit temperature to Kelvin:

 Kelvin 5 ((5/9) 3 (Fahrenheit 2	32))	1	273

Demonstrate the Temperature class by writing a separate program that asks the user for a
Fahrenheit temperature. The program should create an instance of the Temperature class,
with the value entered by the user passed to the constructor. The program should then call
the	object’s	methods	to	display	the	temperature	in	Celsius	and	Kelvin.

9. Days in a Month

Write a class named MonthDays. The class’s constructor should accept two arguments:

•	 An	integer	for	the	month	(1	5	January,	2	February,	etc.).
•	 An	integer	for	the	year

The class should have a method named getNumberOfDays that returns the number of days
in the specified month. The method should use the following criteria to identify leap years:

	 1.	 Determine	whether	the	year	is	divisible	by	100.	If	it	is,	then	it	is	a	leap	year	if	and	if	
only	it	is	divisible	by	400.	For	example,	2000	is	a	leap	year	but	2100	is	not.

	 2.	 If	the	year	is	not	divisible	by	100,	then	it	is	a	leap	year	if	and	if	only	it	is	divisible	by	
4.	For	example,	2008	is	a	leap	year	but	2009	is	not.

Demonstrate the class in a program that asks the user to enter the month (letting the user
enter	an	integer	in	the	range	of	1	through	12)	and	the	year.	The	program	should	then	dis-
play the number of days in that month. Here is a sample run of the program:

 Enter a month (1-12): 2 [enter]
 Enter a year: 2008 [enter]

 29 days

10. A Game of Twenty-one

For this assignment, you will write a program that lets the user play against the computer in
a variation of the popular blackjack card game. In this variation of the game, two six-sided
dice are used instead of cards. The dice are rolled, and the player tries to beat the computer’s
hidden	total	without	going	over	21.

Here are some suggestions for the game’s design:

•	 Each	round	of	the	game	is	performed	as	an	iteration	of	a	loop	that	repeats	as	long	as	
the	player	agrees	to	roll	the	dice,	and	the	player’s	total	does	not	exceed	21.

•	 At	the	beginning	of	each	round,	the	program	will	ask	the	user	whether	or	not	he	or	
she wants to roll the dice to accumulate points.

•	 During	each	round,	the	program	simulates	the	rolling	of	two	six-sided	dice.	It	rolls	the	
dice first for the computer, and then it asks the user whether he or she wants to roll.
(Use the Die	class	that	was	shown	in	Code	Listing	6-14	to	simulate	the	dice.)

•	 The	loop	keeps	a	running	total	of	both	the	computer’s	and	the	user’s	points.
•	 The	computer’s	total	should	remain	hidden	until	the	loop	has	finished.
•	 After	the	loop	has	finished,	the	computer’s	total	is	revealed,	and	the	player	with	the	

most	points,	without	going	over	21,	wins.

400 Chapter 6 A First Look at Classes

11. Freezing and Boiling points

The	following	table	lists	the	freezing	and	boiling	points	of	several	substances.

Substance Freezing Point Boiling Point

Ethyl	Alcohol –173 172

Oxygen –362 –306

Water 32 212

Design a class that stores a temperature in a temperature field and has the appropriate
accessor and mutator methods for the field. In addition to appropriate constructors, the
class should have the following methods:

•	 isEthylFreezing. This method should return the boolean value true if the tempera-
ture stored in the temperature	field	is	at	or	below	the	freezing	point	of	ethyl	alcohol.	
Otherwise, the method should return false.

•	 isEthylBoiling. This method should return the boolean value true if the tempera-
ture stored in the temperature field is at or above the boiling point of ethyl alcohol.
Otherwise, the method should return false.

•	 isOxygenFreezing. This method should return the boolean value true if the tem-
perature stored in the temperature	field	is	at	or	below	the	freezing	point	of	oxygen.	
Otherwise, the method should return false.

•	 isOxygenBoiling. This method should return the boolean value true if the tempera-
ture stored in the temperature field is at or above the boiling point of oxygen. Other-
wise, the method should return false.

•	 isWaterFreezing. This method should return the boolean value true if the tempera-
ture stored in the temperature	field	is	at	or	below	the	freezing	point	of	water.	Other-
wise, the method should return false.

•	 isWaterBoiling. This method should return the boolean value true if the tempera-
ture stored in the temperature field is at or above the boiling point of water. Other-
wise, the method should return false.

Write a program that demonstrates the class. The program should ask the user to enter a
temperature,	and	then	display	a	list	of	the	substances	that	will	freeze	at	that	temperature	
and	those	that	will	boil	at	that	temperature.	For	example,	if	the	temperature	is	–20	the	class	
should	report	that	water	will	freeze	and	oxygen	will	boil	at	that	temperature.

12. SavingsAccount class

Design a SavingsAccount class that stores a savings account’s annual interest rate and bal-
ance. The class constructor should accept the amount of the savings account’s starting
balance. The class should also have methods for subtracting the amount of a withdrawal,
adding the amount of a deposit, and adding the amount of monthly interest to the balance.
The monthly interest rate is the annual interest rate divided by twelve. To add the monthly
interest to the balance, multiply the monthly interest rate by the balance, and add the result
to the balance.

Test the class in a program that calculates the balance of a savings account at the end of a
period of time. It should ask the user for the annual interest rate, the starting balance, and

 Programming Challenges 401

the	number	of	months	that	have	passed	since	the	account	was	established.	A	loop	should	
then iterate once for every month, performing the following:

a.	 Ask	the	user	for	the	amount	deposited	into	the	account	during	the	month.	Use	the	
class method to add this amount to the account balance.

b.	Ask	the	user	for	the	amount	withdrawn	from	the	account	during	the	month.	Use	the	
class method to subtract this amount from the account balance.

c. Use the class method to calculate the monthly interest.

After	the	last	iteration,	the	program	should	display	the	ending	balance,	the	total	amount	of	
deposits, the total amount of withdrawals, and the total interest earned.

13. Deposit and Withdrawal Files

Use	Notepad	 or	 another	 text	 editor	 to	 create	 a	 text	 file	 named	 Deposits.txt. The file
should contain the following numbers, one per line:

100.00
124.00
78.92
37.55

Next,	create	a	text	file	named	Withdrawals.txt. The file should contain the following num-
bers, one per line:

29.88
110.00
27.52
50.00
12.90

The numbers in the Deposits.txt file are the amounts of deposits that were made to a sav-
ings account during the month, and the numbers in the Withdrawals.txt file are the amounts
of withdrawals that were made during the month. Write a program that creates an instance
of the SavingsAccount	class	that	you	wrote	in	Programming	Challenge	12.	The	starting	bal-
ance	for	the	object	is	500.00.	The	program	should	read	the	values	from	the	Deposits.txt file
and use the object’s method to add them to the account balance. The program should read
the values from the Withdrawals.txt file and use the object’s method to subtract them from
the account balance. The program should call the class method to calculate the monthly
interest, and then display the ending balance and the total interest earned.

14. Dice Game

Write a program that uses the Die class that was presented in this chapter to play a simple
dice game between the computer and the user. The program should create two instances of
the Die class (each a 6-sided die). One Die object is the computer’s die, and the other Die
object is the user’s die.

The	program	should	have	a	loop	that	iterates	10	times.	Each	time	the	loop	iterates,	it	should	
roll both dice. The die with the highest value wins. (In case of a tie, there is no winner for
that particular roll of the dice.)

As	the	loop	iterates,	the	program	should	keep	count	of	the	number	of	times	the	computer	
wins,	and	the	number	of	times	that	the	user	wins.	After	the	loop	performs	all	of	its	itera-
tions, the program should display who was the grand winner, the computer or the user.

402 Chapter 6 A First Look at Classes

15. Roulette Wheel colors

On	a	roulette	wheel,	the	pockets	are	numbered	from	0	to	36.	The	colors	of	the	pockets	are	
as follows:

•	 Pocket	0	is	green.
•	 For	pockets	1	through	10,	the	odd	numbered	pockets	are	red	and	the	even	numbered	

pockets are black.
•	 For	pockets	11	through	18,	the	odd	numbered	pockets	are	black	and	the	even	num-

bered pockets are red.
•	 For	pockets	19	through	28,	the	odd	numbered	pockets	are	red	and	the	even	numbered	

pockets are black.
•	 For	pockets	29	through	36,	the	odd	numbered	pockets	are	black	and	the	even	num-

bered pockets are red.

Write a class named RoulettePocket. The class’s constructor should accept a pocket num-
ber. The class should have a method named getPocketColor that returns the pocket’s color,
as a string.

Demonstrate the class in a program that asks the user to enter a pocket number, and dis-
plays whether the pocket is green, red, or black. The program should display an error mes-
sage	if	the	user	enters	a	number	that	is	outside	the	range	of	0	through	36.

16. coin Toss simulator

Write a class named Coin. The Coin class should have the following field:

•	 A	String named sideUp. The sideUp field will hold either “heads” or “tails” indicating
the side of the coin that is facing up.

The Coin class should have the following methods:

•	 A	no-arg	constructor	that	randomly	determines	the	side	of	the	coin	that	is	facing	up	
(“heads”	or	“tails”)	and	initializes	the	sideUp field accordingly.

•	 A	void method named toss that simulates the tossing of the coin. When the toss
method is called, it randomly determines the side of the coin that is facing up (“heads”
or “tails”) and sets the sideUp field accordingly.

•	 A	method	named	getSideUp that returns the value of the sideUp field.

Write a program that demonstrates the Coin class. The program should create an instance of
the	class	and	display	the	side	that	is	initially	facing	up.	Then,	use	a	loop	to	toss	the	coin	20	
times. Each time the coin is tossed, display the side that is facing up. The program should
keep count of the number of times heads is facing up and the number of times tails is facing
up, and display those values after the loop finishes.

17. Tossing coins for a Dollar

For this assignment you will create a game program using the Coin	class	from	Programming	
Challenge	16.	The	program	should	have	three	instances	of	the	Coin class: one representing
a quarter, one representing a dime, and one representing a nickel.

When	the	game	begins,	your	starting	balance	 is	$0.	During	each	round	of	 the	game,	 the	
program will toss the simulated coins. When a coin is tossed, the value of the coin is added
to	your	balance	if	it	lands	heads-up.	For	example,	if	the	quarter	lands	heads-up,	25	cents	is	

 Programming Challenges 403

added	to	your	balance.	Nothing	is	added	to	your	balance	for	coins	that	land	tails-up.	The	
game is over when your balance reaches one dollar or more. If your balance is exactly one
dollar, you win the game. You lose if your balance exceeds one dollar.

18. Fishing Game simulation

For this assignment, you will write a program that simulates a fishing game. In this game,
a six-sided die is rolled to determine what the user has caught. Each possible item is worth
a certain number of fishing points. The points will remain hidden until the user is finished
fishing, and then a message is displayed congratulating the user, depending on the number
of fishing points gained.

Here are some suggestions for the game’s design:

•	 Each	round	of	the	game	is	performed	as	an	iteration	of	a	loop	that	repeats	as	long	as	
the player wants to fish for more items.

•	 At	the	beginning	of	each	round,	the	program	will	ask	the	user	whether	or	not	he	or	
she wants to continue fishing.

•	 The	program	simulates	the	rolling	of	a	six-sided	die	(use	the	Die class that was shown
in	Code	Listing	6-14).

•	 Each	item	that	can	be	caught	is	represented	by	a	number	generated	from	the	die;	for	
example,	1	for	“a	huge	fish”,	2	for	“an	old	shoe”,	3	for	“a	little	fish”,	and	so	on.

•	 Each	item	the	user	catches	is	worth	a	different	amount	of	points.
•	 The	loop	keeps	a	running	total	of	the	user’s	fishing	points.
•	 After	the	loop	has	finished,	the	total	number	of	fishing	points	is	displayed,	along	with	

a message that varies depending on the number of points earned.

This page intentionally left blank

405

Arrays and the
ArrayList ClassC

H
A

P
T

E
R

7
Topics

 7.1 Introduction to Arrays
 7.2 Processing Array Elements
 7.3 Passing Arrays as Arguments to

 Methods
 7.4 Some Useful Array Algorithms and

Operations
 7.5 Returning Arrays from Methods
 7.6 String Arrays
 7.7 Arrays of Objects
 7.8 The Sequential Search Algorithm

 7.9 Two-Dimensional Arrays
 7.10 Arrays with Three or More Dimensions
 7.11 The Selection Sort and the Binary

Search Algorithms
 7.12 Command-Line Arguments and

Variable-Length Argument Lists
 7.13 The ArrayList Class
 7.14 Common Errors to Avoid
 On the Web: Case Study— The

PinTester Class

7.1 introduction to Arrays

concepT: An array can hold multiple values of the same data type simultaneously.

The primitive variables you have worked with so far are designed to hold one value at a
time. Each of the variable declarations in Figure 7-1 causes only enough memory to be
reserved to hold one value of the specified data type.

An array, however, is an object that can store a group of values, all of the same type.
Creating and using an array in Java is similar to creating and using any other type of object:
You declare a reference variable and use the new key word to create an instance of the array
in memory. Here is an example of a statement that declares an array reference variable:

int[] numbers;

This statement declares numbers as an array reference variable. The numbers variable can
reference an array of int values. Notice that this statement looks like a regular int variable
declaration except for the set of brackets that appears after the key word int. The brackets
indicate that this variable is a reference to an int array. Declaring an array reference vari-
able does not create an array. The next step in the process is to use the new key word to
create an array and assign its address to the numbers variable. The following statement
shows an example:

numbers = new int[6];

406 Chapter 7 Arrays and the ArrayList Class

The number inside the brackets is the array’s size declarator. It indicates the number of ele-
ments, or values, the array can hold. When this statement is executed, numbers will reference
an array that can hold six elements, each one an int. This is shown in Figure 7-2.

Figure 7-1 Variable declarations and their memory allocations

Figure 7-2 The numbers array

As with any other type of object, it is possible to declare a reference variable and create an
instance of an array with one statement. Here is an example:

int[] numbers = new int[6];

Arrays of any data type can be declared. The following are all valid array declarations:

float[] temperatures = new float[100];
char[] letters = new char[41];
long[] units = new long[50];
double[] sizes = new double[1200];

An array’s size declarator must be a non-negative integer expression. It can be a literal
value, as shown in the previous examples, or a variable. It is a common practice to use a
final variable as a size declarator. Here is an example:

final int NUM_ELEMENTS = 6;
int[] numbers = new int[NUM_ELEMENTS];

 7.1 Introduction to Arrays 407

This practice can make programs easier to maintain. When we store the size of an array in
a variable, we can use the variable instead of a literal number when we refer to the size of
the array. If we ever need to change the array’s size, we need only to change the value of the
variable. The variable should be final so its contents cannot be changed during the
 program’s execution.

noTe: Once an array is created, its size cannot be changed.

Accessing Array elements
Although an array has only one name, the elements in the array may be accessed and used
as individual variables. This is possible because each element is assigned a number known
as a subscript. A subscript is used as an index to pinpoint a specific element within an array.
The first element is assigned the subscript 0, the second element is assigned 1, and so forth.
The six elements in the numbers array (described earlier) would have the subscripts 0
through 5. This is shown in Figure 7-3.

Figure 7-3 Subscripts for the numbers array

Subscript numbering always starts at zero. The subscript of the last element in an array is
one less than the total number of elements in the array. This means that for the numbers
array, which has six elements, 5 is the subscript for the last element.

Each element in the numbers array, when accessed by its subscript, can be used as an int
variable. For example, look at the following code. The first statement stores 20 in the first
element of the array (element 0), and the second statement stores 30 in the fourth element
(element 3).

numbers[0] = 20;
numbers[3] = 30;

noTe: The expression numbers[0] is pronounced “numbers sub zero.” You read these
assignment statements as “numbers sub zero is assigned twenty” and “numbers sub three
is assigned thirty.”

Figure 7-4 illustrates the contents of the array after these statements execute.

408 Chapter 7 Arrays and the ArrayList Class

By this point you should understand the difference between the array size declarator and a
subscript. When you use the new key word to create an array object, the number inside the
brackets is the size declarator. It indicates the number of elements in the array. The number
inside the brackets in an assignment statement or any statement that works with the con-
tents of an array is a subscript. It is used to access a specific element in the array.

inputting and outputting Array contents
You can read values from the keyboard and store them in an array element just as you can
a regular variable. You can also output the contents of an array element with print and
println. Code Listing 7-1 shows an array being used to store and display values entered by
the user. Figure 7-5 shows the contents of the hours array with the values entered by the
user in the example output.

code Listing 7-1 (ArrayDemo1.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program shows values being stored in an array's
 5 elements and displayed.
 6 */
 7
 8 public class ArrayDemo1
 9 {
10 public static void main(String[] args)
11 {
12 final int EMPLOYEES = 3; // Number of employees
13 int[] hours = new int[EMPLOYEES]; // Array of hours
14
15 // Create a Scanner object for keyboard input.
16 Scanner keyboard = new Scanner(System.in);
17
18 System.out.println("Enter the hours worked by " +

Figure 7-4 Contents of the array after 20 is assigned to numbers[0]
and 30 is assigned to numbers[3]

noTe: By default, Java initializes array elements with 0. In Figure 7-4, values have not
been stored in elements 1, 2, 4, and 5, so they are shown as 0s.

 7.1 Introduction to Arrays 409

19 EMPLOYEES + " employees.");
20
21 // Get the hours worked by employee 1.
22 System.out.print("Employee 1: ");
23 hours[0] = keyboard.nextInt();
24
25 // Get the hours worked by employee 2.
26 System.out.print("Employee 2: ");
27 hours[1] = keyboard.nextInt();
28
29 // Get the hours worked by employee 3.
30 System.out.print("Employee 3: ");
31 hours[2] = keyboard.nextInt();
32
33 // Display the values entered.
34 System.out.println("The hours you entered are:");
35 System.out.println(hours[0]);
36 System.out.println(hours[1]);
37 System.out.println(hours[2]);
38 }
39 }

program output with example input shown in Bold

Enter the hours worked by 3 employees.
Employee 1: 40 [enter]
Employee 2: 20 [enter]
Employee 3: 15 [enter]
The hours you entered are:
40
20
15

Figure 7-5 Contents of the hours array

Subscript numbers can be stored in variables. This makes it possible to use a loop to “cycle
through” an entire array, performing the same operation on each element. For example,
Code Listing 7-1 could be simplified by using two for loops: one for inputting the values
into the array and the other for displaying the contents of the array. This is shown in Code
Listing 7-2.

VideoNote

Accessing Array
Elements in

a Loop

410 Chapter 7 Arrays and the ArrayList Class

code Listing 7-2 (ArrayDemo2.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program shows an array being processed with loops.
 5 */
 6
 7 public class ArrayDemo2
 8 {
 9 public static void main(String[] args)
10 {
11 final int EMPLOYEES = 3; // Number of employees
12 int[] hours = new int[EMPLOYEES]; // Array of hours
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 System.out.println("Enter the hours worked by " +
18 EMPLOYEES + " employees.");
19
20 // Get the hours for each employee.
21 for (int index = 0; index < EMPLOYEES; index++)
22 {
23 System.out.print("Employee " + (index + 1) + ": ");
24 hours[index] = keyboard.nextInt();
25 }
26
27 System.out.println("The hours you entered are:");
28
29 // Display the values entered.
30 for (int index = 0; index < EMPLOYEES; index++)
31 System.out.println(hours[index]);
32 }
33 }

program output with example input shown in Bold

Enter the hours worked by 3 employees.
Employee 1: 40 [enter]
Employee 2: 20 [enter]
Employee 3: 15 [enter]
The hours you entered are:
40
20
15

 7.1 Introduction to Arrays 411

Let’s take a closer look at the first loop in this program, which appears in lines 21 through
25. Notice that the loop’s control variable, index, is used as a subscript in line 24:

hours[index] = keyboard.nextInt();

The variable index starts at 0. During the loop’s first iteration, the user’s input is stored in
hours[0]. Then, index is incremented, so its value becomes 1. During the next iteration, the
user’s input is stored in hours[1]. This continues until values have been stored in all of the
elements of the array. Notice that the loop correctly starts and ends the control variable
with valid subscript values (0 through 2), as illustrated in Figure 7-6. This ensures that only
valid subscripts are used.

Figure 7-6 Annotated loop

Java performs Bounds checking
Java performs array bounds checking, which means that it does not allow a statement to
use a subscript that is outside the range of valid subscripts for an array. For example, the
following statement creates an array with 10 elements. The valid subscripts for the array
are 0 through 9.

int[] values = new int[10];

Java will not allow a statement to use a subscript that is less than 0 or greater than 9 with
this array. Bounds checking occurs at runtime. The Java compiler does not display an error
message when it processes a statement that uses an invalid subscript. Instead, when the
statement executes, the program throws an exception and immediately terminates. For
instance, the program in Code Listing 7-3 declares a three-element array, but attempts to
store four values in the array. In line 17, when the program attempts to store a value in
values[3], it halts and an error message is displayed.

code Listing 7-3 (InvalidSubscript.java)

 1 /**
 2 This program uses an invalid subscript with an array.
 3 */
 4

412 Chapter 7 Arrays and the ArrayList Class

 5 public class InvalidSubscript
 6 {
 7 public static void main(String[] args)
 8 {
 9 int[] values = new int[3];
10
11 System.out.println("I will attempt to store four " +
12 "numbers in a three-element array.");
13
14 for (int index = 0; index < 4; index++)
15 {
16 System.out.println("Now processing element " + index);
17 values[index] = 10;
18 }
19 }
20 }

program output

I will attempt to store four numbers in a three-element array.
Now processing element 0
Now processing element 1
Now processing element 2
Now processing element 3
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 3
 at InvalidSubscript.main(InvalidSubscript.java:17)

noTe: The error message you see may be different, depending on your system.

Watch out for off-by-one errors
Because array subscripts start at 0 rather than 1, you have to be careful not to perform an
off-by-one error. For example, look at the following code:

// This code has an off-by-one error.
final int SIZE = 100;
int[] numbers = new int[SIZE];
for (int index = 1; index <= SIZE; index++)
 numbers[index] = 0;

The intent of this code is to create an array of integers with 100 elements, and store the
value 0 in each element. However, this code has an off-by-one error. The loop uses its con-
trol variable, index, as a subscript with the numbers array. During the loop’s execution, the
variable index takes on the values 1 through 100, when it should take on the values 0
through 99. As a result, the first element, which is at subscript 0, is skipped. In addition, the
loop attempts to use 100 as a subscript during the last iteration. Because 100 is an invalid
subscript, the program will throw an exception and halt.

 7.1 Introduction to Arrays 413

Array initialization
Like regular variables, Java allows you to initialize an array’s elements when you create the
array. Here is an example:

int[] days = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

This statement declares the reference variable days, creates an array in memory, and stores
initial values in the array. The series of values inside the braces and separated with commas
is called an initialization list. These values are stored in the array elements in the order they
appear in the list. (The first value, 31, is stored in days[0], the second value, 28, is stored in
days[1], and so forth.) Note that you do not use the new key word when you use an initia-
lization list. Java automatically creates the array and stores the values in the initialization
list in it.

The Java compiler determines the size of the array by the number of items in the initial-
ization list. Because there are 12 items in the example statement’s initialization list, the
array will have 12 elements. The program in Code Listing 7-4 demonstrates an array
being initialized.

code Listing 7-4 (ArrayInitialization.java)

 1 /**
 2 This program shows an array being initialized.
 3 */
 4
 5 public class ArrayInitialization
 6 {
 7 public static void main(String[] args)
 8 {
 9 int[] days = { 31, 28, 31, 30, 31, 30,
10 31, 31, 30, 31, 30, 31 };
11
12 for (int index = 0; index < 12; index++)
13 {
14 System.out.println("Month " + (index + 1) +
15 " has " + days[index] +
16 " days.");
17 }
18 }
19 }

program output

Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.

414 Chapter 7 Arrays and the ArrayList Class

Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

Java allows you to spread the initialization list across multiple lines. Both of the following
array declarations are equivalent:

double[] coins = { 0.05, 0.1, 0.25 };

double[] coins = { 0.05,
 0.1,
 0.25 };

Alternate Array Declaration notation
Java allows you to use two different styles when declaring array reference variables. The
first style is the one used in this book, with the brackets immediately following the data
type, as shown here:

int[] numbers;

In the second style the brackets are placed after the variable name, as shown here:

int numbers[];

Both of these statements accomplish the same thing: They declare that numbers is a refer-
ence to an int array. The difference between the two styles is noticed when more than one
variable is declared in the same statement. For example, look at the following statement:

int[] numbers, codes, scores;

This statement declares three variables: numbers, codes, and scores. All three are refer-
ences to int arrays. This makes perfect sense because int[] is the data type for all the
variables declared in the statement. Now look at the following statement, which uses the
alternate notation:

int numbers[], codes, scores;

This statement declares the same three variables, but only numbers is a reference to an int
array. The codes and scores variables are regular int variables. This is because int is the
data type for all the variables declared in the statement, and only numbers is followed by
the brackets. To declare all three of these variables as references to int arrays using the
alternate notation, you need to write a set of brackets after each variable name. Here is
an example:

int numbers[], codes[], scores[];

The first style is the standard notation for most Java programmers, so that is the style used
in this book.

 7.2 Processing Array Elements 415

checkpoint

www.myprogramminglab.com

7.1 Write statements that create the following arrays:
a) A 100-element int array referenced by the variable employeeNumbers.
b) A 25-element double array referenced by the variable payRates.
c) A 14-element float array referenced by the variable miles.
d) A 1000-element char array referenced by the variable letters.

7.2 What’s wrong with the following array declarations?

int[] readings = new int[-1];
double[] measurements = new double[4.5];

7.3 What would the valid subscript values be in a four-element array of doubles?

7.4 What is the difference between an array’s size declarator and a subscript?

7.5 What does it mean for a subscript to be out-of-bounds?

7.6 What happens in Java when a program tries to use a subscript that is out-
of-bounds?

7.7 What is the output of the following code?

int[] values = new int[5];
for (int count = 0; count < 5; count++)
 values[count] = count + 1;
for (int count = 0; count < 5; count++)
 System.out.println(values[count]);

7.8 Write a statement that creates and initializes a double array with the following
 values: 1.7, 6.4, 8.9, 3.1, and 9.2. How many elements are in the array?

7.2 processing Array elements

concepT: Individual array elements are processed like any other type of variable.

Processing array elements is no different from processing other variables. For example, the
following statement multiplies hours[3] by the variable payRate:

grossPay = hours[3] * payRate;

The following are examples of pre-increment and post-increment operations on
array elements:

int[] score = {7, 8, 9, 10, 11};
++score[2]; // Pre-increment operation
score[4]++; // Post-increment operation

When using increment and decrement operators, be careful not to use the operator on the
subscript when you intend to use it on the array element. For example, the following
statement decrements the variable count, but does nothing to the value stored in the array
element amount[count]:

amount[count--];

http://www.myprogramminglab.com

416 Chapter 7 Arrays and the ArrayList Class

Code Listing 7-5 demonstrates the use of array elements in a simple mathematical state-
ment. A loop steps through each element of the array, using the elements to calculate the
gross pay of five employees.

code Listing 7-5 (PayArray.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program stores in an array the hours worked by
 5 five employees who all make the same hourly wage.
 6 */
 7
 8 public class PayArray
 9 {
10 public static void main(String[] args)
11 {
12 final int EMPLOYEES = 5; // Number of employees
13 double payRate; // Hourly pay rate
14 double grossPay; // Gross pay
15
16 // Create an array to hold employee hours.
17 int[] hours = new int[EMPLOYEES];
18
19 // Create a Scanner object for keyboard input.
20 Scanner keyboard = new Scanner(System.in);
21
22 // Get the hours worked by each employee.
23 System.out.println("Enter the hours worked by " +
24 EMPLOYEES + " employees who all earn " +
25 "the same hourly rate.");
26
27 for (int index = 0; index < EMPLOYEES; index++)
28 {
29 System.out.print("Employee #" + (index + 1) + ": ");
30 hours[index] = keyboard.nextInt();
31 }
32
33 // Get the hourly pay rate.
34 System.out.print("Enter the hourly rate for each employee: ");
35 payRate = keyboard.nextDouble();
36
37 // Display each employee's gross pay.
38 System.out.println("Here is each employee's gross pay:");
39 for (int index = 0; index < EMPLOYEES; index++)
40 {
41 grossPay = hours[index] * payRate;

 7.2 Processing Array Elements 417

42 System.out.println("Employee #" + (index + 1) +
43 ": $" + grossPay);
44 }
45 }
46 }

program output with example input shown in Bold

Enter the hours worked by 5 employees who all earn the same hourly rate.
Employee #1: 10 [enter]
Employee #2: 20 [enter]
Employee #3: 30 [enter]
Employee #4: 40 [enter]
Employee #5: 50 [enter]
Enter the hourly rate for each employee: 10 [enter]
Here is each employee's gross pay:
Employee #1: $100.0
Employee #2: $200.0
Employee #3: $300.0
Employee #4: $400.0
Employee #5: $500.0

In line 41, the following statement assigns the value of hours[index] times payRate to the
grossPay variable:

grossPay = hours[index] * payRate;

Array elements may also be used in relational expressions. For example, the following if
statement determines whether cost[20] is less than cost[0]:

if (cost[20] < cost[0])

And the following while loop iterates as long as value[count] does not equal 0:

while (value[count] != 0)
{
 Statements
}

In this chapter’s source code (available at www.pearsonhighered.com/gaddis), you will
find the file Overtime.java, which is a modification of the PayArray.java program in Code
Listing 7-5. The Overtime.java program includes overtime wages in the gross pay. If an
employee works more than 40 hours, an overtime pay rate of 1.5 times the regular pay
rate is used for the excess hours.

Array Length
Each array in Java has a public field named length. This field contains the number of ele-
ments in the array. For example, consider an array created by the following statement:

double[] temperatures = new double[25];

http://www.pearsonhighered.com/gaddis

418 Chapter 7 Arrays and the ArrayList Class

Because the temperatures array has 25 elements, the following statement would assign 25
to the variable size:

size = temperatures.length;

The length field can be useful when processing the entire contents of an array. For example,
the following loop steps through an array and displays the contents of each element. The
array’s length field is used in the test expression as the upper limit for the loop control
variable:

for (int i = 0; i < temperatures.length; i++)
 System.out.println(temperatures[i]);

WArning! Be careful not to cause an off-by-one error when using the length field as
the upper limit of a subscript. The length field contains the number of elements in an
array. The largest subscript in an array is length 2 1.

noTe: You cannot change the value of an array’s length field.

The enhanced for Loop
Java provides a specialized version of the for loop that, in many circumstances, simplifies
array processing. It is known as the enhanced for loop. Here is the general format of the
enhanced for loop:

for (dataType elementVariable : array)
 statement;

The enhanced for loop is designed to iterate once for every element in an array. Each time
the loop iterates, it copies an array element to a variable. Let’s look at the syntax more
closely as follows:

•	 dataType elementVariable is a variable declaration. This variable will receive
the value of a different array element during each loop iteration. During the first loop
iteration, it receives the value of the first element; during the second iteration, it
receives the value of the second element, and so on. This variable must be of the same
data type as the array elements, or a type that the elements can automatically be con-
verted to.

•	 array is the name of an array on which you wish the loop to operate. The loop will
iterate once for every element in the array.

•	 statement is a statement that executes during a loop iteration.

For example, assume that we have the following array declaration:

int[] numbers = { 3, 6, 9 };

We can use the following enhanced for loop to display the contents of the numbers array:

for (int val : numbers)
 System.out.println(val);

 7.2 Processing Array Elements 419

Because the numbers array has three elements, this loop will iterate three times. The first
time it iterates, the val variable will receive the value in numbers[0]. During the second
iteration, val will receive the value in numbers[1]. During the third iteration, val will receive
the value in numbers[2]. The code’s output will be as follows:

3
6
9

If you need to execute more than one statement in the enhanced for loop, simply enclose
the block of statements in a set of braces. Here is an example:

int[] numbers = { 3, 6, 9 };
for (int val : numbers)
{
 System.out.print("The next value is ");
 System.out.println(val);
}

This code will produce the following output:

The next value is 3
The next value is 6
The next value is 9

The enhanced for Loop versus the Traditional for Loop

When you need to access the values that are stored in an array, from the first element to the
last element, the enhanced for loop is simpler to use than the traditional for loop. With the
enhanced for loop you do not have to be concerned about the size of the array, and you do
not have to create an “index” variable to hold subscripts. However, there are circumstances
in which the enhanced for loop is not adequate. You cannot use the enhanced for loop
as follows:

•	 if	you	need	to	change	the	contents	of	an	array	element
•	 if	you	need	to	work	through	the	array	elements	in	reverse	order
•	 if	you	need	to	access	some	of	the	array	elements,	but	not	all	of	them
•	 if	you	need	to	simultaneously	work	with	two	or	more	arrays	within	the	loop
•	 if	you	need	to	refer	to	the	subscript	number	of	a	particular	element

In any of these circumstances, you should use the traditional for loop to process the array.

Letting the User specify an Array’s size
Java allows you to use an integer variable to specify an array’s size declarator. This makes it
possible to allow the user to specify an array’s size. Code Listing 7-6 demonstrates this, as
well as the use of the length field. It stores a number of test scores in an array and then
displays them.

420 Chapter 7 Arrays and the ArrayList Class

code Listing 7-6 (DisplayTestScores.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program demonstrates how the user may specify an
 5 array's size.
 6 */
 7
 8 public class DisplayTestScores
 9 {
10 public static void main(String[] args)
11 {
12 int numTests; // The number of tests
13 int[] tests; // Array of test scores
14
15 // Create a Scanner object for keyboard input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Get the number of test scores.
19 System.out.print("How many tests do you have? ");
20 numTests = keyboard.nextInt();
21
22 // Create an array to hold that number of scores.
23 tests = new int[numTests];
24
25 // Get the individual test scores.
26 for (int index = 0; index < tests.length; index++)
27 {
28 System.out.print("Enter test score " +
29 (index + 1) + ": ");
30 tests[index] = keyboard.nextInt();
31 }
32
33 // Display the test scores.
34 System.out.println();
35 System.out.println("Here are the scores you entered:");
36 for (int index = 0; index < tests.length; index++)
37 System.out.print(tests[index] + " ");
38 }
39 }

program output with example input shown in Bold

How many tests do you have? 5 [enter]
Enter test score 1: 72 [enter]

 7.2 Processing Array Elements 421

Enter test score 2: 85 [enter]
Enter test score 3: 81 [enter]
Enter test score 4: 94 [enter]
Enter test score 5: 99 [enter]

Here are the scores you entered:
72 85 81 94 99

This program allows the user to determine the size of the array. In line 23 the following
statement creates the array, using the numTests variable to determine its size:

tests = new int[numTests];

The program then uses two for loops. The first, in lines 26 through 31, allows the user to
input each test score. The second, in lines 36 and 37, displays all of the test scores. Both
loops use the length member to control their number of iterations as follows:

for (int index = 0; index < tests.length; index++)

reassigning Array reference Variables
It is possible to reassign an array reference variable to a different array, as demonstrated by
the following code:

// Create an array referenced by the numbers variable.
int[] numbers = new int[10];
// Reassign numbers to a new array.
numbers = new int[5];

The first statement creates a ten-element integer array and assigns its address to the numbers
variable. This is illustrated in Figure 7-7.

Figure 7-7 The numbers variable references a ten-element array

The second statement allocates a five-element integer array and assigns its address to the
numbers variable. The address of the five-element array takes the place of the address of
the ten-element array. After this statement executes, the numbers variable references the five-
element array instead of the ten-element array. This is illustrated in Figure 7-8. Because the
ten-element array is no longer referenced, it cannot be accessed.

422 Chapter 7 Arrays and the ArrayList Class

copying Arrays
Because an array is an object, there is a distinction between an array and the variable that
references it. The array and the reference variable are two separate entities. This is impor-
tant to remember when you wish to copy the contents of one array to another. You might be
tempted to write something like the following code, thinking that you are copying an array:

int[] array1 = { 2, 4, 6, 8, 10 };
int[] array2 = array1; // This does not copy array1.

The first statement creates an array and assigns its address to the array1 variable. The sec-
ond statement assigns array1 to array2. This does not make a copy of the array referenced
by array1. Rather, it makes a copy of the address that is stored in array1 and stores it in
array2. After this statement executes, both the array1 and array2 variables will reference
the same array. This type of assignment operation is called a reference copy. Only the
address of the array object is copied, not the contents of the array object. This is illustrated
in Figure 7-9.

Figure 7-8 The numbers variable references a five-element array

Figure 7-9 Both array1 and array2 reference the same array

Code Listing 7-7 demonstrates the assigning of an array’s address to two reference variables.
Regardless of which variable the program uses, it is working with the same array.

 7.2 Processing Array Elements 423

code Listing 7-7 (SameArray.java)

 1 /**
 2 This program demonstrates that two variables can
 3 reference the same array.
 4 */
 5
 6 public class SameArray
 7 {
 8 public static void main(String[] args)
 9 {
10 int[] array1 = { 2, 4, 6, 8, 10 };
11 int[] array2 = array1;
12
13 // Change one of the elements using array1.
14 array1[0] = 200;
15
16 // Change one of the elements using array2.
17 array2[4] = 1000;
18
19 // Display all the elements using array1
20 System.out.println("The contents of array1:");
21 for (int value : arrayl)
22 System.out.print(value + " ");
23 System.out.println();
24
25 // Display all the elements using array2
26 System.out.println("The contents of array2:");
27 for (int value : array2)
28 System.out.print(value + " ");
29 System.out.println();
30 }
31 }

program output

The contents of array1:
200 4 6 8 1000
The contents of array2:
200 4 6 8 1000

The program in Code Listing 7-7 illustrates that you cannot copy an array by merely assign-
ing one array reference variable to another. Instead, to copy an array you need to copy the
individual elements of one array to another. Usually, this is best done with a loop, such as
the following:

424 Chapter 7 Arrays and the ArrayList Class

int[] firstArray = { 5, 10, 15, 20, 25 };
int[] secondArray = new int[5];

for (int index = 0; index < firstArray.length; index++)
 secondArray[index] = firstArray[index];

The loop in this code copies each element of firstArray to the corresponding element of
secondArray.

checkpoint

www.myprogramminglab.com

7.9 Look at the following statements:

int[] numbers1 = { 1, 3, 6, 9 };
int[] numbers2 = { 2, 4, 6, 8 };
int result;

 Write a statement that multiplies element 0 of the numbers1 array by element 3 of
the numbers2 array and assigns the result to the result variable.

7.10 A program uses a variable named array that references an array of integers. You do
not know the number of elements in the array. Write a for loop that stores −1 in
each element of the array.

7.11 A program has the following declaration:

double[] values;

 Write code that asks the user for the size of the array and then creates an array of
the specified size, referenced by the values variable.

7.12 Look at the following statements:

int[] a = { 1, 2, 3, 4, 5, 6, 7 };
int[] b = new int[7];

 Write code that copies the a array to the b array.

7.3 passing Arrays as Arguments to Methods

concepT: An array can be passed as an argument to a method. To pass an array, you
pass the value in the variable that references the array.

Quite often you’ll want to write methods that process the data in arrays. As you will see,
methods can be written to store values in an array, display an array’s contents, total all of
an array’s elements, calculate their average, and so forth. Usually, such methods accept an
array as an argument.

When a single element of an array is passed to a method, it is handled like any other vari-
able. For example, Code Listing 7-8 shows a loop that passes each element of the array
numbers to the method showValue.

Passing an
Array to a

Method

VideoNote

http://www.myprogramminglab.com

 7.3 Passing Arrays as Arguments to Methods 425

code Listing 7-8 (PassElements.java)

 1 /**
 2 This program demonstrates passing individual array
 3 elements as arguments to a method.
 4 */
 5
 6 public class PassElements
 7 {
 8 public static void main(String[] args)
 9 {
10 int[] numbers = {5, 10, 15, 20, 25, 30, 35, 40};
11
12 for (int index = 0; index < numbers.length; index++)
13 showValue(numbers[index]);
14 }
15
16 /**
17 The showValue method displays its argument.
18 @param n The value to display.
19 */
20
21 public static void showValue(int n)
22 {
23 System.out.print(n + " ");
24 }
25 }

program output

5 10 15 20 25 30 35 40

Each time showValue is called in this program, an array element is passed to the method.
The showValue method has an int parameter variable named n, which receives the argu-
ment. The method simply displays the contents of n. If the method were written to accept
the entire array as an argument, however, the parameter would have to be set up differently.
For example, consider the following method definition. The parameter array is declared
as an array reference variable. This indicates that the argument will be an array, not a
single value.

public static void showArray(int[] array)
{
 for (int i = 0; i < array.length; i++)
 System.out.print(array[i] + " ");
}

426 Chapter 7 Arrays and the ArrayList Class

When you pass an array as an argument, you simply pass the value in the variable that
references the array, as shown here:

showArray(numbers);

When an entire array is passed into a method, it is passed just as an object is passed: The
actual array itself is not passed, but a reference to the array is passed into the parameter.
Consequently, this means the method has direct access to the original array. This is illus-
trated in Figure 7-10.

Figure 7-10 An array passed as an argument

Code Listing 7-9 shows the showArray method in use, as well as another method, getValues.
The getValues method accepts an array as an argument. It asks the user to enter a value for
each element.

code Listing 7-9 (PassArray.java)

 1 import java.util.Scanner; // Needed for Scanner class
 2
 3 /**
 4 This program demonstrates passing an array
 5 as an argument to a method.
 6 */
 7
 8 public class PassArray
 9 {
10 public static void main(String[] args)
11 {
12 final int ARRAY_SIZE = 4; // Size of the array
13

 7.3 Passing Arrays as Arguments to Methods 427

14 // Create an array.
15 int[] numbers = new int[ARRAY_SIZE];
16
17 // Pass the array to the getValues method.
18 getValues(numbers);
19
20 System.out.println("Here are the " +
21 "numbers that you entered:");
22
23 // Pass the array to the showArray method.
24 showArray(numbers);
25 }
26
27 /**
28 The getValues method accepts a reference
29 to an array as its argument. The user is
30 asked to enter a value for each element.
31 @param array A reference to the array.
32 */
33
34 private static void getValues(int[] array)
35 {
36 // Create a Scanner objects for keyboard input.
37 Scanner keyboard = new Scanner(System.in);
38
39 System.out.println("Enter a series of " +
40 array.length + " numbers.");
41
42 // Read values into the array
43 for (int index = 0; index < array.length; index++)
44 {
45 System.out.print("Enter number " +
46 (index + 1) + ": ");
47 array[index] = keyboard.nextInt();
48 }
49 }
50
51 /**
52 The showArray method accepts an array as
53 an argument and displays its contents.
54 @param array A reference to the array.
55 */
56
57 public static void showArray(int[] array)
58 {
59 // Display the array elements.
60 for (int index = 0; index < array.length; index++)
61 System.out.print(array[index] + " ");

428 Chapter 7 Arrays and the ArrayList Class

62 }
63 }

program output with example input shown in Bold

Enter a series of 4 numbers.
Enter number 1: 2 [enter]
Enter number 2: 4 [enter]
Enter number 3: 6 [enter]
Enter number 4: 8 [enter]
Here are the numbers that you entered:
2 4 6 8

checkpoint

www.myprogramminglab.com

7.13 Look at the following method header:

public static void myMethod(double[] array)

 Here is an array declaration:

double[] numbers = new double[100];

 Write a statement that passes the numbers array to the myMethod method.

7.14 Write a method named zero, which accepts an int array as an argument and stores
the value 0 in each element.

7.4 some Useful Array Algorithms and operations
comparing Arrays
In the previous section you saw that you cannot copy an array by simply assigning its refer-
ence variable to another array’s reference variable. In addition, you cannot use the == ope-
rator to compare two array reference variables and determine whether the arrays are equal.
For example, the following code appears to compare two arrays, but in reality does not:

int[] firstArray = { 5, 10, 15, 20, 25 };
int[] secondArray = { 5, 10, 15, 20, 25 };
if (firstArray == secondArray) // This is a mistake.
 System.out.println("The arrays are the same.");
else
 System.out.println("The arrays are not the same.");

When you use the == operator with reference variables, including those that reference
arrays, the operator compares the memory addresses that the variables contain, not the
contents of the objects referenced by the variables. Because the two array variables in this
code reference different objects in memory, they will contain different addresses. Therefore,
the result of the boolean expression firstArray == secondArray is false and the code
reports that the arrays are not the same.

To compare the contents of two arrays, you must compare the elements of the two arrays.

http://www.myprogramminglab.com

 7.4 Some Useful Array Algorithms and Operations 429

For example, look at the following code:

int[] firstArray = { 2, 4, 6, 8, 10 };
int[] secondArray = { 2, 4, 6, 8, 10 };
boolean arraysEqual = true; // Flag variable
int index = 0; // Loop control variable

// First determine whether the arrays are the same size.
if (firstArray.length != secondArray.length)
 arraysEqual = false;

// Next determine whether the elements contain the same data.
while (arraysEqual && index < firstArray.length)
{
 if (firstArray[index] != secondArray[index])
 arraysEqual = false;
 index++;
}

if (arraysEqual)
 System.out.println("The arrays are equal.");
else
 System.out.println("The arrays are not equal.");

This code determines whether firstArray and secondArray contain the same values. A
boolean flag variable, arraysEqual, which is initialized to true, is used to signal whether
the arrays are equal. Another variable, index, which is initialized to 0, is used as a loop
control variable.

First, this code determines whether the two arrays are the same length. If they are not the
same length, then the arrays cannot be equal, so the flag variable arraysEqual is set to
false. Then a while loop begins. The loop executes as long as arraysEqual is true and the
control variable index is less than firstArray.length. During each iteration, it compares a
different set of corresponding elements in the arrays. When it finds two corresponding ele-
ments that have different values, the flag variable arraysEqual is set to false. After the loop
finishes, an if statement examines the arraysEqual variable. If the variable is true, then the
arrays are equal and a message indicating so is displayed. Otherwise, they are not equal, so
a different message is displayed.

summing the Values in a numeric Array
To sum the values in an array you must use a loop with an accumulator variable. The loop
adds the value in each array element to the accumulator. For example, assume that the follow-
ing statement appears in a program and that values have been stored in the units array:

int[] units = new int[25];

The following loop adds the values of each element of the units array to the total variable.
When the code is finished, total will contain the sum of all of the units array’s elements.

430 Chapter 7 Arrays and the ArrayList Class

int total = 0; // Initialize accumulator
for (int index = 0; index < units.length; index++)
 total += units[index];

getting the Average of the Values in a numeric Array
The first step in calculating the average of all the values in an array is to sum the values.
The second step is to divide the sum by the number of elements in the array. Assume that
the following statement appears in a program and that values have been stored in the
scores array:

double[] scores = new double[10];

The following code calculates the average of the values in the scores array. When the code
completes, the average will be stored in the average variable.

double total = 0; // Initialize accumulator
double average; // Will hold the average
for (int index = 0; index < scores.length; index++)
 total += scores[index];
average = total / scores.length;

Notice that the last statement, which divides total by scores.length, is not inside the loop.
This statement should execute only once, after the loop has finished its iterations.

Finding the Highest and Lowest Values in a numeric Array
The algorithms for finding the highest and lowest values in an array are very similar. First,
let’s look at code for finding the highest value in an array. Assume that the following state-
ment exists in a program and that values have been stored in the numbers array:

int[] numbers = new int[50];

The code to find the highest value in the array is as follows:

int highest = numbers[0];
for (int index = 1; index < numbers.length; index++)
{
 if (numbers[index] > highest)
 highest = numbers[index];
}

First we copy the value in the first array element to the variable highest. Then the loop
compares all of the remaining array elements, beginning at subscript 1, to the value in
highest. Each time it finds a value in the array that is greater than highest, it copies that
value to highest. When the loop has finished, highest will contain the highest value in
the array.

The following code finds the lowest value in the array. As you can see, it is nearly identical
to the code for finding the highest value.

 7.4 Some Useful Array Algorithms and Operations 431

int lowest = numbers[0];
for (int index = 1; index < numbers.length; index++)
{
 if (numbers[index] < lowest)
 lowest = numbers[index];
}

When the loop has finished, lowest will contain the lowest value in the array.

The SalesData class
To demonstrate these algorithms, look at the SalesData class shown in Code Listing 7-10.
An instance of the class keeps sales amounts for any number of days in an array, which is a
private field. Public methods are provided that return the total, average, highest, and lowest
amounts of sales. The program in Code Listing 7-11 demonstrates the class, and Figure 7-11
shows an example of interaction with the program.

code Listing 7-10 (SalesData.java)

 1 /**
 2 This class keeps the sales figures for a number of
 3 days in an array and provides methods for getting
 4 the total and average sales, and the highest and
 5 lowest amounts of sales.
 6 */
 7
 8 public class SalesData
 9 {
10 private double[] sales; // The sales data
11
12 /**
13 The constructor copies the elements in
14 an array to the sales array.
15 @param s The array to copy.
16 */
17
18 public SalesData(double[] s)
19 {
20 // Create an array as large as s.
21 sales = new double[s.length];
22
23 // Copy the elements from s to sales.
24 for (int index = 0; index < s.length; index++)
25 sales[index] = s[index];
26 }

432 Chapter 7 Arrays and the ArrayList Class

27
28 /**
29 getTotal method
30 @return The total of the elements in
31 the sales array.
32 */
33
34 public double getTotal()
35 {
36 double total = 0.0; // Accumulator
37
38 // Accumulate the sum of the elements
39 // in the sales array.
40 for (int index = 0; index < sales.length; index++)
41 total += sales[index];
42
43 // Return the total.
44 return total;
45 }
46
47 /**
48 getAverage method
49 @return The average of the elements
50 in the sales array.
51 */
52
53 public double getAverage()
54 {
55 return getTotal() / sales.length;
56 }
57
58 /**
59 getHighest method
60 @return The highest value stored
61 in the sales array.
62 */
63
64 public double getHighest()
65 {
66 double highest = sales[0];
67
68 for (int index = 1; index < sales.length; index++)
69 {
70 if (sales[index] > highest)
71 highest = sales[index];
72 }

 7.4 Some Useful Array Algorithms and Operations 433

73
74 return highest;
75 }
76
77 /**
78 getLowest method
79 @return The lowest value stored
80 in the sales array.
81 */
82
83 public double getLowest()
84 {
85 double lowest = sales[0];
86
87 for (int index = 1; index < sales.length; index++)
88 {
89 if (sales[index] < lowest)
90 lowest = sales[index];
91 }
92
93 return lowest;
94 }
95 }

code Listing 7-11 (Sales.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program gathers sales amounts for the week.
 5 It uses the SalesData class to display the total,
 6 average, highest, and lowest sales amounts.
 7 */
 8
 9 public class Sales
10 {
11 public static void main(String[] args)
12 {
13 final int ONE_WEEK = 7; // Number of elements
14
15 // Create an array to hold sales amounts for a week.
16 double[] sales = new double[ONE_WEEK];

434 Chapter 7 Arrays and the ArrayList Class

17
18 // Get the week's sales figures.
19 getValues(sales);
20
21 // Create a SalesData object, initialized
22 // with the week's sales figures.
23 SalesData week = new SalesData(sales);
24
25 // Display the total, average, highest, and lowest
26 // sales amounts for the week.
27 JOptionPane.showMessageDialog(null,
28 String.format("The total sales were $%,.2f\n" +
29 "The average sales were $%,.2f\n" +
30 "The highest sales were $%,.2f\n" +
31 "The lowest sales were $%,.2f",
32 week.getTotal(),
33 week.getAverage(),
34 week.getHighest(),
35 week.getLowest()));
36
37 System.exit(0);
38 }
39
40 /**
41 The getValues method asks the user to enter sales
42 amounts for each element of an array.
43 @param array The array to store the values in.
44 */
45
46 private static void getValues(double[] array)
47 {
48 String input; // To hold user input.
49
50 // Get sales for each day of the week.
51 for (int i = 0; i < array.length; i++)
52 {
53 input = JOptionPane.showInputDialog(
54 "Enter the sales for day " + (i + 1) + ".");
55 array[i] = Double.parseDouble(input);
56 }
57 }
58 }

 7.4 Some Useful Array Algorithms and Operations 435

1 2

3 4

5 6

7 8

Figure 7-11 Interaction with the Sales.java program

in the spotlight:
Creating an Object That Processes an Array
Dr. LaClaire gives a set of exams during the semester in her chemistry class. At the end of
the semester, she drops each student’s lowest test score before averaging the scores. She has
asked you to write a program that will read a student’s test scores as input and calculate the
average with the lowest score dropped.

The following pseudocode shows the steps for calculating the average of a set of test scores,
with the lowest score dropped:

Calculate the total of the scores.
Find the lowest score.
Subtract the lowest score from the total. This gives the adjusted total.
Divide the adjusted total by (number of scores 2 1). This is the average.

You decide to create a class named Grader, with a constructor that accepts a double array
of test scores. The Grader class will have a method named getLowestScore that returns the
lowest score in the array, and a method named getAverage that returns the average of the
test scores with the lowest score dropped. Figure 7-12 shows a UML diagram for the class.

Code Listing 7-12 shows the code for the class.

code Listing 7-12 (Grader.java)

 1 /**
 2 The Grader class calculates the average
 3 of an array of test scores, with the
 4 lowest score dropped.
 5 */
 6
 7 public class Grader
 8 {
 9 // The testScores field is a variable
10 // that will reference an array
11 // of test scores.
12 private double[] testScores;
13
14 /**
15 Constructor
16 @param scoreArray An array of test scores.
17 */
18
19 public Grader(double[] scoreArray)
20 {
21 // Assign the array argument to
22 // the testScores field.
23 testScores = scoreArray;
24 }
25
26 /**
27 getLowestScore method
28 @return The lowest test score.
29 */
30
31 public double getLowestScore()
32 {
33 double lowest; // To hold the lowest score

Grader

- testScores: double[]

+ Grader(scoreArray : double[]);
+ getLowestScore() : double
+ getAverage() : double

Figure 7-12 UML diagram for the Grader class

436 Chapter 7 Arrays and the ArrayList Class

 7.4 Some Useful Array Algorithms and Operations 437

34
35 // Get the first test score in the array.
36 lowest = testScores[0];
37
38 // Step through the rest of the array. When
39 // a value less than lowest is found, assign
40 // it to lowest.
41 for (int index = 1; index < testScores.length; index++)
42 {
43 if (testScores[index] < lowest)
44 lowest = testScores[index];
45 }
46
47 // Return the lowest test score.
48 return lowest;
49 }
50
51 /**
52 getAverage method
53 @return The average of the test scores
54 with the lowest score dropped.
55 */
56
57 public double getAverage()
58 {
59 double total = 0; // To hold the score total
60 double lowest; // To hold the lowest score
61 double average; // To hold the average
62
63 // If the array contains less than two test
64 // scores, display an error message and set
65 // average to 0.
66 if (testScores.length < 2)
67 {
68 System.out.println("ERROR: You must have at " +
69 "least two test scores!");
70 average = 0;
71 }
72 else
73 {
74 // First, calculate the total of the scores.
75 for (double score : testScores)
76 total += score;
77
78 // Next, get the lowest score.
79 lowest = getLowestScore();
80
81 // Subtract the lowest score from the total.
82 total -= lowest;

83
84 // Get the adjusted average.
85 average = total / (testScores.length - 1);
86 }
87
88 // Return the adjusted average.
89 return average;
90 }
91 }

•	 Line	12	declares	a	field	named	testScores, which will be used to reference a double
array of test scores.

•	 The	constructor	appears	in	lines	19	through	24.	It	accepts	a	double array as an argu-
ment, which is assigned to the testScores field.

•	 The	getLowestScore method appears in lines 31 through 49. It finds the lowest value
in the testScores array and returns that value.

•	 The	getAverage method appears in lines 57 through 90. This method first determines
whether there are less than 2 elements in the testScores array (in line 66). If that is
the case, we cannot drop the lowest score, so an error message is displayed and the
average variable is set to 0. Otherwise, the code in lines 74 through 85 calculates the
average of the test scores with the lowest score dropped, and assigns that value to the
average variable. Line 89 returns the value of the average variable.

Code Listing 7-13 shows the program that Dr. LaClaire will use to calculate a student’s
adjusted average. The program gets a series of test scores, stores those scores in an array,
and uses an instance of the Grader class to calculate the average.

code Listing 7-13 (CalcAverage.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program gets a set of test scores and
 5 uses the Grader class to calculate the average
 6 with the lowest score dropped.
 7 */
 8
 9 public class CalcAverage
10 {
11 public static void main(String[] args)
12 {
13 int numScores; // To hold the number of scores
14
15 // Create a Scanner object for keyboard input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Get the number of test scores.
19 System.out.print("How many test scores do you have? ");

438 Chapter 7 Arrays and the ArrayList Class

 7.4 Some Useful Array Algorithms and Operations 439

20 numScores = keyboard.nextInt();
21
22 // Create an array to hold the test scores.
23 double[] scores = new double[numScores];
24
25 // Get the test scores and store them
26 // in the scores array.
27 for (int index = 0; index < numScores; index++)
28 {
29 System.out.print("Enter score #" +
30 (index + 1) + ": ");
31 scores[index] = keyboard.nextDouble();
32 }
33
34 // Create a Grader object, passing the
35 // scores array as an argument to the
36 // constructor.
37 Grader myGrader = new Grader(scores);
38
39 // Display the adjusted average.
40 System.out.println("Your adjusted average is " +
41 myGrader.getAverage());
42
43 // Display the lowest score.
44 System.out.println("Your lowest test score was " +
45 myGrader.getLowestScore());
46
47 }
48 }

program output with example input shown in Bold

How many test scores do you have? 4 [enter]
Enter score #1: 100 [enter]
Enter score #2: 100 [enter]
Enter score #3: 40 [enter]
Enter score #4: 100 [enter]
Your adjusted average is 100.0
Your lowest test score was 40.0

partially Filled Arrays
Sometimes you need to store a series of items in an array, but you do not know the number of
items that there are. As a result, you do not know the exact number of elements needed for the
array. One solution is to make the array large enough to hold the largest possible number of
items. This can lead to another problem, however. If the actual number of items stored in the
array is less than the number of elements, the array will be only partially filled. When you pro-
cess a partially filled array, you must process only the elements that contain valid data items.

440 Chapter 7 Arrays and the ArrayList Class

A partially filled array is normally used with an accompanying integer variable that holds
the number of items stored in the array. For example, suppose a program uses the following
code to create an array with 100 elements, and an int variable named count, which will
hold the number of items stored in the array:

final int ARRAY_SIZE = 100;
int[] array = new int[ARRAY_SIZE];
int count = 0;

Each time we add an item to the array, we must increment count. The following
code demonstrates:

Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number or -1 to quit: ");
number = keyboard.nextInt();
while (number != -1 && count < array.length)
{
 array[count] = number;
 count++;
 System.out.print("Enter a number or -1 to quit: ");
 number = keyboard.nextInt();
}

Each iteration of this sentinel-controlled loop allows the user to enter a number to be
stored in the array, or −1 to quit. The count variable is used as the subscript of the next
available element in the array, and then incremented. When the user enters −1, or count
reaches the size of the array, the loop stops. The following code displays all of the valid
items in the array:

for (int index = 0; index < count; index++)
{
 System.out.println(array[index]);
}

Notice that this code uses count to determine the maximum array subscript to use.

noTe: If a partially filled array is passed as an argument to a method, the variable that
holds the count of items in the array must also be passed as an argument. Otherwise, the
method will not be able to determine the number of items that are stored in the array.

Working with Arrays and Files
Saving the contents of an array to a file is a straightforward procedure: Use a loop to step
through each element of the array, writing its contents to the file. For example, assume a
program declares an array as follows:

int[] numbers = { 10, 20, 30, 40, 50 };

The following code opens a file named Values.txt and writes the contents of each element of
the numbers array to the file:

int[] numbers = { 10, 20, 30, 40, 50 };

 7.5 Returning Arrays from Methods 441

// Open the file.
PrintWriter outputFile = new PrintWriter("Values.txt");

// Write the array elements to the file.
for (int index = 0; index < numbers.length; index++)
 outputFile.println(numbers[index]);
// Close the file.
outputFile.close();

The following code demonstrates how to open the Values.txt file and read its contents back
into the numbers array.

final int SIZE = 5;
int[] numbers = new int[SIZE];
int index = 0; // Loop control variable

// Open the file.
File file = new File("Values.txt");
Scanner inputFile = new Scanner(file);

// Read the file contents into the array.
while (inputFile.hasNext() && index < numbers.length)
{
 numbers[index] = inputFile.nextInt();
 index++;
}

// Close the file.
inputFile.close();

The file is opened, then a while loop reads all of the values from the file into the numbers
array. The loop repeats as long as inputFile.hasNext() returns true, and index is less than
numbers.length. The inputFile.hasNext() method is called to make sure there is a value
remaining in the file. This prevents an error in case the file does not contain enough values
to fill the array. The second condition (index < numbers.length) prevents the loop from
writing outside the array boundaries.

7.5 returning Arrays from Methods

concepT: In addition to accepting arrays as arguments, methods may also return arrays.

A method can return a reference to an array. To do so, the return type of the method must
be declared properly. For example, look at the following method definition:

public static double[] getArray()
{
 double[] array = { 1.2, 2.3, 4.5, 6.7, 8.9 };
 return array;
}

442 Chapter 7 Arrays and the ArrayList Class

The getArray method returns an array of doubles. Notice that the return type listed in the
method header is double[]. The method header is illustrated in Figure 7-13. It indicates that
the method returns a reference to a double array.

Figure 7-13 Array reference return type

Inside the method an array of doubles is created, initialized with some values, and refer-
enced by the array variable. Then the return statement returns the array variable. By
returning the array variable, the method is returning a reference to the array. The method’s
return value can be stored in any compatible reference variable, as demonstrated in Code
Listing 7-14.

code Listing 7-14 (ReturnArray.java)

 1 /**
 2 This program demonstrates how a reference to an
 3 array can be returned from a method.
 4 */
 5
 6 public class ReturnArray
 7 {
 8 public static void main(String[] args)
 9 {
10 double[] values;
11
12 values = getArray();
13 for (double num : values)
14 System.out.print(num + " ");
15 }
16
17 /**
18 getArray method
19 @return A reference to an array of doubles.
20 */
21
22 public static double[] getArray()
23 {
24 double[] array = { 1.2, 2.3, 4.5, 6.7, 8.9 };
25
26 return array;

 7.6 String Arrays 443

27 }
28 }

program output

1.2 2.3 4.5 6.7 8.9

The following statement, which appears in line 12, assigns the array returned by the
getArray method to the array variable values:

values = getArray();

Then the for loop in lines 13 and 14 displays the value of each element of the values array.

7.6 String Arrays

concepT: An array of String objects may be created, but if the array is uninitialized,
each String in the array must be created individually.

Java also allows you to create arrays of String objects. Here is a statement that creates an
array of String objects initialized with values:

String[] names = { "Bill", "Susan", "Steven", "Jean" };

In memory, an array of String objects is arranged differently than an array of a primitive
data type. In order to use a String object, you must have a reference to the String object.
So, an array of String objects is really an array of references to String objects. Figure 7-14
illustrates how the names variable will reference an array of references to String objects.

.

Figure 7-14 The names variable references a String array

Each element in the names array is a reference to a String object. The names[0] element
references a String object containing “Bill”, the names[1] element references a String
object containing “Susan”, and so forth. The program in Code Listing 7-15 demonstrates
an array of String objects.

444 Chapter 7 Arrays and the ArrayList Class

code Listing 7-15 (MonthDays.java)

 1 /**
 2 This program demonstrates an array of String objects.
 3 */
 4
 5 public class MonthDays
 6 {
 7 public static void main(String[] args)
 8 {
 9 String[] months = { "January", "February", "March",
10 "April", "May", "June", "July",
11 "August", "September", "October",
12 "November", "December" };
13
14 int[] days = { 31, 28, 31, 30, 31, 30, 31,
15 31, 30, 31, 30, 31 };
16
17 for (int index = 0; index < months.length; index++)
18 {
19 System.out.println(months[index] + " has " +
20 days[index] + " days.");
21 }
22 }
23 }

program output

January has 31 days.
February has 28 days.
March has 31 days.
April has 30 days.
May has 31 days.
June has 30 days.
July has 31 days.
August has 31 days.
September has 30 days.
October has 31 days.
November has 30 days.
December has 31 days.

As with the primitive data types, an initialization list automatically causes an array of
String objects to be created in memory. If you do not provide an initialization list, you must
use the new key word to create the array. Here is an example:

final int SIZE = 4;
String[] names = new String[SIZE];

 7.6 String Arrays 445

This statement creates an array of four references to String objects, as shown in Figure
7-15. Notice that the array is an array of four uninitialized String references. Because they
do not reference any objects, they are set to null.

Figure 7-15 An uninitialized String array

When you create an uninitialized array of String objects, you must assign a value to each
element in the array that you intend to use. Here is an example:

final int SIZE = 4;
String[] names = new String[SIZE];
names[0] = "Bill";
names[1] = "Susan";
names[2] = "Steven";
names[3] = "Jean";

After these statements execute, each element of the names array will reference a
String object.

calling String Methods from an Array element
Recall from Chapter 2 that String objects have several methods. For example, the
toUpperCase method returns the uppercase equivalent of a String object. Because each ele-
ment of a String array is a String object, you can use an element to call a String method.
For example, the following statement uses element 0 of the names array to call the
toUpperCase method:

System.out.println(names[0].toUpperCase());

The following code shows another example. It uses element 3 of the names array to call the
charAt method. When this code executes, the first character of the string stored in names[3]
will be assigned to the letter variable.

// Declare a char variable named letter.
char letter;
// Assign the first character in names[3] to letter.

letter = names[3].charAt(0);

446 Chapter 7 Arrays and the ArrayList Class

checkpoint

www.myprogramminglab.com

7.15 a) Write a statement that declares a String array initialized with the following
strings: “Mercury”, “Venus”, “Earth”, and “Mars”.

b) Write a loop that displays the contents of each element in the array you
declared in A.

c) Write a loop that displays the first character of the strings stored in each
element of the array you declared in A. (Hint: Use the String class’s charAt
method discussed in Chapter 2.)

7.7 Arrays of objects

concepT: You may create arrays of objects that are instances of classes that you
have written.

Like any other data type, you can create arrays of class objects. For example, recall the
BankAccount class that we developed in Chapter 6. An array of BankAccount objects could
be created to represent all of the bank accounts owned by a single person. The following
code declares an array of five BankAccount objects:

final int NUM_ACCOUNTS = 5;
BankAccount[] accounts = new BankAccount[NUM_ACCOUNTS];

The variable that references the array is named accounts. As with String arrays, each ele-
ment in this array is a reference variable, as illustrated in Figure 7-16.

Notice from the figure that each element of the array is initialized with the value null. This
is a special value in Java that indicates the array elements do not yet reference objects. You
must individually create the objects that each element will reference. The following code
uses a loop to create objects for each element:

for (int index = 0; index < accounts.length; index++)
 accounts[index] = new BankAccount();

Tip: Arrays have a field named length and String objects have a method named length.
When working with String arrays, do not confuse the two. The following loop displays
the length of each string held in names, which is assumed to be a String array. Note that
the loop uses both the array’s length field and each element’s length method.

for (int i = 0; i < names.length; i++)
 System.out.println(names[i].length());

Because the array’s length member is a field, you do not write a set of parentheses after
its name. You do write the parentheses after the name of the String class’s length method.

http://www.myprogramminglab.com

 7.7 Arrays of Objects 447

In this code, the no-arg constructor is called for each object. Recall that the BankAccount
class has a no-arg constructor that assigns 0.0 to the balance field. After the loop executes,
each element of the accounts array will reference a BankAccount object, as shown in
Figure 7-17.

.

Figure 7-16 The accounts variable references an array of references

Figure 7-17 Each element of the array references an object

Objects in an array are accessed with subscripts, just like any other data type in an array.
For example, the following code uses the accounts[2] element to call the setBalance and
withdraw methods:

accounts[2].setBalance(2500.0);
accounts[2].withdraw(500.0);

Code Listing 7-16 shows a complete program that uses an array of objects.

448 Chapter 7 Arrays and the ArrayList Class

code Listing 7-16 (ObjectArray.java)

 1 import java.util.Scanner; // Needed for the Scanner class
 2
 3 /**
 4 This program works with an array of three
 5 BankAccount objects.
 6 */
 7
 8 public class ObjectArray
 9 {
10 public static void main(String[] args)
11 {
12 final int NUM_ACCOUNTS = 3; // Number of accounts
13
14 // Create an array that can reference
15 // BankAccount objects.
16 BankAccount[] accounts = new BankAccount[NUM_ACCOUNTS];
17
18 // Create objects for the array.
19 createAccounts(accounts);
20
21 // Display the balances of each account.
22 System.out.println("Here are the balances " +
23 "for each account:");
24
25 for (int index = 0; index < accounts.length; index++)
26 {
27 System.out.println("Account " + (index + 1) +
28 ": $" + accounts[index].getBalance());
29 }
30 }
31
32 /**
33 The createAccounts method creates a BankAccount
34 object for each element of an array. The user
35 is asked for each account's balance.
36 @param array The array to reference the accounts
37 */
38
39 private static void createAccounts(BankAccount[] array)
40 {
41 double balance; // To hold an account balance
42
43 // Create a Scanner object.
44 Scanner keyboard = new Scanner(System.in);
45

 7.8 The Sequential Search Algorithm 449

46 // Create the accounts.
47 for (int index = 0; index < array.length; index++)
48 {
49 // Get the account's balance.
50 System.out.print("Enter the balance for " +
51 "account " + (index + 1) + ": ");
52 balance = keyboard.nextDouble();
53
54 // Create the account.
55 array[index] = new BankAccount(balance);
56 }
57 }
58 }

program output with example input shown in Bold

Enter the balance for account 1: 2500.0 [enter]
Enter the balance for account 2: 5000.0 [enter]
Enter the balance for account 3: 1500.0 [enter]
Here are the balances for each account:
Account 1: $2500.0
Account 2: $5000.0
Account 3: $1500.0

checkpoint

www.myprogramminglab.com

7.16 Recall that we discussed a Rectangle class in Chapter 6. Write code that declares a
Rectangle array with five elements. Instantiate each element with a Rectangle
object. Use the Rectangle constructor to initialize each object with values for the
length and width fields.

7.8 The sequential search Algorithm

concepT: A search algorithm is a method of locating a specific item in a larger
collection of data. This section discusses the sequential search algorithm,
which is a simple technique for searching the contents of an array.

It is very common for programs not only to store and process information stored in arrays,
but also to search arrays for specific items. This section shows you how to use the simplest
of all search algorithms—the sequential search.

The sequential search algorithm uses a loop to sequentially step through an array, starting
with the first element. It compares each element with the value being searched for and stops
when the value is found or the end of the array is encountered. If the value being searched
for is not in the array, the algorithm unsuccessfully searches to the end of the array.

http://www.myprogramminglab.com

450 Chapter 7 Arrays and the ArrayList Class

The SearchArray program shown in Code Listing 7-17 searches the five-element array
tests to find a score of 100. It uses a method, sequentialSearch, to find the value in the
array. The array that is passed as an argument into the array parameter is searched for an
occurrence of the number passed into value. If the number is found, its array subscript is
returned. Otherwise, 21 is returned, indicating the value did not appear in the array.

code Listing 7-17 (SearchArray.java)

 1 /**
 2 This program sequentially searches an
 3 int array for a specified value.
 4 */
 5
 6 public class SearchArray
 7 {
 8 public static void main(String[] args)
 9 {
10 int[] tests = { 87, 75, 98, 100, 82 };
11 int results;
12
13 // Search the array for the value 100.
14 results = sequentialSearch(tests, 100);
15
16 // Determine whether 100 was found and
17 // display an appropriate message.
18 if (results == -1)
19 {
20 System.out.println("You did not " +
21 "earn 100 on any test.");
22 }
23 else
24 {
25 System.out.println("You earned 100 " +
26 "on test " + (results + 1));
27 }
28 }
29
30 /**
31 The sequentialSearch method searches an array for
32 a value.
33 @param array The array to search.
34 @param value The value to search for.
35 @return The subscript of the value if found in the
36 array, otherwise -1.
37 */

 7.8 The Sequential Search Algorithm 451

38
39 public static int sequentialSearch(int[] array,
40 int value)
41 {
42 int index; // Loop control variable
43 int element; // Element the value is found at
44 boolean found; // Flag indicating search results
45
46 // Element 0 is the starting point of the search.
47 index = 0;
48
49 // Store the default values element and found.
50 element = -1;
51 found = false;
52
53 // Search the array.
54 while (!found && index < array.length)
55 {
56 if (array[index] == value)
57 {
58 found = true;
59 element = index;
60 }
61 index++;
62 }
63
64 return element;
65 }
66 }

program output

You earned 100 on test 4

noTe: The reason 21 is returned when the search value is not found in the array is
because 21 is not a valid subscript.

See the PinTester Class Case Study on this book’s companion Web site (available at www.
pearsonhighered.com/gaddis) for another example using arrays. Also, see the companion
Web site for the Bonus Section on Parallel Arrays to learn about another programming
technique using arrays.

http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis

452 Chapter 7 Arrays and the ArrayList Class

7.9 Two-Dimensional Arrays

concepT: A two-dimensional array is an array of arrays. It can be thought of as
having rows and columns.

An array is useful for storing and working with a set of data. Sometimes, though, it’s neces-
sary to work with multiple sets of data. For example, in a grade-averaging program a
teacher might record all of one student’s test scores in an array of doubles. If the teacher
has 30 students, that means she’ll need 30 arrays to record the scores for the entire class.
Instead of defining 30 individual arrays, however, it would be better to define a two-
dimensional array.

The arrays that you have studied so far are one-dimensional arrays. They are called one-
dimensional because they can hold only one set of data. Two-dimensional arrays, which are
sometimes called 2D arrays, can hold multiple sets of data. Although a two-dimensional
array is actually an array of arrays, it’s best to think of it as having rows and columns of
elements, as shown in Figure 7-18. This figure shows an array of test scores, having three
rows and four columns.

Figure 7-18 Rows and columns

The array shown in the figure has three rows (numbered 0 through 2) and four columns
(numbered 0 through 3). There are a total of 12 elements in the array.

To declare a two-dimensional array, two sets of brackets and two size declarators are
required: The first one is for the number of rows and the second one is for the number of
columns. Here is an example declaration of a two-dimensional array with three rows and
four columns:

double[][] scores = new double[3][4];

The two sets of brackets in the data type indicate that the scores variable will reference a
two-dimensional array. The numbers 3 and 4 are size declarators. The first size declarator
specifies the number of rows, and the second size declarator specifies the number of columns.
Notice that each size declarator is enclosed in its own set of brackets. This is illustrated in
Figure 7-19.

 7.9 Two-Dimensional Arrays 453

When processing the data in a two-dimensional array, each element has two subscripts:
one for its row and another for its column. In the scores array, the elements in row 0 are
referenced as follows:

scores[0][0]
scores[0][1]
scores[0][2]
scores[0][3]

The elements in row 1 are as follows:

scores[1][0]
scores[1][1]
scores[1][2]
scores[1][3]

And the elements in row 2 are as follows:

scores[2][0]
scores[2][1]
scores[2][2]
scores[2][3]

Figure 7-20 illustrates the array with the subscripts shown for each element.

Figure 7-19 Declaration of a two-dimensional array

Figure 7-20 Subscripts for each element of the scores array

To access one of the elements in a two-dimensional array, you must use both subscripts. For
example, the following statement stores the number 95 in scores[2][1]:

scores[2][1] = 95;

454 Chapter 7 Arrays and the ArrayList Class

Programs that process two-dimensional arrays can do so with nested loops. For example,
the following code prompts the user to enter a score, once for each element in the array:

final int ROWS = 3;
final int COLS = 4;
double[][] scores = new double[ROWS][COLS];
for (int row = 0; row < ROWS; row++)
{
 for (int col = 0; col < COLS; col++)
 {
 System.out.print("Enter a score: ");
 scores[row][col] = keyboard.nextDouble();
 }
}

And the following code displays all the elements in the scores array:

for (int row = 0; row < ROWS; row++)
{
 for (int col = 0; col < COLS; col++)
 {
 System.out.println(scores[row][col]);
 }
}

The program in Code Listing 7-18 uses a two-dimensional array to store corporate sales
data. The array has three rows (one for each division of the company) and four columns
(one for each quarter).

code Listing 7-18 (CorpSales.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates a two-dimensional array.
 5 */
 6
 7 public class CorpSales
 8 {
 9 public static void main(String[] args)
10 {
11 final int DIVS = 3; // Three divisions in the company
12 final int QTRS = 4; // Four quarters
13 double totalSales = 0.0; // Accumulator
14
15 // Create an array to hold the sales for each
16 // division, for each quarter.

 7.9 Two-Dimensional Arrays 455

17 double[][] sales = new double[DIVS][QTRS];
18
19 // Create a Scanner object for keyboard input.
20 Scanner keyboard = new Scanner(System.in);
21
22 // Display an introduction.
23 System.out.println("This program will calculate the " +
24 "total sales of");
25 System.out.println("all the company's divisions. " +
26 "Enter the following sales data:");
27
28 // Nested loops to fill the array with quarterly
29 // sales figures for each division.
30 for (int div = 0; div < DIVS; div++)
31 {
32 for (int qtr = 0; qtr < QTRS; qtr++)
33 {
34 System.out.printf("Division %d, Quarter %d: $",
35 (div + 1), (qtr + 1));
36 sales[div][qtr] = keyboard.nextDouble();
37 }
38 System.out.println(); // Print blank line.
39 }
40
41 // Nested loops to add all the elements of the array.
42 for (int div = 0; div < DIVS; div++)
43 {
44 for (int qtr = 0; qtr < QTRS; qtr++)
45 {
46 totalSales += sales[div][qtr];
47 }
48 }
49
50 // Display the total sales.
51 System.out.printf("Total company sales: $%,.2f\n",
52 totalSales);
53 }
54 }

program output with example input shown in Bold

This program will calculate the total sales of
all the company's divisions. Enter the following sales data:
Division 1, Quarter 1: $35698.77 [enter]
Division 1, Quarter 2: $36148.63 [enter]
Division 1, Quarter 3: $31258.95 [enter]
Division 1, Quarter 4: $30864.12 [enter]

456 Chapter 7 Arrays and the ArrayList Class

Division 2, Quarter 1: $41289.64 [enter]
Division 2, Quarter 2: $43278.52 [enter]
Division 2, Quarter 3: $40928.18 [enter]
Division 2, Quarter 4: $42818.98 [enter]

Division 3, Quarter 1: $28914.56 [enter]
Division 3, Quarter 2: $27631.52 [enter]
Division 3, Quarter 3: $30596.64 [enter]
Division 3, Quarter 4: $29834.21 [enter]

Total company sales: $419,262.72

Look at the following array declaration in line 17:

double[][] sales = new double[DIVS][QTRS];

As mentioned earlier, the array has three rows (one for each division) and four columns
(one for each quarter) to store the company’s sales data. The row subscripts are 0, 1, and 2,
and the column subscripts are 0, 1, 2, and 3. Figure 7-21 illustrates how the quarterly sales
data is stored in the array.

Figure 7-21 Division and quarter data stored in the sales array

initializing a Two-Dimensional Array
When initializing a two-dimensional array, you enclose each row’s initialization list in its
own set of braces. Here is an example:

int[][] numbers = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

As with one-dimensional arrays, you do not use the new key word when you provide an
initialization list. Java automatically creates the array and fills its elements with the initial-
ization values. In this example, the initialization values for row 0 are {1, 2, 3}, the initializa-
tion values for row 1 are {4, 5, 6}, and the initialization values for row 2 are {7, 8, 9}. So,

 7.9 Two-Dimensional Arrays 457

this statement declares an array with three rows and three columns. For more clarity, the
same statement could also be written as follows:

int[][] numbers = { {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9} };

In either case, the values are assigned to the numbers array as illustrated in Figure 7-22.

Figure 7-22 The numbers array

Figure 7-23 The numbers array is an array of arrays

The length Field in a Two-Dimensional Array
A one-dimensional array has a length field that holds the number of elements in the array.
A two-dimensional array, however, has multiple length fields. It has a length field that
holds the number of rows, and then each row has a length field that holds the number of
columns. This makes sense when you think of a two-dimensional array as an array of one-
dimensional arrays. Figure 7-22 shows the numbers array depicted in rows and columns.
Figure 7-23 shows another way of thinking of the numbers array: as an array of arrays.

458 Chapter 7 Arrays and the ArrayList Class

As you can see from the figure, the numbers variable references a one-dimensional array
with three elements. Each of the three elements is a reference to another one-dimensional
array. The elements in the array referenced by numbers[0] are numbers[0][0], numbers[0][1],
and numbers[0][2]. This pattern continues with numbers[1] and numbers[2]. The figure
shows a total of four arrays. Each of the arrays in the figure has its own length field. The
program in Code Listing 7-19 uses these length fields to display the number of rows and
columns in a two-dimensional array.

code Listing 7-19 (Lengths.java)

 1 /**
 2 This program uses the length fields of a 2D array
 3 to display the number of rows, and the number of
 4 columns in each row.
 5 */
 6
 7 public class Lengths
 8 {
 9 public static void main(String[] args)
10 {
11 // Declare a 2D array with 3 rows
12 // and 4 columns.
13
14 int[][] numbers = { { 1, 2, 3, 4 },
15 { 5, 6, 7, 8 },
16 { 9, 10, 11, 12 } };
17
18 // Display the number of rows.
19 System.out.println("The number of " +
20 "rows is " + numbers.length);
21
22 // Display the number of columns in each row.
23 for (int index = 0; index < numbers.length; index++)
24 {
25 System.out.println("The number of " +
26 "columns in row " + index + " is " +
27 numbers[index].length);
28 }
29 }
30 }

program output

The number of rows is 3
The number of columns in row 0 is 4
The number of columns in row 1 is 4
The number of columns in row 2 is 4

 7.9 Two-Dimensional Arrays 459

Displaying All the elements of a Two-Dimensional Array
As you have seen in previous example programs, a pair of nested loops can be used to dis-
play all the elements of a two-dimensional array. For example, the following code creates
the numbers array with three rows and four columns, and then displays all the elements in
the array:

int[][] numbers = { { 1, 2, 3, 4 },
 { 5, 6, 7, 8 },
 { 9, 10, 11, 12 } };

for (int row = 0; row < 3; row++)
{
 for (int col = 0; col < 4; col++)
 System.out.println(numbers[row][col]);
}

Although this code will display all of the elements, it is limited in the following way: The
loops are specifically written to display an array with three rows and four columns. A better
approach is to use the array’s length fields for the upper limit of the subscripts in the loop
test expressions. Here are the modified loops:

for (int row = 0; row < numbers.length; row++)
{
 for (int col = 0; col < numbers[row].length; col++)
 System.out.println(numbers[row][col]);
}

Let’s take a closer look at the header for the outer loop:

for (int row = 0; row < numbers.length; row++)

This loop controls the subscript for the number array’s rows. Because numbers.length holds
the number of rows in the array, we have used it as the upper limit for the row subscripts.
Here is the header for the inner loop:

for (int col = 0; col < numbers[row].length; col++)

This loop controls the subscript for the number array’s columns. Because each row’s length
field holds the number of columns in the row, we have used it as the upper limit for the
column subscripts. By using the length fields in algorithms that process two-dimensional
arrays, you can write code that works with arrays of any number of rows and columns.

summing All the elements of a Two-Dimensional Array
To sum all the elements of a two-dimensional array, you can use a pair of nested loops to
add the contents of each element to an accumulator. The following code shows an example:

int[][] numbers = { { 1, 2, 3, 4 },
 { 5, 6, 7, 8 },
 { 9, 10, 11, 12 } };

460 Chapter 7 Arrays and the ArrayList Class

int total = 0; // Accumulator, set to 0
// Sum the array elements.
for (int row = 0; row < numbers.length; row++)
{
 for (int col = 0; col < numbers[row].length; col++)
 total += numbers[row][col];
}

// Display the sum.
System.out.println("The total is " + total);

summing the rows of a Two-Dimensional Array
Sometimes you may need to calculate the sum of each row in a two-dimensional array. For
example, suppose a two-dimensional array is used to hold a set of test scores for a set of
students. Each row in the array is a set of test scores for one student. To get the sum of a
student’s test scores (perhaps so an average may be calculated), you use a loop to add all the
elements in one row. The following code shows an example:

int[][] numbers = { { 1, 2, 3, 4 },
 { 5, 6, 7, 8 },
 { 9, 10, 11, 12 } };
int total; // Accumulator
for (int row = 0; row < numbers.length; row++)
{
 // Set the accumulator to 0.
 total = 0;

 // Sum a row.
 for (int col = 0; col < numbers[row].length; col++)
 total += numbers[row][col];

 // Display the row's total.
 System.out.println("Total of row " + row +
 " is " + total);
}

Notice that the total variable, which is used as an accumulator, is set to zero just before
the inner loop executes, because the inner loop sums the elements of a row and stores the
sum in total. Therefore, the total variable must be set to zero before each iteration of
the inner loop.

summing the columns of a Two-Dimensional Array
Sometimes you may need to calculate the sum of each column in a two-dimensional array.
For example, suppose a two-dimensional array is used to hold a set of test scores for a set
of students, and you wish to calculate the class average for each of the test scores. To do
this, you calculate the average of each column in the array. This is accomplished with a set

 7.9 Two-Dimensional Arrays 461

of nested loops. The outer loop controls the column subscript and the inner loop controls
the row subscript. The inner loop calculates the sum of a column, which is stored in an
accumulator. The following code demonstrates:

int[][] numbers = { { 1, 2, 3, 4 },
 { 5, 6, 7, 8 },
 { 9, 10, 11, 12 } };
int total; // Accumulator

for (int col = 0; col < numbers[0].length; col++)
{
 // Set the accumulator to 0.
 total = 0;

 // Sum a column.
 for (int row = 0; row < numbers.length; row++)
 total += numbers[row][col];

 // Display the columns's total.
 System.out.println("Total of column " + col +
 " is " + total);
}

passing Two-Dimensional Arrays to Methods
When a two-dimensional array is passed to a method, the parameter must be declared as a
reference to a two-dimensional array. The following method header shows an example:

private static void showArray(int[][] array)

This method’s parameter, array, is declared as a reference to a two-dimensional int array.
Any two-dimensional int array can be passed as an argument to the method. Code Listing
7-20 demonstrates two such methods.

code Listing 7-20 (Pass2Darray.java)

 1 /**
 2 This program demonstrates methods that accept
 3 a two-dimensional array as an argument.
 4 */
 5
 6 public class Pass2Darray
 7 {
 8 public static void main(String[] args)
 9 {
10 int[][] numbers = { { 1, 2, 3, 4 },
11 { 5, 6, 7, 8 },
12 { 9, 10, 11, 12 } };

462 Chapter 7 Arrays and the ArrayList Class

13
14 // Display the contents of the array.
15 System.out.println("Here are the values " +
16 " in the array.");
17 showArray(numbers);
18
19 // Display the sum of the array's values.
20 System.out.println("The sum of the values " +
21 "is " + arraySum(numbers));
22 }
23
24 /**
25 The showArray method displays the contents
26 of a two-dimensional int array.
27 @param array The array to display.
28 */
29
30 private static void showArray(int[][] array)
31 {
32 for (int row = 0; row < array.length; row++)
33 {
34 for (int col = 0; col < array[row].length; col++)
35 System.out.print(array[row][col] + " ");
36 System.out.println();
37 }
38 }
39
40 /**
41 The arraySum method returns the sum of the
42 values in a two-dimensional int array.
43 @param array The array to sum.
44 @return The sum of the array elements.
45 */
46
47 private static int arraySum(int[][] array)
48 {
49 int total = 0; // Accumulator
50
51 for (int row = 0; row < array.length; row++)
52 {
53 for (int col = 0; col < array[row].length; col++)
54 total += array[row][col];
55 }
56

 7.9 Two-Dimensional Arrays 463

57 return total;
58 }
59 }

program output

Here are the values in the array.
1 2 3 4
5 6 7 8
9 10 11 12
The sum of the values is 78

ragged Arrays
Because the rows in a two-dimensional array are also arrays, each row can have its own
length. When the rows of a two-dimensional array are of different lengths, the array is
known as a ragged array. You create a ragged array by first creating a two-dimensional
array with a specific number of rows, but no columns. Here is an example:

int[][] ragged = new int[4][];

This statement partially creates a two-dimensional array. The array can have four rows, but
the rows have not yet been created. Next, you create the individual rows as shown in the
following code:

ragged[0] = new int[3]; // Row 0 has 3 columns.
ragged[1] = new int[4]; // Row 1 has 4 columns.
ragged[2] = new int[5]; // Row 2 has 5 columns.
ragged[3] = new int[6]; // Row 3 has 6 columns.

This code creates the four rows. Row 0 has three columns, row 1 has four columns, row 2
has five columns, and row 3 has six columns. The following code displays the number of
columns in each row:

for (int index = 0; index < ragged.length; index++)
{
 System.out.println("The number of columns " +
 "in row " + index + " is " +
 ragged[index].length);
}

This code will display the following output:

The number of columns in row 0 is 3
The number of columns in row 1 is 4
The number of columns in row 2 is 5
The number of columns in row 3 is 6

464 Chapter 7 Arrays and the ArrayList Class

7.10 Arrays with Three or More Dimensions

concepT: Java does not limit the number of dimensions that an array may have. It is
possible to create arrays with multiple dimensions, to model data that
occurs in multiple sets.

Java allows you to create arrays with virtually any number of dimensions. Here is an exam-
ple of a three-dimensional array declaration:

double[][][] seats = new double[3][5][8];

This array can be thought of as three sets of five rows, with each row containing eight ele-
ments. The array might be used to store the prices of seats in an auditorium, where there are
eight seats in a row, five rows in a section, and a total of three sections.

Figure 7-24 illustrates the concept of a three-dimensional array as “pages” of two-
dimensional arrays.

Figure 7-24 A three-dimensional array

Arrays with more than three dimensions are difficult to visualize, but can be useful in some
programming problems. For example, in a factory warehouse where cases of widgets are
stacked on pallets, an array with four dimensions could be used to store a part number for
each widget. The four subscripts of each element could represent the pallet number, case
number, row number, and column number of each widget. Similarly, an array with five
dimensions could be used if there were multiple warehouses.

checkpoint

www.myprogramminglab.com

7.17 A video rental store keeps videos on 50 racks with 10 shelves each. Each shelf holds
25 videos. Declare a three-dimensional array large enough to represent the store’s
storage system.

http://www.myprogramminglab.com

 7.11 The Selection Sort and the Binary Search Algorithms 465

7.11 The selection sort and the Binary
search Algorithms

concepT: A sorting algorithm is used to arrange data into some order. A search
algorithm is a method of locating a specific item in a larger collection of
data. The selection sort and the binary search are popular sorting and
searching algorithms.

The selection sort Algorithm
Often the data in an array must be sorted in some order. Customer lists, for instance, are
commonly sorted in alphabetical order. Student grades might be sorted from highest to low-
est. Product codes could be sorted so all the products of the same color are stored together.
In this section we explore how to write your own sorting algorithm. A sorting algorithm is
a technique for scanning through an array and rearranging its contents in some specific
order. The algorithm that we will explore is called the selection sort.

The selection sort works like this: The smallest value in the array is located and moved to
element 0. Then the next smallest value is located and moved to element 1. This process
continues until all of the elements have been placed in their proper order. Let’s see how the
selection sort works when arranging the elements of the following array in Figure 7-25.

Figure 7-25 Values in an array

The selection sort scans the array, starting at element 0, and locates the element with the
smallest value. The contents of this element are then swapped with the contents of element
0. In this example, the 1 stored in element 5 is swapped with the 5 stored in element 0. After
the exchange, the array would appear as shown in Figure 7-26.

Figure 7-26 Values in array after first swap

466 Chapter 7 Arrays and the ArrayList Class

The algorithm then repeats the process, but because element 0 already contains the smallest
value in the array, it can be left out of the procedure. This time, the algorithm begins the
scan at element 1. In this example, the contents of element 2 are exchanged with that of ele-
ment 1. The array would then appear as shown in Figure 7-27.

Figure 7-27 Values in array after second swap

Once again the process is repeated, but this time the scan begins at element 2. The algorithm
will find that element 5 contains the next smallest value. This element’s value is swapped
with that of element 2, causing the array to appear as shown in Figure 7-28.

Figure 7-28 Values in array after third swap

Figure 7-29 Values in array after fourth swap

Next, the scanning begins at element 3. Its value is swapped with that of element 5, causing
the array to appear as shown in Figure 7-29.

 7.11 The Selection Sort and the Binary Search Algorithms 467

At this point there are only two elements left to sort. The algorithm finds that the value in
element 5 is smaller than that of element 4, so the two are swapped. This puts the array in
its final arrangement as shown in Figure 7-30.

Figure 7-30 Values in array after fifth swap

Here is the selection sort algorithm in pseudocode:

For startScan is each subscript in array from 0 through the next-to-last subscript
Set minIndex variable to startScan.
Set minValue variable to array[startScan].
For index is each subscript in array from (startScan + 1) through the last subscript

 If array[index] is less than minValue
 Set minValue to array[index].
 Set minIndex to index.

 End If.
 Increment index.
End For.
Set array[minIndex] to array[startScan].
Set array[startScan] to minValue.

End For.

The following method performs a selection sort on an integer array. The array that is passed
as an argument is sorted in ascending order.

public static void selectionSort(int[] array)
{
 int startScan, index, minIndex, minValue;

 for (startScan = 0; startScan < (array.length-1); startScan++)
 {
 minIndex = startScan;
 minValue = array[startScan];
 for(index = startScan + 1; index < array.length; index++)
 {
 if (array[index] < minValue)
 {
 minValue = array[index];

468 Chapter 7 Arrays and the ArrayList Class

 minIndex = index;
 }
 }
 array[minIndex] = array[startScan];
 array[startScan] = minValue;
 }
}

The SelectionSortDemo.java program demonstrates the selectionSort method. You can
download this chapter’s source code from the book’s companion Web site at www.
pearsonhighered.com/gaddis.

The Binary search Algorithm
This chapter previously presented the sequential search algorithm for searching an array.
The advantage of the sequential search is its simplicity. It is easy to understand and imple-
ment. Furthermore, it doesn’t require the data in the array to be stored in any particular
order. Its disadvantage, however, is its inefficiency. If the array being searched contains
20,000 elements, the algorithm will have to look at all 20,000 elements in order to find a
value stored in the last element. In an average case, an item is just as likely to be found near
the end of the array as near the beginning. Typically, for an array of N items, the sequential
search will locate an item in N/2 attempts. If an array has 50,000 elements, the sequential
search will make a comparison with 25,000 of them in a typical case.

This is assuming, of course, that the search item is consistently found in the array. (N/2 is
the average number of comparisons. The maximum number of comparisons is always N.)
When the sequential search fails to locate an item, it must make a comparison with every
element in the array. As the number of failed search attempts increases, so does the average
number of comparisons. Obviously, the sequential search should not be used on large arrays
if speed is important.

The binary search is a clever algorithm that is much more efficient than the sequential
search. Its only requirement is that the values in the array must be sorted in ascending order.
Instead of testing the array’s first element, this algorithm starts with the element in the
middle. If that element happens to contain the desired value, then the search is over.
Otherwise, the value in the middle element is either greater than or less than the value being
searched for. If it is greater, then the desired value (if it is in the list) will be found some-
where in the first half of the array. If it is less, then the desired value (again, if it is in the list)
will be found somewhere in the last half of the array. In either case, half of the array’s ele-
ments have been eliminated from further searching.

If the desired value wasn’t found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the array
is to be searched, the algorithm tests its middle element. If the desired value isn’t found
there, the search is narrowed to the quarter of the array that resides before or after that
element. This process continues until the value being searched for is either found, or there
are no more elements to test. Here is the pseudocode for a method that performs a binary
search on an array:

http://www.�pearsonhighered.com/gaddis
http://www.�pearsonhighered.com/gaddis

 7.11 The Selection Sort and the Binary Search Algorithms 469

Set first to 0.
Set last to the last subscript in the array.
Set position to 2 1.
Set found to false.
While found is not true and first is less than or equal to last

Set middle to the subscript half way between
 array[first]and array[last].

If array[middle] equals the desired value
 Set found to true.
 Set position to middle.

Else If array[middle] is greater than the desired value
 Set last to middle 2 1.

Else
 Set first to middle 1 1.

End If.
End While.
Return position.

This algorithm uses three variables to mark positions within the array: first, last, and
middle. The first and last variables mark the boundaries of the portion of the array cur-
rently being searched. They are initialized with the subscripts of the array’s first and last
elements. The subscript of the element halfway between first and last is calculated and
stored in the middle variable. If the element in the middle of the array does not contain the
search value, the first or last variables are adjusted so that only the top or bottom half of
the array is searched during the next iteration. This cuts the portion of the array being
searched in half each time the loop fails to locate the search value.

The following method performs a binary search on an integer array. The first parameter,
array, is searched for an occurrence of the number stored in value. If the number is found,
its array subscript is returned. Otherwise, 21 is returned, indicating the value did not appear
in the array.

public static int binarySearch(int[] array, int value)
{

int first; // First array element
int last; // Last array element
int middle; // Midpoint of search
int position; // Position of search value
boolean found; // Flag
// Set the inital values.
first = 0;
last = array.length - 1;
position = -1;
found = false;
// Search for the value.
while (!found && first <= last)
{

470 Chapter 7 Arrays and the ArrayList Class

 // Calculate midpoint
 middle = (first + last) / 2;
 // If value is found at midpoint...
 if (array[middle] == value)
 {
 found = true;
 position = middle;
 }
 // else if value is in lower half...
 else if (array[middle] > value)
 last = middle - 1;
 // else if value is in upper half....
 else
 first = middle + 1;

 }
 // Return the position of the item, or -1
 // if it was not found.
 return position;
}

The BinarySearchDemo program demonstrates this method. You can download this chapter’s
source code from the book’s companion Web site at www.pearsonhighered.com/gaddis.

checkpoint

www.myprogramminglab.com

7.18 What value in an array does the selection sort algorithm look for first?

 When the selection sort finds this value, what does it do with it?

7.19 How many times will the selection sort swap the smallest value in an array with
another value?

7.20 Describe the difference between the sequential search and the binary search.

7.21 On average, with an array of 20,000 elements, how many comparisons will the
sequential search perform? (Assume the items being searched for are consistently
found in the array.)

7.22 If a sequential search is performed on an array, and it is known that some items are
searched for more frequently than others, how can the contents of the array be
reordered to improve the average performance of the search?

7.12 command-Line Arguments and Variable-Length
Argument Lists

concepT: When you invoke a Java program from the operating system command
line, you can specify arguments that are passed into the main method of
the program. In addition, you can write a method that takes a variable
number of arguments. When the method runs, it can determine the
number of arguments that were passed to it and act accordingly.

http://www.myprogramminglab.com
http://www.pearsonhighered.com/gaddis

 7.12 Command-Line Arguments and Variable-Length Argument Lists 471

command-Line Arguments
Every program you have seen in this book and every program you have written uses a static
main method with a header that looks like this:

public static void main(String[] args)

Inside the parentheses of the method header is the declaration of a parameter named args.
This parameter is an array name. As its declaration indicates, it is used to reference an array
of Strings. The array that is passed into the args parameter comes from the operating sys-
tem command line. For example, look at Code Listing 7-21.

code Listing 7-21 (CommandLine.java)

 1 /**
 2 This program displays the arguments passed to
 3 it from the operating system command line.
 4 */
 5
 6 public class CommandLine
 7 {
 8 public static void main(String[] args)
 9 {
10 for (int index = 0; index < args.length; index++)
11 System.out.println(args[index]);
12 }
13 }

If this program is compiled and then executed with the following command:

java CommandLine How does this work?

its output will be as follows:

How
does
this
work?

Any items typed on the command line, separated by spaces, and after the name of the class
are considered to be one or more arguments that are to be passed into the main method. In
the previous example, four arguments are passed into args. The word “How” is passed into
args[0], “does” is passed into args[1], “this” is passed into args[2], and “work?” is passed
into args[3]. The for loop in main simply displays each argument.

noTe: It is not required that the name of main’s parameter array be args. You can name
it anything you wish. It is a standard convention, however, for the name args to be used.

472 Chapter 7 Arrays and the ArrayList Class

Variable-Length Argument Lists
Java provides a mechanism known as variable-length argument lists, which makes it possi-
ble to write a method that takes a variable number of arguments. In other words, you can
write a method that accepts any number of arguments when it is called. When the method
runs, it can determine the number of arguments that were passed to it and act accordingly.

For example, suppose we need to write a method named sum that can accept any number
of int values and then return the sum of those values. We might call the method as
shown here:

result = sum(10, 20);

Here we pass two arguments to the method: 10 and 20. After this code executes, the value
30 would be stored in the result variable. But, the method does not have to accept two
arguments each time it is called. We could call the method again with a different number of
arguments, as shown here:

int firstVal = 1, secondVal = 2, thirdVal = 3, fourthVal = 4;
result = sum(firstVal, secondVal, thirdVal, fourthVal);

Here we pass four arguments to the method: firstVal (which is set to 1), secondVal
(which is set to 2), thirdVal (which is set to 3), and fourthVal (which is set to 4). After
this code executes, the value 10 would be stored in the result variable. Here’s the code
for the sum method:

public static int sum(int... numbers)
{
 int total = 0; // Accumulator

 // Add all the values in the numbers array.
 for (int val : numbers)
 total += val;

 // Return the total.
 return total;
}

Notice the declaration of the numbers parameter in the method header. The ellipsis (three
periods) that follows the data type indicates that numbers is a special type of parameter
known as a vararg parameter. A vararg parameter can take a variable number of arguments.

In fact, vararg parameters are actually arrays. In the sum method, the numbers parameter is
an array of ints. All of the arguments that are passed to the sum method are stored in the
elements of the numbers array. As you can see from the code, the method uses the enhanced
for loop to step through the elements of the numbers array, adding up the values stored in
its elements. (The VarargsDemo1.java program in this chapter’s source code demonstrates
the sum method.)

You can also write a method to accept a variable number of object references as arguments.
For example, the program in Code Listing 7-22 shows a method that accepts a variable
number of references to BankAccount objects. The method returns the total of the objects’
balance fields.

 7.12 Command-Line Arguments and Variable-Length Argument Lists 473

code Listing 7-22 (VarargsDemo2.java)

 1 /**
 2 This program demonstrates a method that accepts
 3 a variable number of arguments (varargs).
 4 */
 5
 6 public class VarargsDemo2
 7 {
 8 public static void main(String[] args)
 9 {
10 double total; // To hold the total balances
11
12 // Create BankAccount object with $100.
13 BankAccount account1 = new BankAccount(100.0);
14
15 // Create BankAccount object with $500.
16 BankAccount account2 = new BankAccount(500.0);
17
18 // Create BankAccount object with $1500.
19 BankAccount account3 = new BankAccount(1500.0);
20
21 // Call the method with one argument.
22 total = totalBalance(account1);
23 System.out.println("Total: $" + total);
24
25 // Call the method with two arguments.
26 total = totalBalance(account1, account2);
27 System.out.println("Total: $" + total);
28
29 // Call the method with three arguments.
30 total = totalBalance(account1, account2, account3);
31 System.out.println("Total: $" + total);
32 }
33
34 /**
35 The totalBalance method takes a variable number
36 of BankAccount objects and returns the total
37 of their balances.
38 @param accounts The target account or accounts.
39 @return The sum of the account balances
40 */
41
42 public static double totalBalance(BankAccount... accounts)
43 {
44 double total = 0.0; // Accumulator
45
46 // Add all the values in the accounts array.

474 Chapter 7 Arrays and the ArrayList Class

47 for (BankAccount acctObject : accounts)
48 total += acctObject.getBalance();
49
50 // Return the total.
51 return total;
52 }
53 }

program output

Total: $100.0
Total: $600.0
Total: $2100.0

You can write a method to accept a mixture of fixed arguments and a variable-length argu-
ment list. For example, suppose we want to write a method named courseAverage, which
accepts the name of a course as a String, and a variable-length list of test scores as doubles.
We could write the method header as follows:

public static void courseAverage(String course, double... scores)

This method has a regular String parameter named course, and a vararg parameter
named scores. When we call this method, we always pass a String argument, then a list
of double values. (This method is demonstrated in the program VarargsDemo3.java,
which is in this chapter’s source code folder.) Note that when a method accepts a mixture
of fixed arguments and a variable-length argument list, the vararg parameter must be the
last one declared.

You can also pass an array to a vararg parameter. This is demonstrated in the program
VarargsDemo4.java. You can download this chapter’s source code from the book’s com-
panion Web site at www.pearsonhighered.com/gaddis.

7.13 The ArrayList class

concepT: ArrayList is a class in the Java API that is similar to an array and allows
you to store objects. Unlike an array, an ArrayList object’s size is
automatically adjusted to accommodate the number of items being stored
in it.

The Java API provides a class named ArrayList, which can be used for storing and retriev-
ing objects. Once you create an ArrayList object, you can think of it as a container for
holding other objects. An ArrayList object is similar to an array of objects, but offers many
advantages over an array. Here are a few:

•	 An	ArrayList object automatically expands as items are added to it.
•	 In	addition	to	adding	items	to	an	ArrayList, you can remove items as well.
•	 An	ArrayList object automatically shrinks as items are removed from it.

http://www.pearsonhighered.com/gaddis

 7.13 The ArrayList Class 475

The ArrayList class is in the java.util package, so the following import statement
is required:

import java.util.ArrayList;

creating and Using an ArrayList object
Here is an example of how you create an ArrayList object:

ArrayList<String> nameList = new ArrayList<String>();

This statement creates a new ArrayList object and stores its address in the nameList
 variable. Notice that in this example the word String is written inside angled brackets <>
immediately after the word ArrayList. This specifies that the ArrayList can hold String
objects. If we try to store any other type of object in this ArrayList, an error will occur.
(Later in this section, you will see an example that creates an ArrayList for holding other
types of objects.)

To add items to the ArrayList object, you use the add method. For example, the following
statements add a series of String objects to nameList:

nameList.add("James");
nameList.add("Catherine");
nameList.add("Bill");

After these statements execute, nameList will hold three references to String objects. The
first will reference “James”, the second will reference “Catherine”, and the third will refer-
ence “Bill”.

The items that are stored in an ArrayList have a corresponding index. The index specifies
the item’s location in the ArrayList, so it is much like an array subscript. The first item that
is added to an ArrayList is stored at index 0. The next item that is added to the ArrayList
is stored at index 1, and so forth. After the previously shown statements execute, “James”
will be stored at index 0, “Catherine” will be stored at index 1, and “Bill” will be stored at
index 2.

The ArrayList class has a size method that reports the number of items stored in an
ArrayList. It returns the number of items as an int. For example, the following statement
uses the method to display the number of items stored in nameList:

System.out.println("The ArrayList has " +
 nameList.size() +
 " objects stored in it.");

Assuming that nameList holds the Strings “James”, “Catherine”, and “Bill”, the following
statement will display:

The ArrayList has 3 objects stored in it.

The ArrayList class’s get method returns the item stored at a specific index. You pass the
index as an argument to the method. For example, the following statement will display the
item stored at index 1 of nameList:

System.out.println(nameList.get(1));

The program in Code Listing 7-23 demonstrates the topics discussed so far.

476 Chapter 7 Arrays and the ArrayList Class

code Listing 7-23 (ArrayListDemo1.java)

 1 import java.util.ArrayList; // Needed for ArrayList class
 2
 3 /**
 4 This program demonstrates an ArrayList.
 5 */
 6
 7 public class ArrayListDemo1
 8 {
 9 public static void main(String[] args)
10 {
11 // Create an ArrayList to hold some names.
12 ArrayList<String> nameList = new ArrayList<String>();
13
14 // Add some names to the ArrayList.
15 nameList.add("James");
16 nameList.add("Catherine");
17 nameList.add("Bill");
18
19 // Display the size of the ArrayList.
20 System.out.println("The ArrayList has " +
21 nameList.size() +
22 " objects stored in it.");
23
24 // Now display the items in nameList.
25 for (int index = 0; index < nameList.size(); index++)
26 System.out.println(nameList.get(index));
27 }
28 }

program output

The ArrayList has 3 objects stored in it.
James
Catherine
Bill

Notice in line 25 that the for loop uses the value returned from nameList’s size method to
control the number of times the loop iterates. This is to prevent a bounds checking error
from occurring. The last item stored in an ArrayList will have an index that is 1 less than
the size of the ArrayList. If you pass a value larger than this to the get method, an error
will occur.

Using the enhanced for Loop with an ArrayList
Earlier in this chapter, you saw how the enhanced for loop can be used to iterate over each
element in an array. You can also use the enhanced for loop to iterate over each item in an

 7.13 The ArrayList Class 477

ArrayList. Code Listing 7-24 demonstrates. The enhanced for loop is used in lines 26 and
27 to display all of the items stored in the ArrayList.

code Listing 7-24 (ArrayListDemo2.java)

 1 import java.util.ArrayList; // Needed for ArrayList class
 2
 3 /**
 4 This program demonstrates how the enhanced for loop
 5 can be used with an ArrayList.
 6 */
 7
 8 public class ArrayListDemo2
 9 {
10 public static void main(String[] args)
11 {
12 // Create an ArrayList to hold some names.
13 ArrayList<String> nameList = new ArrayList<String>();
14
15 // Add some names to the ArrayList.
16 nameList.add("James");
17 nameList.add("Catherine");
18 nameList.add("Bill");
19
20 // Display the size of the ArrayList.
21 System.out.println("The ArrayList has " +
22 nameList.size() +
23 " objects stored in it.");
24
25 // Now display the items in nameList.
26 for (String name : nameList)
27 System.out.println(name);
28 }
29 }

program output

The ArrayList has 3 objects stored in it.
James
Catherine
Bill

The ArrayList class’s toString method
The ArrayList class has a toString method that returns a string representing all of the
items stored in an ArrayList object. For example, suppose we have set up the nameList

478 Chapter 7 Arrays and the ArrayList Class

object as previously shown, with the Strings “James”, “Catherine”, and “Bill”. We could
use the following statement to display all of the names:

System.out.println(nameList);

The contents of the ArrayList will be displayed in the following manner:

[James, Catherine, Bill]

This is demonstrated in the program ArrayListToString.java, which is in this chapter’s
source code folder, available at www.pearsonhighered.com/gaddis.

removing an item from an ArrayList
The ArrayList class has a remove method that removes an item at a specific index. You pass
the index as an argument to the method. The program in Code Listing 7-25 demonstrates.

code Listing 7-25 (ArrayListDemo3.java)

 1 import java.util.ArrayList; // Needed for ArrayList class
 2
 3 /**
 4 This program demonstrates an ArrayList.
 5 */
 6
 7 public class ArrayListDemo3
 8 {
 9 public static void main(String[] args)
10 {
11 // Create an ArrayList to hold some names.
12 ArrayList<String> nameList = new ArrayList<String>();
13
14 // Add some names to the ArrayList.
15 nameList.add("James");
16 nameList.add("Catherine");
17 nameList.add("Bill");
18
19 // Display the items in nameList and their indices.
20 for (int index = 0; index < nameList.size(); index++)
21 {
22 System.out.println("Index: " + index + " Name: " +
23 nameList.get(index));
24 }
25
26 // Now remove the item at index 1.
27 nameList.remove(1);
28
29 System.out.println("The item at index 1 is removed. " +
30 "Here are the items now.");
31
32 // Display the items in nameList and their indices.

http://www.pearsonhighered.com/gaddis

 7.13 The ArrayList Class 479

33 for (int index = 0; index < nameList.size(); index++)
34 {
35 System.out.println("Index: " + index + " Name: " +
36 nameList.get(index));
37 }
38 }
39 }

program output

Index: 0 Name: James
Index: 1 Name: Catherine
Index: 2 Name: Bill
The item at index 1 is removed. Here are the items now.
Index: 0 Name: James
Index: 1 Name: Bill

Note that when the item at index 1 was removed (in line 27), the item that was previously
stored at index 2 was shifted in position to index 1. When an item is removed from an
ArrayList, the items that come after it are shifted downward in position to fill the empty
space. This means that the index of each item after the removed item will be decreased
by one.

Note that an error will occur if you call the remove method with an invalid index.

inserting an item
The add method, as previously shown, adds an item at the last position in an ArrayList
object. The ArrayList class has an overloaded version of the add method that allows you to
add an item at a specific index. This causes the item to be inserted into the ArrayList object
at a specific position. The program in Code Listing 7-26 demonstrates.

code Listing 7-26 (ArrayListDemo4.java)

 1 import java.util.ArrayList; // Needed for ArrayList class
 2
 3 /**
 4 This program demonstrates inserting an item.
 5 */
 6
 7 public class ArrayListDemo4
 8 {
 9 public static void main(String[] args)
10 {
11 // Create an ArrayList to hold some names.
12 ArrayList<String> nameList = new ArrayList<String>();
13
14 // Add some names to the ArrayList.
15 nameList.add("James");
16 nameList.add("Catherine");

480 Chapter 7 Arrays and the ArrayList Class

17 nameList.add("Bill");
18
19 // Display the items in nameList and their indices.
20 for (int index = 0; index < nameList.size(); index++)
21 {
22 System.out.println("Index: " + index + " Name: " +
23 nameList.get(index));
24 }
25
26 // Now insert an item at index 1.
27 nameList.add(1, "Mary");
28
29 System.out.println("Mary was added at index 1. " +
30 "Here are the items now.");
31
32 // Display the items in nameList and their indices.
33 for (int index = 0; index < nameList.size(); index++)
34 {
35 System.out.println("Index: " + index + " Name: " +
36 nameList.get(index));
37 }
38 }
39 }

program output

Index: 0 Name: James
Index: 1 Name: Catherine
Index: 2 Name: Bill
Mary was added at index 1. Here are the items now.
Index: 0 Name: James
Index: 1 Name: Mary
Index: 2 Name: Catherine
Index: 3 Name: Bill

Note that when a new item was added at index 1 (in line 27), the item that was previously
stored at index 1 was shifted in position to index 2. When an item is added at a specific
index, the items that come after it are shifted upward in position to accommodate the new
item. This means that the index of each item after the new item will be increased by one.

Note that an error will occur if you call the add method with an invalid index.

replacing an item
The ArrayList class’s set method can be used to replace an item at a specific index with
another item. For example, the following statement will replace the item currently at index 1
with the String “Becky”:

nameList.set(1, "Becky");

 7.13 The ArrayList Class 481

This is demonstrated in the program ArrayListDemo5.java, which is in this chapter’s source
code folder, available at www.pearsonhighered.com/gaddis. Note that an error will occur if
you specify an invalid index.

capacity
Previously you learned that an ArrayList object’s size is the number of items stored in the
ArrayList object. When you add an item to the ArrayList object, its size increases by one,
and when you remove an item from the ArrayList object, its size decreases by one.

An ArrayList object also has a capacity, which is the number of items it can store without
having to increase its size. When an ArrayList object is first created, using the no-arg
constructor, it has an initial capacity of 10 items. This means that it can hold up to 10
items without having to increase its size. When the eleventh item is added, the ArrayList
object must increase its size to accommodate the new item. You can specify a different
starting capacity, if you desire, by passing an int argument to the ArrayList constructor.
For example, the following statement creates an ArrayList object with an initial capacity
of 100 items:

ArrayList<String> list = new ArrayList<String>(100);

All of the examples we have looked at so far use ArrayList objects to hold Strings. You
can create an ArrayList to hold any type of object. For example, the following statement
creates an ArrayList that can hold BankAccount objects:

ArrayList<BankAccount> accountList = new ArrayList<BankAccount>();

By specifying BankAccount inside the angled brackets, we are declaring that the ArrayList
can hold only BankAccount objects. Code Listing 7-27 demonstrates such an ArrayList.

code Listing 7-27 (ArrayListDemo6.java)

 1 import java.util.ArrayList; // Needed for ArrayList class
 2
 3 /**
 4 This program demonstrates how to store BankAccount
 5 objects in an ArrayList.
 6 */
 7
 8 public class ArrayListDemo6
 9 {
10 public static void main(String[] args)
11 {
12 // Create an ArrayList to hold BankAccount objects.
13 ArrayList<BankAccount> list = new ArrayList<BankAccount>();
14
15 // Add three BankAccount objects to the ArrayList.
16 list.add(new BankAccount(100.0));
17 list.add(new BankAccount(500.0));
18 list.add(new BankAccount(1500.0));
19

http://www.pearsonhighered.com/gaddis

482 Chapter 7 Arrays and the ArrayList Class

20 // Display each item.
21 for (int index = 0; index < list.size(); index++)
22 {
23 BankAccount account = list.get(index);
24 System.out.println("Account at index " + index +
25 "\nBalance: " + account.getBalance());
26 }
27 }
28 }

program output

Account at index 0
Balance: 100.0
Account at index 1
Balance: 500.0
Account at index 2
Balance: 1500.0

Using the Diamond operator for Type inference (Java 7)
Beginning with Java 7, you can simplify the instantiation of an ArrayList by using the
 diamond operator (<>). For example, in this chapter you have seen several programs that
create an ArrayList object with a statement such as this:

ArrayList<String> list = new ArrayList<String>();

Notice that the data type (in this case, String) appears between the angled brackets in two
locations: first in the part that declares the reference variable, and then again in the part
that calls the ArrayList constructor. Beginning with Java 7, you are no longer required to
write the data type in the part of the statement that calls the ArrayList constructor. Instead,
you can simply write a set of empty angled brackets, as shown here:

ArrayList<String> list = new ArrayList<>();

This set of empty angled brackets (<>) is called the diamond operator. It causes the com-
piler to infer the required data type from the reference variable declaration. Here is
another example:

ArrayList<InventoryItem> list = new ArrayList<>();

This creates an ArrayList that can hold InventoryItem objects. Keep in mind that type
inference was introduced in Java 7. If you are using an earlier version of the Java language,
you will have to use the more lengthy form of the declaration statement to create an
ArrayList.

checkpoint

www.myprogramminglab.com

7.23 What import statement must you include in your code in order to use the
ArrayList class?

7.24 Write a statement that creates an ArrayList object and assigns its address to a vari-
able named frogs.

http://www.myprogramminglab.com

 Review Questions and Exercises 483

7.25 Write a statement that creates an ArrayList object and assigns its address to a vari-
able named lizards. The ArrayList should be able to store String objects only.

7.26 How do you add items to an ArrayList object?

7.27 How do you remove an item from an ArrayList object?

7.28 How do you retrieve a specific item from an ArrayList object?

7.29 How do you insert an item at a specific location in an ArrayList object?

7.30 How do you determine an ArrayList object’s size?

7.31 What is the difference between an ArrayList object’s size and its capacity?

7.14 common errors to Avoid
The following list describes several errors that are commonly committed when learning this
chapter’s topics:

•	 Using an invalid subscript. Java does not allow you to use a subscript value that is
outside the range of valid subscripts for an array.

•	 Confusing the contents of an integer array element with the element’s subscript. An
element’s subscript and the value stored in the element are not the same thing. The
subscript identifies an element, which holds a value.

•	 Causing an off-by-one error. When processing arrays, the subscripts start at zero and
end at one less than the number of elements in the array. Off-by-one errors are com-
monly caused when a loop uses an initial subscript of one and/or uses a maximum
subscript that is equal to the number of elements in the array.

•	 Using the = operator to copy an array. Assigning one array reference variable to
another with the = operator merely copies the address in one variable to the other. To
copy an array, you should copy the individual elements of one array to another.

•	 Using the == operator to compare two arrays. You cannot use the == operator to
compare two array reference variables and determine whether the arrays are equal.
When you use the == operator with reference variables, the operator compares the
memory addresses that the variables contain, not the contents of the objects referenced
by the variables.

•	 Reversing the row and column subscripts when processing a two-dimensional array.
When thinking of a two-dimensional array as having rows and columns, the first sub-
script accesses a row and the second subscript accesses a column. If you reverse these
subscripts, you will access the wrong element.

review Questions and exercises
Multiple choice and True/False

 1. In an array declaration, this indicates the number of elements that the array will have.
a. subscript
b. size declarator
c. element sum
d. reference variable

484 Chapter 7 Arrays and the ArrayList Class

 2. Each element of an array is accessed by a number known as a(n) __________.
a. subscript
b. size declarator
c. address
d. specifier

 3. The first subscript in an array is always ___________.
a. 1
b. 0
c. 21
d. 1 less than the number of elements

 4. The last subscript in an array is always __________.
a. 100
b. 0
c. 21
d. 1 less than the number of elements

 5. Array bounds checking happens __________.
a. when the program is compiled
b. when the program is saved
c. when the program runs
d. when the program is loaded into memory

 6. This array field holds the number of elements that the array has.
a. size
b. elements
c. length
d. width

 7. This search algorithm steps through an array, comparing each item with the search
value.
a. binary search
b. sequential search
c. selection search
d. iterative search

 8. This search algorithm repeatedly divides the portion of an array being searched in
half.
a. binary search
b. sequential search
c. selection search
d. iterative search

 9. This is the typical number of comparisons performed by the sequential search on an
array of N elements (assuming the search values are consistently found).
a. 2N
b. N
c. N2

d. N/2

 Review Questions and Exercises 485

 10. When initializing a two-dimensional array, you enclose each row’s initialization list in
___________.
a. braces
b. parentheses
c. brackets
d. quotation marks

 11. To insert an item at a specific location in an ArrayList object, you use this method.
a. store
b. insert
c. add
d. get

 12. To delete an item from an ArrayList object, you use this method.
a. remove
b. delete
c. erase
d. get

 13. To determine the number of items stored in an ArrayList object, you use this method.
a. size
b. capacity
c. items
d. length

 14. True or False: Java does not allow a statement to use a subscript that is outside the
range of valid subscripts for an array.

 15. True or False: An array’s sitze declarator can be a negative integer expression.

 16. True or False: Both of the following declarations are legal and equivalent:

int[] numbers;
int numbers[];

 17. True or False: The subscript of the last element in a single-dimensional array is one
less than the total number of elements in the array.

 18. True or False: The values in an initialization list are stored in the array in the order
that they appear in the list.

 19. True or False: The Java compiler does not display an error message when it processes
a statement that uses an invalid subscript.

 20. True or False: When an array is passed to a method, the method has access to the
original array.

 21. True or False: The first size declarator in the declaration of a two-dimensional array
represents the number of columns. The second size declarator represents the number
of rows.

 22. True or False: A two-dimensional array has multiple length fields.

 23. True or False: An ArrayList automatically expands in size to accommodate the items
stored in it.

486 Chapter 7 Arrays and the ArrayList Class

Find the error

 1. int[] collection = new int[-20];

 2. int[] hours = 8, 12, 16;

 3. int[] table = new int[10];
for (int x = 1; x <= 10; x++)
{
 table[x] = 99;
}

 4. String[] names = { "George", "Susan" };
int totalLength = 0;
for (int i = 0; i < names.length(); i++)
 totalLength += names[i].length;

 5. String[] words = { "Hello", "Goodbye" };
System.out.println(words.toUpperCase());

Algorithm Workbench

 1. The variable names references an integer array with 20 elements. Write a for loop that
prints each element of the array.

 2. The variables numberArray1 and numberArray2 reference arrays that each have 100
elements. Write code that copies the values in numberArray1 to numberArray2.

 3. a. Write a statement that declares a String array initialized with the following strings:

 “Einstein”, “Newton”, “Copernicus”, and “Kepler”.
b. Write a loop that displays the contents of each element in the array that you

declared in Question 3(a).
c. Write code that displays the total length of all the strings in the array that you

declared in Question 3(a).

 4. In a program you need to store the populations of 12 countries.
a. Define two arrays that may be used in parallel to store the names of the countries

and their populations.
b. Write a loop that uses these arrays to print each country’s name and its population.

 5. In a program you need to store the identification numbers of ten employees (as int
values) and their weekly gross pay (as double values).
a. Define two arrays that may be used in parallel to store the 10 employee identifica-

tion numbers and gross pay amounts.
b. Write a loop that uses these arrays to print each of the employees’ identification

number and weekly gross pay.

 6. Declare a two-dimensional int array named grades. It should have 30 rows and
10 columns.

 7. Write code that calculates the average of all the elements in the grades array that you
declared in Question 6.

 Review Questions and Exercises 487

 8. Look at the following array declaration:

int[][] numberArray = new int[9][11];

a. Write a statement that assigns 145 to the first column of the first row of this array.
b. Write a statement that assigns 18 to the last column of the last row of this array.

 9. The values variable references a two-dimensional double array with 10 rows and 20
columns. Write code that sums all the elements in the array and stores the sum in the
variable total.

 10. An application uses a two-dimensional array declared as follows:

int[][] days = new int[29][5];

a. Write code that sums each row in the array and displays the results.
b. Write code that sums each column in the array and displays the results.

 11. Write code that creates an ArrayList that can hold String objects. Add the names of
three cars to the ArrayList, and then display the contents of the ArrayList.

short Answer

 1. What is the difference between a size declarator and a subscript?

 2. Look at the following array definition:

int[] values = new int[10];

a. How many elements does the array have?
b. What is the subscript of the first element in the array?
c. What is the subscript of the last element in the array?

 3. Look at the following array definition:

int[] values = { 4, 7, 6, 8, 2 };

 What does each of the following code segments display?

System.out.println(values[4]); a. ____________________________

x = values[2] + values[3];
System.out.println(x); b. ____________________________

x = ++values[1];
System.out.println(x); c. ____________________________

 4. How do you define an array without providing a size declarator?

 5. Assuming that array1 and array2 are both array reference variables, why is it not
possible to assign the contents of the array referenced by array2 to the array refer-
enced by array1 with the following statement?

array1 = array2;

 6. How do you establish an array without providing a size declarator?

 7. The following statement creates a BankAccount array:

BankAccount[] acc = new BankAccount[10];

 Is it okay or not okay to execute the following statements?

acc[0].setBalance(5000.0);
acc[0].withdraw(100.0);

488 Chapter 7 Arrays and the ArrayList Class

 8. If a sequential search method is searching for a value that is stored in the last element
of a 10,000-element array, how many elements will the search code have to read to
locate the value?

 9. Look at the following array definition:

double[][] sales = new double[8][10];

a. How many rows does the array have?
b. How many columns does the array have?
c. How many elements does the array have?
d. Write a statement that stores a number in the last column of the last row in the array.

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. rainfall class

Write a RainFall class that stores the total rainfall for each of 12 months into an array of
doubles. The program should have methods that return the following:

•	 the	total	rainfall	for	the	year
•	 the	average	monthly	rainfall
•	 the	month	with	the	most	rain
•	 the	month	with	the	least	rain

Demonstrate the class in a complete program.

Input Validation: Do not accept negative numbers for monthly rainfall figures.

2. payroll class

Write a Payroll class that uses the following arrays as fields:

•	 employeeId. An array of seven integers to hold employee identification numbers. The
array should be initialized with the following numbers:

 5658845 4520125 7895122 8777541
 8451277 1302850 7580489

•	 hours. An array of seven integers to hold the number of hours worked by each
employee

•	 payRate. An array of seven doubles to hold each employee’s hourly pay rate
•	 wages. An array of seven doubles to hold each employee’s gross wages

The class should relate the data in each array through the subscripts. For example, the
number in element 0 of the hours array should be the number of hours worked by the
employee whose identification number is stored in element 0 of the employeeId array. That
same employee’s pay rate should be stored in element 0 of the payRate array.

In addition to the appropriate accessor and mutator methods, the class should have a
method that accepts an employee’s identification number as an argument and returns the
gross pay for that employee.

http://www.myprogramminglab.com

 Programming Challenges 489

Demonstrate the class in a complete program that displays each employee number and asks
the user to enter that employee’s hours and pay rate. It should then display each employee’s
identification number and gross wages.

Input Validation: Do not accept negative values for hours or numbers less than 6.00 for
pay rate.

3. charge Account Validation

Create a class with a method that accepts a charge account number as its argument. The
method should determine whether the number is valid by comparing it to the following list
of valid charge account numbers:

5658845 4520125 7895122 8777541 8451277 1302850
8080152 4562555 5552012 5050552 7825877 1250255
1005231 6545231 3852085 7576651 7881200 4581002

These numbers should be stored in an array or an ArrayList object. Use a sequential search
to locate the number passed as an argument. If the number is in the array, the method
should return true, indicating the number is valid. If the number is not in the array, the
method should return false, indicating the number is invalid.

Write a program that tests the class by asking the user to enter a charge account number.
The program should display a message indicating whether the number is valid or invalid.

4. charge Account Modification

Modify the charge account validation class that you wrote for Programming Challenge 3 so
it reads the list of valid charge account numbers from a file. Use Notepad or another text
editor to create the file.

5. Larger Than n

In a program, write a method that accepts two arguments: an array and a number n. Assume
that the array contains integers. The method should display all of the numbers in the array
that are greater than the number n.

6. Driver’s License exam

The local Driver’s License Office has asked you to write a program that grades the written
portion of the driver’s license exam. The exam has 20 multiple choice questions. Here are
the correct answers:

 1. B
 2. D
 3. A
 4. A
 5. C

The Charge
Account

Validation
Problem

VideoNote

 6. A
 7. B
 8. A
 9. C
 10. D

 11. B
 12. C
 13. D
 14. A
 15. D

 16. C
 17. C
 18. B
 19. D
 20. A

A student must correctly answer 15 of the 20 questions to pass the exam.

Write a class named DriverExam that holds the correct answers to the exam in an array field.
The class should also have an array field that holds the student’s answers. The class should
have the following methods:

•	 passed. Returns true if the student passed the exam, or false if the student failed
•	 totalCorrect. Returns the total number of correctly answered questions

490 Chapter 7 Arrays and the ArrayList Class

•	 totalIncorrect. Returns the total number of incorrectly answered questions
•	 questionsMissed. An int array containing the question numbers of the questions that

the student missed

Demonstrate the class in a complete program that asks the user to enter a student’s answers,
and then displays the results returned from the DriverExam class’s methods.

Input Validation: Only accept the letters A, B, C, or D as answers.

7. Quarterly sales statistics

Write a program that lets the user enter four quarterly sales figures for six divisions of a
company. The figures should be stored in a two-dimensional array. Once the figures are
entered, the program should display the following data for each quarter:

•	 A	list	of	the	sales	figures	by	division
•	 Each	division’s	increase	or	decrease	from	the	previous	quarter	(this	will	not	be	dis-

played for the first quarter)
•	 The	total	sales	for	the	quarter
•	 The	company’s	increase	or	decrease	from	the	previous	quarter	(this	will	not	be	dis-

played for the first quarter)
•	 The	average	sales	for	all	divisions	that	quarter
•	 The	division	with	the	highest	sales	for	that	quarter

Input Validation: Do not accept negative numbers for sales figures.

8. grade Book

A teacher has five students who have taken four tests. The teacher uses the following grading
scale to assign a letter grade to a student, based on the average of his or her four test scores:

Test Score Letter Grade

 90–100 A

 80–89 B

 70–79 C

 60–69 D

 0–59 F

Write a class that uses a String array or an ArrayList object to hold the five students’ names,
an array of five characters to hold the five students’ letter grades, and five arrays of four
doubles each to hold each student’s set of test scores. The class should have methods that
return a specific student’s name, the average test score, and a letter grade based on the average.

Demonstrate the class in a program that allows the user to enter each student’s name and his
or her four test scores. It should then display each student’s average test score and letter grade.

Input Validation: Do not accept test scores less than zero or greater than 100.

9. grade Book Modification

Modify the grade book application in Programming Challenge 8 so that it drops each stu-
dent’s lowest score when determining the test score averages and letter grades.

 Programming Challenges 491

10. Lottery Application

Write a Lottery class that simulates a lottery. The class should have an array of five integers
named lotteryNumbers. The constructor should use the Random class (from the Java API) to
generate a random number in the range of 0 through 9 for each element in the array. The
class should also have a method that accepts an array of five integers that represent a per-
son’s lottery picks. The method is to compare the corresponding elements in the two arrays
and return the number of digits that match. For example, the following shows the
lotteryNumbers array and the user’s array with sample numbers stored in each. There are
two matching digits (elements 2 and 4).

lotteryNumbers array:

 7 4 9 1 3

User’s array:

 4 2 9 7 3

In addition, the class should have a method that returns a copy of the lotteryNumbers array.

Demonstrate the class in a program that asks the user to enter five numbers. The program
should display the number of digits that match the randomly generated lottery numbers. If
all of the digits match, display a message proclaiming the user a grand prize winner.

11. Array operations

Write a program with an array that is initialized with test data. Use any primitive data type
of your choice. The program should also have the following methods:

•	 getTotal. This method should accept a one-dimensional array as its argument and
return the total of the values in the array.

•	 getAverage. This method should accept a one-dimensional array as its argument and
return the average of the values in the array.

•	 getHighest. This method should accept a one-dimensional array as its argument and
return the highest value in the array.

•	 getLowest. This method should accept a one-dimensional array as its argument and
return the lowest value in the array.

Demonstrate each of the methods in the program.

12. number Analysis class

Write a class with a constructor that accepts a file name as its argument. Assume the file
contains a series of numbers, each written on a separate line. The class should read the con-
tents of the file into an array, and then displays the following data:

•	 The	lowest	number	in	the	array
•	 The	highest	number	in	the	array
•	 The	total	of	the	numbers	in	the	array
•	 The	average	of	the	numbers	in	the	array

492 Chapter 7 Arrays and the ArrayList Class

This chapter’s source code folder, available at www.pearsonhighered.com/gaddis, con-
tains a text file named Numbers.txt. This file contains twelve random numbers. Write a
program that tests the class by using this file.

13. name search

If you have downloaded this book’s source code (the companion Web site is available
at www.pearsonhighered.com/gaddis), you will find the following files in the Chap-
ter 07 folder:

•	 GirlNames.txt – This file contains a list of the 200 most popular names given to girls
born in the United States for the years 2000 through 2009.

•	 BoyNames.txt – This file contains a list of the 200 most popular names given to boys
born in the United States for the years 2000 through 2009.

Write a program that reads the contents of the two files into two separate arrays, or
ArrayLists. The user should be able to enter a boy’s name, a girl’s name, or both, and
the application will display messages indicating whether the names were among the
most popular.

14. population Data

If you have downloaded this book’s source code (the companion Web site is available at
www.pearsonhighered.com/gaddis), you will find a file named USPopulation.txt in the
Chapter 07 folder. The file contains the midyear population of the United States, in thou-
sands, during the years 1950 through 1990. The first line in the file contains the population
for 1950, the second line contains the population for 1951, and so forth.

Write a program that reads the file’s contents into an array. The program should display
the following data:

•	 The	average	annual	change	in	population	during	the	time	period
•	 The	year	with	the	greatest	increase	in	population	during	the	time	period
•	 The	year	with	the	smallest	increase	in	population	during	the	time	period

15. World series champions

If you have downloaded this book’s source code (the companion Web site is available at
www.pearsonhighered.com/gaddis), you will find a file named WorldSeriesWinners.txt.
This file contains a chronological list of the winning teams in the World Series from 1903
through 2009. (The first line in the file is the name of the team that won in 1903, and the
last line is the name of the team that won in 2009. Note that the World Series was not
played in 1904 or 1994, so those years are skipped in the file.)

Write a program that lets the user enter the name of a team, and then displays the number
of times that team has won the World Series in the time period from 1903 through 2009.

Tip: Read the contents of the WorldSeriesWinners.txt file into an array, or an ArrayList.
When the user enters the name of a team, the program should step through the array or
ArrayList, counting the number of times the selected team appears.

http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/gaddis

 Programming Challenges 493

16. 2D Array operations

Write a program that creates a two-dimensional array initialized with test data. Use any
primitive data type that you wish. The program should have the following methods:

•	 getTotal. This method should accept a two-dimensional array as its argument and
return the total of all the values in the array.

•	 getAverage. This method should accept a two-dimensional array as its argument and
return the average of all the values in the array.

•	 getRowTotal. This method should accept a two-dimensional array as its first argu-
ment and an integer as its second argument. The second argument should be the sub-
script of a row in the array. The method should return the total of the values in the
specified row.

•	 getColumnTotal. This method should accept a two-dimensional array as its first argu-
ment and an integer as its second argument. The second argument should be the sub-
script of a column in the array. The method should return the total of the values in the
specified column.

•	 getHighestInRow. This method should accept a two-dimensional array as its first
argument and an integer as its second argument. The second argument should be the
subscript of a row in the array. The method should return the highest value in the
specified row of the array.

•	 getLowestInRow. This method should accept a two-dimensional array as its first argu-
ment and an integer as its second argument. The second argument should be the sub-
script of a row in the array. The method should return the lowest value in the specified
row of the array.

Demonstrate each of the methods in this program.

17. phone Book ArrayList

Write a class named PhoneBookEntry that has fields for a person’s name and phone number.
The class should have a constructor and appropriate accessor and mutator methods. Then
write a program that creates at least five PhoneBookEntry objects and stores them in an
ArrayList. Use a loop to display the contents of each object in the ArrayList.

18. Trivia game

In this programming challenge, you will create a simple trivia game for two players. The
program will work like this:

•	 Starting	with	player	1,	each	player	gets	a	turn	at	answering	5	trivia	questions.	(There	
are 10 questions, 5 for each player.) When a question is displayed, four possible
answers are also displayed. Only one of the answers is correct, and if the player selects
the correct answer, he or she earns a point.

•	 After	answers	have	been	selected	for	all	of	the	questions,	the	program	displays	the	
number of points earned by each player and declares the player with the highest num-
ber of points the winner.

494 Chapter 7 Arrays and the ArrayList Class

You are to design a Question class to hold the data for a trivia question. The Question class
should have String fields for the following data:

•	 A	trivia	question
•	 Possible	answer	1
•	 Possible	answer	2
•	 Possible	answer	3
•	 Possible	answer	4
•	 The	number	of	the	correct	answer	(1,	2,	3,	or	4)

The Question class should have appropriate constructor(s), accessor, and mutator methods.

The program should create an array of 10 Question objects, one for each trivia question. (If
you prefer, you can use an ArrayList instead of an array.) Make up your own trivia ques-
tions on the subject or subjects of your choice for the objects.

19. Lo shu Magic square

The Lo Shu Magic Square is a grid with 3 rows and 3 columns, shown in Figure 7-31. The
Lo Shu Magic Square has the following properties:

•	 The	grid	contains	the	numbers	1	through	9	exactly.
•	 The	sum	of	each	row,	each	column,	and	each	diagonal	all	add	up	to	the	same	number.	

This is shown in Figure 7-32.

In a program you can simulate a magic square using a two-dimensional array. Write a
method that accepts a two-dimensional array as an argument, and determines whether the
array is a Lo Shu Magic Square. Test the function in a program.

Figure 7-31 Lo Shu Magic Square

4 9 2

3 5 7
8 1 6

Figure 7-32 Row, column, and diagonal sums in the Lo Shu Magic Square

4 9 2

3 5 7
8 1 6

15

15

15

15 15 15

15

15

495

A Second Look at
Classes and ObjectsC

H
A

P
T

E
R

8
Topics

 8.1 Static Class Members
 8.2 Passing Objects as Arguments to

Methods
 8.3 Returning Objects from Methods
 8.4 The toString Method
 8.5 Writing an equals Method
 8.6 Methods That Copy Objects

 8.7 Aggregation
 8.8 The this Reference Variable
 8.9 Enumerated Types
 8.10 Garbage Collection
 8.11 Focus on Object-Oriented Design:

Class Collaboration
 8.12 Common Errors to Avoid

8.1 static class Members

concepT: A static class member belongs to the class, not objects instantiated from
the class.

A Quick Review of instance Fields and instance Methods
Recall from Chapter 6 that each instance of a class has its own set of fields, which are
known as instance fields. You can create several instances of a class and store different
values in each instance’s fields. For example, the Rectangle class that we created in Chapter 6
has a length field and a width field. Let’s say that box references an instance of the Rectangle
class and we execute the following statement:

box.setLength(10);

This statement stores the value 10 in the length field that belongs to the instance that is ref-
erenced by box. You can think of instance fields as belonging to a specific instance of a class.

You will also recall that classes may have instance methods as well. When you call an
instance method, it performs an operation on a specific instance of the class. For example,

496 Chapter 8 A Second Look at Classes and Objects

assuming that box references an instance of the Rectangle class, look at the following
statement:

x = box.getLength();

This statement calls the getLength method, which returns the value of the length field that
belongs to a specific instance of the Rectangle class: the one referenced by box. Both instance
fields and instance methods are associated with a specific instance of a class, and they can-
not be used until an instance of the class is created.

static Members
It is possible to create a field or method that does not belong to any instance of a class. Such
members are known as static fields and static methods. When a value is stored in a static
field, it is not stored in an instance of the class. In fact, an instance of the class doesn’t even
have to exist in order for values to be stored in the class’s static fields. Likewise, static meth-
ods do not operate on the fields that belong to any instance of the class. Instead, they can
operate only on static fields. You can think of static fields and static methods as belonging
to the class instead of an instance of the class. In this section, we will take a closer look at
static members. First we will examine static fields.

static Fields
When a field is declared with the key word static, there will be only one copy of the field
in memory, regardless of the number of instances of the class that might exist. A single copy
of a class’s static field is shared by all instances of the class. For example, the Countable
class shown in Code Listing 8-1 uses a static field to keep count of the number of instances
of the class that are created.

code Listing 8-1 (Countable.java)

1 /**
2 This class demonstrates a static field.
3 */
4
5 public class Countable
6 {
7 private static int instanceCount = 0;
8
9 /**
10 The constructor increments the static
11 field instanceCount. This keeps track
12 of the number of instances of this
13 class that are created.
14 */
15
16 public Countable()
17 {

 8.1 Static Class Members 497

18 instanceCount++;
19 }
20
21 /**
22 The getInstanceCount method returns
23 the number of instances of this class
24 that have been created.
25 @return The value in the instanceCount field.
26 */
27
28 public int getInstanceCount()
29 {
30 return instanceCount;
31 }
32 }

First, notice in line 7 the declaration of the static field named instanceCount as follows:

private static int instanceCount = 0;

A static field is created by placing the key word static after the access specifier and before
the field’s data type. Notice that we have explicitly initialized the instanceCount field with
the value 0. This initialization takes place only once, regardless of the number of instances
of the class that are created.

noTe: Java automatically stores 0 in all uninitialized static member variables. The
instanceCount field in this class is explicitly initialized so it is clear to anyone reading the
code that the field starts with the value 0.

Next, look at the constructor in lines 16 through 19. The constructor uses the ++ operator
to increment the instanceCount field. Each time an instance of the Countable class is cre-
ated, the constructor will be called and the instanceCount field will be incremented. As a
result, the instanceCount field will contain the number of instances of the Countable class
that have been created. The getInstanceCount method, in lines 28 through 31, returns the
value in instanceCount. The program in Code Listing 8-2 demonstrates this class.

code Listing 8-2 (StaticDemo.java)

 1 /**
 2 This program demonstrates the Countable class.
 3 */
 4
 5 public class StaticDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 int objectCount;

498 Chapter 8 A Second Look at Classes and Objects

10
11 // Create three instances of the
12 // Countable class.
13 Countable object1 = new Countable();
14 Countable object2 = new Countable();
15 Countable object3 = new Countable();
16
17 // Get the number of instances from
18 // the class's static field.
19 objectCount = object1.getInstanceCount();
20 System.out.println(objectCount +
21 " instances of the class " +
22 "were created.");
23 }
24 }

program output

3 instances of the class were created.

The program creates three instances of the Countable class, referenced by the variables
object1, object2, and object3. Although there are three instances of the class, there is only
one copy of the static field. This is illustrated in Figure 8-1.

Figure 8-1 All instances of the class share the static field

In line 19 the program calls the getInstanceCount method to retrieve the number of
instances that have been created:

objectCount = object1.getInstanceCount();

Although the program calls the getInstanceCount method from object1, the same value
would be returned from any of the objects.

 8.1 Static Class Members 499

static Methods
When a class contains a static method, it isn’t necessary for an instance of the class to be
created in order to execute the method. The program in Code Listing 8-3 shows an example
of a class with static methods.

code Listing 8-3 (Metric.java)

 1 /**
 2 This class demonstrates static methods.
 3 */
 4
 5 public class Metric
 6 {
 7 /**
 8 The milesToKilometers method converts a
 9 distance in miles to kilometers.
10 @param m The distance in miles.
11 @return The distance in kilometers.
12 */
13
14 public static double milesToKilometers(double m)
15 {
16 return m * 1.609;
17 }
18
19 /**
20 The kilometersToMiles method converts
21 a distance in kilometers to miles.
22 @param k The distance in kilometers.
23 @return The distance in miles.
24 */
25
26 public static double kilometersToMiles(double k)
27 {
28 return k / 1.609;
29 }
30 }

A static method is created by placing the key word static after the access specifier in the
method header. The Metric class has two static methods: milesToKilometers and
kilometersToMiles. Because they are declared as static, they belong to the class and may
be called without any instances of the class being in existence. You simply write the name of
the class before the dot operator in the method call. Here is an example:

kilometers = Metric.milesToKilometers(10.0);

500 Chapter 8 A Second Look at Classes and Objects

This statement calls the milesToKilometers method, passing the value 10.0 as an argument.
Notice that the method is not called from an instance of the class, but is called directly from
the Metric class. Code Listing 8-4 shows a program that uses the Metric class. Figure 8-2
shows an example of interaction with the program.

code Listing 8-4 (MetricDemo.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates the Metric class.
 5 */
 6
 7 public class MetricDemo
 8 {
 9 public static void main(String[] args)
10 {
11 String input; // To hold input
12 double miles; // A distance in miles
13 double kilos; // A distance in kilometers
14
15 // Get a distance in miles.
16 input = JOptionPane.showInputDialog("Enter " +
17 "a distance in miles.");
18 miles = Double.parseDouble(input);
19
20 // Convert the distance to kilometers.
21 kilos = Metric.milesToKilometers(miles);
22 JOptionPane.showMessageDialog(null,
23 String.format("%,.2f miles equals %,.2f kilometers.",
24 miles, kilos));
25
26 // Get a distance in kilometers.
27 input = JOptionPane.showInputDialog("Enter " +
28 "a distance in kilometers: ");
29 kilos = Double.parseDouble(input);
30
31 // Convert the distance to kilometers.
32 miles = Metric.kilometersToMiles(kilos);
33 JOptionPane.showMessageDialog(null,
34 String.format("%,.2f kilometers equals %,.2f miles.",
35 kilos, miles));

 8.1 Static Class Members 501

36
37 System.exit(0);
38 }
39 }

Figure 8-2 Interaction with the MetricDemo.java program

Static methods are convenient for many tasks because they can be called directly from the
class, as needed. They are most often used to create utility classes that perform operations
on data, but have no need to collect and store data. The Metric class is a good example. It
is used as a container to hold methods that convert miles to kilometers and vice versa, but
is not intended to store any data.

The only limitation that static methods have is that they cannot refer to non-static members
of the class. This means that any method called from a static method must also be static. It
also means that if the method uses any of the class’s fields, they must be static as well.

checkpoint

www.myprogramminglab.com

8.1 What is the difference between an instance field and a static field?

8.2 What action is possible with a static method that isn’t possible with an
instance method?

8.3 Describe the limitation of static methods.

http://www.myprogramminglab.com

502 Chapter 8 A Second Look at Classes and Objects

8.2 passing objects as Arguments to Methods

concepT: To pass an object as a method argument, you pass an object reference.

In Chapter 5, we discussed how primitive values, as well as references to String objects, can
be passed as arguments to methods. You can also pass references to other types of objects as
arguments to methods. For example, recall that in Chapter 6, we developed a Rectangle
class. The program in Code Listing 8-5 creates an instance of the Rectangle class and then
passes a reference to that object as an argument to a method.

code Listing 8-5 (PassObject.java)

 1 /**
 2 This program passes an object as an argument.
 3 */
 4
 5 public class PassObject
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Create a Rectangle object.
10 Rectangle box = new Rectangle(12.0, 5.0);
11
12 // Pass a reference to the object to
13 // the displayRectangle method.
14 displayRectangle(box);
15 }
16
17 /**
18 The displayRectangle method displays the
19 length and width of a rectangle.
20 @param r A reference to a Rectangle
21 object.
22 */
23
24 public static void displayRectangle(Rectangle r)
25 {
26 // Display the length and width.
27 System.out.println("Length : " + r.getLength() +
28 " Width : " + r.getWidth());
29 }
30 }

program output

Length : 12.0 Width : 5.0

 8.2 Passing Objects as Arguments to Methods 503

In this program’s main method, the box variable is a Rectangle reference variable. In line 14
its value is passed as an argument to the displayRectangle method. The displayRectangle
method has a parameter variable, r, which is also a Rectangle reference variable, that
receives the argument.

Recall that a reference variable holds the memory address of an object. When the
displayRectangle method is called, the address that is stored in box is passed into the r
parameter variable. This is illustrated in Figure 8-3. This means that when the
displayRectangle method is executing, box and r both reference the same object. This is
illustrated in Figure 8-4.

Figure 8-3 Passing a reference as an argument

Figure 8-4 Both box and r reference the same object

Recall from Chapter 5 that when a variable is passed as an argument to a method, it is said
to be passed by value. This means that a copy of the variable’s value is passed into the
method’s parameter. When the method changes the contents of the parameter variable,
it does not affect the contents of the original variable that was passed as an argument.
When a reference variable is passed as an argument to a method, however, the method has
access to the object that the variable references. As you can see from Figure 8-4, the

504 Chapter 8 A Second Look at Classes and Objects

displayRectangle method has access to the same Rectangle object that the box variable
references. When a method receives an object reference as an argument, it is possible for the
method to modify the contents of the object referenced by the variable. This is demon-
strated in Code Listing 8-6.

code Listing 8-6 (PassObject2.java)

 1 /**
 2 This program passes an object as an argument.
 3 The object is modified by the receiving method.
 4 */
 5
 6 public class PassObject2
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a Rectangle object.
11 Rectangle box = new Rectangle(12.0, 5.0);
12
13 // Display the object's contents.
14 System.out.println("Contents of the box object:");
15 System.out.println("Length : " + box.getLength() +
16 " Width : " + box.getWidth());
17
18 // Pass a reference to the object to the
19 // changeRectangle method.
20 changeRectangle(box);
21
22 // Display the object's contents again.
23 System.out.println("\nNow the contents of the " +
24 "box object are:");
25 System.out.println("Length : " + box.getLength() +
26 " Width : " + box.getWidth());
27 }
28
29 /**
30 The changeRectangle method sets a Rectangle
31 object's length and width to 0.
32 @param r The Rectangle object to change.
33 */
34
35 public static void changeRectangle(Rectangle r)
36 {
37 r.setLength(0.0);
38 r.setWidth(0.0);
39 }
40 }

 8.3 Returning Objects from Methods 505

program output

Contents of the box object:
Length : 12.0 Width : 5.0

Now the contents of the box object are:
Length : 0.0 Width : 0.0

When writing a method that receives the value of a reference variable as an argument,
you must take care not to accidentally modify the contents of the object that is referenced
by the variable.

8.3 Returning objects from Methods

concepT: A method can return a reference to an object.

Just as methods can be written to return an int, double, float, or other primitive data type,
they can also be written to return a reference to an object. For example, recall the
BankAccount class that was discussed in Chapter 6. The program in Code Listing 8-7 uses a
method, getAccount, which returns a reference to a BankAccount object. Figure 8-5 shows
example interaction with the program.

code Listing 8-7 (ReturnObject.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates how a method
 5 can return a reference to an object.
 6 */
 7
 8 public class ReturnObject
 9 {
10 public static void main(String[] args)
11 {
12 BankAccount account;
13
14 // Get a reference to a BankAccount object.
15 account = getAccount();
16
17 // Display the account's balance.
18 JOptionPane.showMessageDialog(null,
19 "The account has a balance of $" +
20 account.getBalance());
21

Returning Objects
from Methods

VideoNote

506 Chapter 8 A Second Look at Classes and Objects

22 System.exit(0);
23 }
24
25 /**
26 The getAccount method creates a BankAccount
27 object with the balance specified by the
28 user.
29 @return A reference to the object.
30 */
31
32 public static BankAccount getAccount()
33 {
34 String input; // To hold input
35 double balance; // Account balance
36
37 // Get the balance from the user.
38 input = JOptionPane.showInputDialog("Enter " +
39 "the account balance.");
40 balance = Double.parseDouble(input);
41
42 // Create a BankAccount object and return
43 // a reference to it.
44 return new BankAccount(balance);
45 }
46 }

Notice that the getAccount method has a return data type of BankAccount. Figure 8-6 shows
the method’s return type, which is listed in the method header.

Figure 8-6 The getAccount method header

Figure 8-5 Interaction with the ReturnObject.java program

 8.4 The toString Method 507

8.4 The toString Method

concepT: Most classes can benefit from having a method named toString, which
is implicitly called under certain circumstances. Typically, the method
returns a string that represents the state of an object.

Quite often we need to display a message that indicates an object’s state. An object’s state is
simply the data that is stored in the object’s fields at any given moment. For example, recall
that the BankAccount class has one field: balance. At any given moment, a BankAccount
object’s balance field will hold some value. The value of the balance field represents the
object’s state at that moment. The following might be an example of code that displays a
BankAccount object’s state:

BankAccount account = new BankAccount(1500.0);
System.out.println("The account balance is $" +
 account.getBalance());

A return type of BankAccount means the method returns a reference to a BankAccount object
when it terminates. The following statement, which appears in line 15, assigns the getAccount
method’s return value to account:

account = getAccount();

After this statement executes, the account variable will reference the BankAccount object
that was returned from the getAccount method.

Now let’s look at the getAccount method. In lines 38 and 39 the method uses a JOptionPane
dialog box to get the account balance from the user. In line 40 the value entered by the user
is converted to a double and assigned to balance, a local variable. The last statement in the
method, in line 44, is the following return statement:

return new BankAccount(balance);

This statement uses the new key word to create a BankAccount object, passing balance as an
argument to the constructor. The address of the object is then returned from the method, as
illustrated in Figure 8-7. Back in line 15, where the method is called, the address is assigned
to account.

Figure 8-7 The getAccount method returns a reference to a BankAccount object

508 Chapter 8 A Second Look at Classes and Objects

The first statement creates a BankAccount object, passing the value 1500.0 to the construc-
tor. Recall that the BankAccount constructor stores this value in the balance field. After this
statement executes, the account variable will reference the BankAccount object. In the second
statement, the System.out.println method displays a string showing the value of the
object’s balance field. The output of this statement will look like this:

The account balance is $1500.0

Let’s take a closer look at the second statement, which displays the state of the object. The
argument that is passed to System.out.println is a string, which is put together from two
pieces. The concatenation operator (+) joins the pieces together. The first piece is the string
literal "The account balance is $". To this, the value returned from the getBalance method
is concatenated. The resulting string, which is displayed on the screen, represents the current
state of the object.

Creating a string that represents the state of an object is such a common task that many
programmers equip their classes with a method that returns such a string. In Java, it is stan-
dard practice to name this method toString. Let’s look at an example of a class that has a
toString method. Figure 8-8 shows the UML diagram for the Stock class, which holds data
about a company’s stock.

Figure 8-8 UML diagram for the Stock class

Table 8-1 The Stock class methods

Method Description

Constructor This constructor accepts arguments that are assigned to the symbol and
sharePrice fields.

getSymbol This method returns the value in the symbol field.

getSharePrice This method returns the value in the sharePrice field.

toString This method returns a string representing the state of the object. The
string will be appropriate for displaying on the screen.

This class has two fields: symbol and sharePrice. The symbol field holds the trading
 symbol for the company’s stock. This is a short series of characters that are used to identify
the stock on the stock exchange. For example, the XYZ Company’s stock might have the
trading symbol XYZ. The sharePrice field holds the current price per share of the stock.
Table 8-1 describes the class’s methods.

 8.4 The toString Method 509

Code Listing 8-8 shows the code for the Stock class. (This file is in the source code folder
Chapter 08\Stock Class Phase 1.)

code Listing 8-8 (Stock.java)

 1 /**
 2 The Stock class holds data about a stock.
 3 */
 4
 5 public class Stock
 6 {
 7 private String symbol; // Trading symbol of stock
 8 private double sharePrice; // Current price per share
 9
10 /**
11 Constructor
12 @param sym The stock's trading symbol.
13 @param price The stock's share price.
14 */
15
16 public Stock(String sym, double price)
17 {
18 symbol = sym;
19 sharePrice = price;
20 }
21
22 /**
23 getSymbol method
24 @return The stock's trading symbol.
25 */
26
27 public String getSymbol()
28 {
29 return symbol;
30 }
31
32 /**
33 getSharePrice method
34 @return The stock's share price
35 */
36
37 public double getSharePrice()
38 {
39 return sharePrice;
40 }
41
42 /**

510 Chapter 8 A Second Look at Classes and Objects

43 toString method
44 @return A string indicating the object's
45 trading symbol and share price.
46 */
47
48 public String toString()
49 {
50 // Create a string describing the stock.
51 String str = "Trading symbol: " + symbol +
52 "\nShare price: " + sharePrice;
53
54 // Return the string.
55 return str;
56 }
57 }

The toString method appears in lines 48 through 56. The method creates a string listing
the stock’s trading symbol and price per share. This string is then returned from the method.
A call to the method can then be passed to System.out.println, as shown in the follow-
ing code:

Stock xyzCompany = new Stock ("XYZ", 9.62);
System.out.println(xyzCompany.toString());

This code would produce the following output:

Trading symbol: XYZ
Share price: 9.62

In actuality, it is unnecessary to explicitly call the toString method in this example. If you
write a toString method for a class, Java will automatically call the method when the
object is passed as an argument to print or println. The following code would produce the
same output as that previously shown:

Stock xyzCompany = new Stock ("XYZ", 9.62);
System.out.println(xyzCompany);

Java also implicitly calls an object’s toString method any time you concatenate an object of
the class with a string. For example, the following code would implicitly call the xyzCompany
object’s toString method:

Stock xyzCompany = new Stock ("XYZ", 9.62);
System.out.println("The stock data is:\n" + xyzCompany);

This code would produce the following output:

The stock data is:
Trading symbol: XYZ
Share price: 9.62

Code Listing 8-9 shows a complete program demonstrating the Stock class’s toString
method. (This file is in the source code folder Chapter 08\Stock Class Phase 1.)

 8.5 Writing an equals Method 511

8.5 Writing an equals Method

concepT: You cannot determine whether two objects contain the same data by
comparing them with the == operator. Instead, the class must have a
method such as equals for comparing the contents of objects.

Recall from Chapter 3 that the String class has a method named equals, which determines
whether two strings are equal. You can write an equals method for any of your own
classes as well.

In fact, you must write an equals method (or one that works like it) for a class in order
to determine whether two objects of the class contain the same values. This is because
you cannot use the == operator to compare the contents of two objects. For example, the

code Listing 8-9 (StockDemo1.java)

 1 /**
 2 This program demonstrates the Stock class's
 3 toString method.
 4 */
 5
 6 public class StockDemo1
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a Stock object for the XYZ Company.
11 // The trading symbol is XYZ and the current
12 // price per share is $9.62.
13 Stock xyzCompany = new Stock ("XYZ", 9.62);
14
15 // Display the object's values.
16 System.out.println(xyzCompany);
17 }
18 }

program output

Trading symbol: XYZ
Share price: 9.62

noTe: Every class automatically has a toString method that returns a string con-
taining the object’s class name, followed by the @ symbol, followed by an integer that
is usually based on the object’s memory address. This method is called when necessary
if you have not provided your own toString method. You will learn more about this
in Chapter 10.

512 Chapter 8 A Second Look at Classes and Objects

Because the two variables reference different objects in memory, they will contain different
addresses. Therefore, the result of the boolean expression company1 == company2 is false
and the code reports that the objects are not the same. Instead of using the == operator to
compare the two Stock objects, we should write an equals method that compares the con-
tents of the two objects.

In the source code folder Chapter 08\Stock Class Phase 2, you will find a revision of the
Stock class. This version of the class has an equals method. The code for the method
follows (no other part of the class has changed, so only the equals method is shown):

public boolean equals(Stock object2)
{
 boolean status;

 // Determine whether this object's symbol and
 // sharePrice fields are equal to object2's

following code might appear to compare the contents of two Stock objects, but in reality
does not:

// Create two Stock objects with the same values.
Stock company1 = new Stock("XYZ", 9.62);
Stock company2 = new Stock("XYZ", 9.62);

// Use the == operator to compare the objects.
// (This is a mistake.)
if (company1 == company2)
 System.out.println("Both objects are the same.");
else
 System.out.println("The objects are different.");

When you use the == operator with reference variables, the operator compares the memory
addresses that the variables contain, not the contents of the objects referenced by the vari-
ables. This is illustrated in Figure 8-9.

Figure 8-9 The if statement tests the contents of the reference variables,
not the contents of the objects the variables reference

 8.5 Writing an equals Method 513

 // symbol and sharePrice fields.
 if (symbol.equals(object2.symbol) &&
 sharePrice == object2.sharePrice)
 status = true; // Yes, the objects are equal.
 else
 status = false; // No, the objects are not equal.

 // Return the value in status.
 return status;
}

The equals method accepts a Stock object as its argument. The parameter variable object2
will reference the object that was passed as an argument. The if statement performs the
following comparison: If the symbol field of the calling object is equal to the symbol field of
object2, and the sharePrice field of the calling object is equal to the sharePrice field of
object2, then the two objects contain the same values. In this case, the local variable status
(a boolean) is set to true. Otherwise, status is set to false. Finally, the method returns the
value of the status variable.

Notice that the method can access object2’s symbol and sharePrice fields directly. Because
object2 references a Stock object, and the equals method is a member of the Stock class,
the method is allowed to access object2’s private fields.

The program in Code Listing 8-10 demonstrates the equals method. (This file is also stored
in the source code folder Chapter 08\Stock Class Phase 2.)

code Listing 8-10 (StockCompare.java)

 1 /**
 2 This program uses the Stock class's equals
 3 method to compare two Stock objects.
 4 */
 5
 6 public class StockCompare
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create two Stock objects with the same values.
11 Stock company1 = new Stock("XYZ", 9.62);
12 Stock company2 = new Stock("XYZ", 9.62);
13
14 // Use the equals method to compare the objects.
15 if (company1.equals(company2))
16 System.out.println("Both objects are the same.");
17 else
18 System.out.println("The objects are different.");
19 }
20 }

514 Chapter 8 A Second Look at Classes and Objects

8.6 Methods That copy objects

concepT: You can simplify the process of duplicating objects by equipping a class
with a method that returns a copy of an object.

You cannot make a copy of an object with a simple assignment statement, as you would
with a primitive variable. For example, look at the following code:

Stock company1 = new Stock("XYZ", 9.62);
Stock company2 = company1;

The first statement creates a Stock object and assigns its address to the company1 variable.
The second statement assigns company1 to company2. This does not make a copy of the object
referenced by company1. Rather, it makes a copy of the address that is stored in company1 and
stores that address in company2. After this statement executes, both the company1 and company2
variables will reference the same object. This is illustrated in Figure 8-10.

program output

Both objects are the same.

If you want to be able to compare the objects of a given class, you should always write an
equals method for the class.

This type of assignment operation is called a reference copy because only the object’s
address is copied, not the actual object itself. To copy the object itself, you must create a
new object and then set the new object’s fields to the same values as the fields of the object
that is being copied. This process can be simplified by equipping the class with a method
that performs this operation. The method then returns a reference to the duplicate object.

Figure 8-10 Both variables reference the same object

noTe: Every class automatically has an equals method, which works the same as
the == operator. This method is called when necessary if you have not provided your
own equals method. You will learn more about this in Chapter 10.

 8.6 Methods That Copy Objects 515

In the source code folder Chapter 08\Stock Class Phase 3, you will find a revision of the
Stock class. This version of the class has a method named copy, which returns a copy of a
Stock object. The code for the method follows (no other part of the class has changed so
only the copy method is shown):

public Stock copy()
{
 // Create a new Stock object and initialize it
 // with the same data held by the calling object.
 Stock copyObject = new Stock(symbol, sharePrice);

 // Return a reference to the new object.
 return copyObject;
}

The copy method creates a new Stock object and passes the calling object’s symbol and
sharePrice fields as arguments to the constructor. This makes the new object a copy of the
calling object. The program in Code Listing 8-11 demonstrates the copy method. (This file
is also stored in the source code folder Chapter 08\Stock Class Phase 3.)

code Listing 8-11 (ObjectCopy.java)

 1 /**
 2 This program uses the Stock class's copy method
 3 to create a copy of a Stock object.
 4 */
 5
 6 public class ObjectCopy
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a Stock object.
11 Stock company1 = new Stock("XYZ", 9.62);
12
13 // Declare a Stock variable
14 Stock company2;
15
16 // Make company2 reference a copy of the object
17 // referenced by company1.
18 company2 = company1.copy();
19
20 // Display the contents of both objects.
21 System.out.println("Company 1:\n" + company1);
22 System.out.println();
23 System.out.println("Company 2:\n" + company2);
24
25 // Confirm that we actually have two objects.
26 if (company1 == company2)

516 Chapter 8 A Second Look at Classes and Objects

27 {
28 System.out.println("The company1 and company2 " +
29 "variables reference the same object.");
30 }
31 else
32 {
33 System.out.println("The company1 and company2 " +
34 "variables reference different objects.");
35 }
36 }
37 }

program output

Company 1:
Trading symbol: XYZ
Share price: 9.62

Company 2:
Trading symbol: XYZ
Share price: 9.62
The company1 and company2 variables reference different objects.

copy constructors
Another way to create a copy of an object is to use a copy constructor. A copy constructor
is simply a constructor that accepts an object of the same class as an argument. It makes the
object that is being created a copy of the object that was passed as an argument.

In the source code folder Chapter 08\Stock Class Phase 4, you will find another revision
of the Stock class. This version of the class has a copy constructor. The code for the copy
constructor follows (no other part of the class has changed, so only the copy constructor
is shown):

public Stock(Stock object2)
{
 symbol = object2.symbol;
 sharePrice = object2.sharePrice;
}

Notice that the constructor accepts a Stock object as an argument. The parameter variable
object2 will reference the object that was passed as an argument. The constructor copies
the values that are in object2’s symbol and sharePrice fields to the symbol and sharePrice
fields of the object that is being created.

The following code segment demonstrates the copy constructor. It creates a Stock object
referenced by the variable company1. Then it creates another Stock object referenced by the
variable company2. The object referenced by company2 is a copy of the object referenced
by company1.

 8.7 Aggregation 517

// Create a Stock object.
Stock company1 = new Stock("XYZ", 9.62);
// Create another Stock object that is a copy of the company1 object.
Stock company2 = new Stock(company1);

8.7 Aggregation

concepT: Aggregation occurs when an instance of a class is a field in another class.

In real life, objects are frequently made of other objects. A house, for example, is made of
door objects, window objects, wall objects, and much more. It is the combination of all
these objects that makes a house object.

When designing software, it sometimes makes sense to create an object from other objects.
For example, suppose you need an object to represent a course that you are taking in
college. You decide to create a Course class, which will hold the following information:

•	 The	course	name
•	 The	instructor’s	last	name,	first	name,	and	office	number
•	 The	textbook’s	title,	author,	and	publisher

In addition to the course name, the class will hold items related to the instructor and the
textbook. You could put fields for each of these items in the Course class. However, a good
design principle is to separate related items into their own classes. In this example, an
Instructor class could be created to hold the instructor-related data and a TextBook class
could be created to hold the textbook-related data. Instances of these classes could then be
used as fields in the Course class.

Let’s take a closer look at how this might be done. Figure 8-11 shows a UML diagram for
the Instructor class. To keep things simple, the class has only the following methods:

•	 A	constructor,	which	accepts	arguments	for	the	instructor’s	last	name,	first	name,	and	
office number

•	 A	copy	constructor
•	 A	set method, which can be used to set all of the class’s fields
•	 A	toString method

Aggregation
VideoNote

Figure 8-11 UML diagram for the Instructor class

518 Chapter 8 A Second Look at Classes and Objects

The code for the Instructor class is shown in Code Listing 8-12.

code Listing 8-12 (Instructor.java)

 1 /**
 2 This class stores data about an instructor.
 3 */
 4
 5 public class Instructor
 6 {
 7 private String lastName; // Last name
 8 private String firstName; // First name
 9 private String officeNumber; // Office number
10
11 /**
12 This constructor initializes the last name,
13 first name, and office number.
14 @param lname The instructor's last name.
15 @param fname The instructor's first name.
16 @param office The office number.
17 */
18
19 public Instructor(String lname, String fname,
20 String office)
21 {
22 lastName = lname;
23 firstName = fname;
24 officeNumber = office;
25 }
26
27 /**
28 The copy constructor initializes the object
29 as a copy of another Instructor object.
30 @param object2 The object to copy.
31 */
32
33 public Instructor(Instructor object2)
34 {
35 lastName = object2.lastName;
36 firstName = object2.firstName;
37 officeNumber = object2.officeNumber;
38 }
39
40 /**
41 The set method sets a value for each field.
42 @param lname The instructor's last name.
43 @param fname The instructor's first name.

 8.7 Aggregation 519

44 @param office The office number.
45 */
46
47 public void set(String lname, String fname,
48 String office)
49 {
50 lastName = lname;
51 firstName = fname;
52 officeNumber = office;
53 }
54
55 /**
56 toString method
57 @return A string containing the instructor
58 information.
59 */
60
61 public String toString()
62 {
63 // Create a string representing the object.
64 String str = "Last Name: " + lastName +
65 "\nFirst Name: " + firstName +
66 "\nOffice Number: " + officeNumber;
67
68 // Return the string.
69 return str;
70 }
71 }

Figure 8-12 shows a UML diagram for the TextBook class. As before, we want to keep the
class simple. The only methods it has are a constructor, a copy constructor, a set method,
and a toString method. The code for the TextBook class is shown in Code Listing 8-13.

Figure 8-12 UML diagram for the TextBook class

520 Chapter 8 A Second Look at Classes and Objects

code Listing 8-13 (TextBook.java)

 1 /**
 2 This class stores data about a textbook.
 3 */
 4
 5 public class TextBook
 6 {
 7 private String title; // Title of the book
 8 private String author; // Author's last name
 9 private String publisher; // Name of publisher
10
11 /**
12 This constructor initializes the title,
13 author, and publisher fields
14 @param textTitle The book's title.
15 @param auth The author's name.
16 @param pub The name of the publisher.
17 */
18
19 public TextBook(String textTitle, String auth,
20 String pub)
21 {
22 title = textTitle;
23 author = auth;
24 publisher = pub;
25 }
26
27 /**
28 The copy constructor initializes the object
29 as a copy of another TextBook object.
30 @param object2 The object to copy.
31 */
32
33 public TextBook(TextBook object2)
34 {
35 title = object2.title;
36 author = object2.author;
37 publisher = object2.publisher;
38 }
39
40 /**
41 The set method sets a value for each field.
42 @param textTitle The book's title.
43 @param auth The author's name.
44 @param pub The name of the publisher.
45 */

 8.7 Aggregation 521

46
47 public void set(String textTitle, String auth,
48 String pub)
49 {
50 title = textTitle;
51 author = auth;
52 publisher = pub;
53 }
54
55 /**
56 toString method
57 @return A string containing the textbook
58 information.
59 */
60
61 public String toString()
62 {
63 // Create a string representing the object.
64 String str = "Title: " + title +
65 "\nAuthor: " + author +
66 "\nPublisher: " + publisher;
67
68 // Return the string.
69 return str;
70 }
71 }

Figure 8-13 shows a UML diagram for the Course class. Notice that the Course class has an
Instructor object and a TextBook object as fields. Making an instance of one class a field in
another class is called object aggregation. The word aggregate means “a whole which is
made of constituent parts.” In this example, the Course class is an aggregate class because it
is made of constituent objects.

When an instance of one class is a member of another class, it is said that there is a “has a”
relationship between the classes. For example, the relationships that exist among the Course,
Instructor, and TextBook classes can be described as follows:

•	 The	course	has an instructor.
•	 The	course	has a textbook.

The “has a” relationship is sometimes called a whole-part relationship because one object is
part of a greater whole. The code for the Course class is shown in Code Listing 8-14.

522 Chapter 8 A Second Look at Classes and Objects

code Listing 8-14 (Course.java)

 1 /**
 2 This class stores data about a course.
 3 */
 4
 5 public class Course
 6 {
 7 private String courseName; // Name of the course
 8 private Instructor instructor; // The instructor
 9 private TextBook textBook; // The textbook
10
11 /**
12 This constructor initializes the courseName,
13 instructor, and text fields.
14 @param name The name of the course.
15 @param instructor An Instructor object.
16 @param text A TextBook object.
17 */
18
19 public Course(String name, Instructor instr,
20 TextBook text)
21 {
22 // Assign the courseName.
23 courseName = name;
24
25 // Create a new Instructor object, passing
26 // instr as an argument to the copy constructor.
27 instructor = new Instructor(instr);
28
29 // Create a new TextBook object, passing
30 // text as an argument to the copy constructor.
31 textBook = new TextBook(text);
32 }

Figure 8-13 UML diagram for the Course class

 8.7 Aggregation 523

33
34 /**
35 getName method
36 @return The name of the course.
37 */
38
39 public String getName()
40 {
41 return courseName;
42 }
43
44 /**
45 getInstructor method
46 @return A reference to a copy of this course's
47 Instructor object.
48 */
49
50 public Instructor getInstructor()
51 {
52 // Return a copy of the instructor object.
53 return new Instructor(instructor);
54 }
55
56 /**
57 getTextBook method
58 @return A reference to a copy of this course's
59 TextBook object.
60 */
61
62 public TextBook getTextBook()
63 {
64 // Return a copy of the textBook object.
65 return new TextBook(textBook);
66 }
67
68 /**
69 toString method
70 @return A string containing the course information.
71 */
72
73 public String toString()
74 {
75 // Create a string representing the object.
76 String str = "Course name: " + courseName +
77 "\nInstructor Information:\n" +
78 instructor +
79 "\nTextbook Information:\n" +
80 textBook;
81

524 Chapter 8 A Second Look at Classes and Objects

82 // Return the string.
83 return str;
84 }
85 }

The program in Code Listing 8-15 demonstrates the Course class.

code Listing 8-15 (CourseDemo.java)

 1 /**
 2 This program demonstrates the Course class.
 3 */
 4
 5 public class CourseDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Create an Instructor object.
10 Instructor myInstructor =
11 new Instructor("Kramer", "Shawn", "RH3010");
12
13 // Create a TextBook object.
14 TextBook myTextBook =
15 new TextBook("Starting Out with Java",
16 "Gaddis", "Pearson");
17
18 // Create a Course object.
19 Course myCourse =
20 new Course("Intro to Java", myInstructor,
21 myTextBook);
22
23 // Display the course information.
24 System.out.println(myCourse);
25 }
26 }

program output

Course name: Intro to Java
Instructor Information:
Last Name: Kramer
First Name: Shawn
Office Number: RH3010
Textbook Information:
Title: Starting Out with Java
Author: Gaddis
Publisher: Pearson

 8.7 Aggregation 525

Aggregation in UML Diagrams
You show aggregation in a UML diagram by connecting two classes with a line that has an
open diamond at one end. The diamond is closest to the class that is the aggregate. Figure
8-14 is a UML diagram that shows the relationship among the Course, Instructor, and
TextBook classes. The open diamond is closest to the Course class because it is the aggregate
(the whole).

Figure 8-14 UML diagram showing aggregation

security issues with Aggregate classes
When writing an aggregate class, you should be careful not to unintentionally create “secu-
rity holes” that can allow code outside the class to modify private data inside the class. We
will focus on the following two specific practices that can help prevent security holes in
your classes:

•	 Perform Deep Copies When Creating Field Objects
 An aggregate object contains references to other objects. When you make a copy of

the aggregate object, it is important that you also make copies of the objects it refer-
ences. This is known as a deep copy. If you make a copy of an aggregate object, but
only make a reference copy of the objects it references, then you have performed a
shallow copy.

526 Chapter 8 A Second Look at Classes and Objects

•	 Return Copies of Field Objects, Not the Originals
 When a method in the aggregate class returns a reference to a field object, return a

reference to a copy of the field object.

Let’s discuss each of these practices in more depth.

perform Deep copies When creating Field objects

Let’s take a closer look at the Course class. First, notice the arguments that the constructor
accepts in lines 19 and 20 as follows:

•	 A	reference	to	a	String containing the name of the course is passed into the name
parameter.

•	 A	reference	to	an	Instructor object is passed into the instr parameter.
•	 A	reference	to	a	TextBook object is passed into the text parameter.

Next, notice that the constructor does not merely assign instr to the instructor field.
Instead, in line 27 it creates a new Instructor object for the instructor field and passes
instr to the copy constructor. Here is the statement:

instructor = new Instructor(instr);

This statement creates a copy of the object referenced by instr. The instructor field will
reference the copy.

When a class has a field that is an object, it is possible that a shallow copy operation will
create a security hole. For example, suppose the Course constructor had been written as
 follows:

// Bad constructor!
public Course(String name, Instructor instr, TextBook text)
{
 // Assign the courseName.
 courseName = name;

 // Assign the instructor (shallow copy)
 instructor = instr; // Causes security hole!

 // Assign the textBook (shallow copy)
 textBook = text; // Causes security hole!
}

In this example, the instructor and textBook fields are merely assigned the addresses of
the objects passed into the constructor. This can cause problems because there may be
variables outside the Course object that also contain references to these Instructor and
TextBook objects. These outside variables would provide direct access to the Course
object’s private data.

At this point you might be wondering why a deep copy was not also done for the courseName
field. In line 23 the Course constructor performs a shallow copy, simply assigning the
address of the String object referenced by name to the courseName field. This is permissible
because String objects are immutable. An immutable object does not provide a way to

 8.7 Aggregation 527

Avoid Using null References
By default, a reference variable that is an instance field is initialized to the value null. This
indicates that the variable does not reference an object. Because a null reference variable
does not reference an object, you cannot use it to perform an operation that would require
the existence of an object. For example, a null reference variable cannot be used to call a
method. If you attempt to perform an operation with a null reference variable, the program
will terminate. For example, look at the FullName class shown in Code Listing 8-16.

change its contents. Even if variables outside the Course class reference the same object that
courseName references, the object cannot be changed.

Return copies of Field objects, not the originals

When a method in an aggregate class returns a reference to a field object, it should return a
reference to a copy of the field object, not the field object itself. For example, look at the
getInstructor method in the Course class. The code is shown here:

public Instructor getInstructor()
{
 // Return a copy of the instructor object.
 return new Instructor(instructor);
}

Notice that the return statement uses the new key word to create a new Instructor object,
passing the instructor field to the copy constructor. The object that is created is a copy of
the object referenced by instructor. The address of the copy is then returned. This is prefer-
able to simply returning a reference to the field object itself. For example, suppose the
method had been written this way:

// Bad method
public Instructor getInstructor()
{
 // Return a reference to the instructor object.
 return instructor; // WRONG! Causes a security hole.
}

This method returns the value stored in the instructor field, which is the address of an
Instructor object. Any variable that receives the address can then access the Instructor
object. This means that code outside the Course object can change the values held by the
Instructor object. This is a security hole because the Instructor object is a private field!
Only code inside the Course class should be allowed to access it.

noTe: It is permissible to return a reference to a String object, even if the String
object is a private field. This is because String objects are immutable.

528 Chapter 8 A Second Look at Classes and Objects

code Listing 8-16 (FullName.java)

 1 /**
 2 This class stores a person's first, last, and middle
 3 names. The class is dangerous because it does not
 4 prevent operations on null reference fields.
 5 */
 6
 7 public class FullName
 8 {
 9 private String lastName; // Last name
10 private String firstName; // First name
11 private String middleName; // Middle name
12
13 /**
14 The setLastName method sets the lastName field.
15 @param str The String to set lastName to.
16 */
17
18 public void setLastName(String str)
19 {
20 lastName = str;
21 }
22
23 /**
24 The setFirstName method sets the firstName field.
25 @param str The String to set firstName to.
26 */
27
28 public void setFirstName(String str)
29 {
30 firstName = str;
31 }
32
33 /**
34 The setMiddleName method sets the middleName field.
35 @param str The String to set middleName to.
36 */
37
38 public void setMiddleName(String str)
39 {
40 middleName = str;
41 }
42
43 /**
44 The getLength method returns the length of the
45 full name.

 8.7 Aggregation 529

46 @return The length.
47 */
48
49 public int getLength()
50 {
51 return lastName.length() + firstName.length()
52 + middleName.length();
53 }
54
55 /**
56 The toString method returns the full name.
57 @return A reference to a String.
58 */
59
60 public String toString()
61 {
62 return firstName + " " + middleName + " "
63 + lastName;
64 }
65 }

First, notice that the class has three String reference variables as fields: lastName, firstName,
and middleName. Second, notice that the class does not have a programmer-defined con-
structor. When an instance of this class is created, the lastName, firstName, and middleName
fields will be initialized to null by the default constructor. Third, notice that the getLength
method uses the lastName, firstName, and middleName variables to call the String class’s
length method in lines 51 and 52. Nothing is preventing the length method from being
called while any or all of these reference variables are set to null. The program in Code
Listing 8-17 demonstrates this.

code Listing 8-17 (NameTester.java)

 1 /**
 2 This program creates a FullName object, and then
 3 calls the object's getLength method before values
 4 are established for its reference fields. As a
 5 result, this program will crash.
 6 */
 7
 8 public class NameTester
 9 {
10 public static void main(String[] args)
11 {
12 int len; // To hold the name length
13
14 // Create a FullName object.

530 Chapter 8 A Second Look at Classes and Objects

15 FullName name = new FullName();
16
17 // Get the length of the full name.
18 len = name.getLength();
19 }
20 }

This program will crash when you run it because the getLength method is called before the
name object’s fields are made to reference String objects. One way to prevent the program
from crashing is to use if statements in the getLength method to determine whether any of
the fields are set to null. Here is an example:

public int getLength()
{
 int len = 0;

 if (lastName != null)
 len += lastName.length();

 if (firstName != null)
 len += firstName.length();

 if (middleName != null)
 len += middleName.length();

 return len;
}

Another way to handle this problem is to write a no-arg constructor that assigns values to
the reference fields. Here is an example:

public FullName()
{
 lastName = "";
 firstName = "";
 middleName = "";
}

8.8 The this Reference Variable

concepT: The this key word is the name of a reference variable that an object can
use to refer to itself. It is available to all non-static methods.

The key word this is the name of a reference variable that an object can use to refer to
itself. For example, recall the Stock class presented earlier in this chapter. The class has the
following equals method that compares the calling Stock object to another Stock object
that is passed as an argument:

 8.8 The this Reference Variable 531

public boolean equals(Stock object2)
{
 boolean status;

 // Determine whether this object's symbol and
 // sharePrice fields are equal to object2's
 // symbol and sharePrice fields.
 if (symbol.equals(object2.symbol) &&
 sharePrice == object2.sharePrice)
 status = true; // Yes, the objects are equal.
 else
 status = false; // No, the objects are not equal.

 // Return the value in status.
 return status;
}

When this method is executing, the this variable contains the address of the calling object.
We could rewrite the if statement as follows, and it would perform the same operation (the
changes appear in bold):

if (this.symbol.equals(object2.symbol) &&
 this.sharePrice == object2.sharePrice)

The this reference variable is available to all of a class’s non-static methods.

Using this to overcome shadowing
One common use of the this key word is to overcome the shadowing of a field name by a
parameter name. Recall from Chapter 6 that if a method’s parameter has the same name as
a field in the same class, then the parameter name shadows the field name. For example,
look at the constructor in the Stock class:

public Stock(String sym, double price)
{
 symbol = sym;
 sharePrice = price;
}

This method uses the parameter sym to accept an argument that is assigned to the symbol
field, and the parameter price to accept an argument that is assigned to the sharePrice
field. Sometimes it is difficult (and even time-consuming) to think of a good parameter
name that is different from a field name. To avoid this problem, many programmers give
parameters the same names as the fields to which they correspond, and then use the this
key word to refer to the field names. For example, the Stock class’s constructor could be
written as follows:

public Stock(String symbol, double sharePrice)
{
 this.symbol = symbol;
 this.sharePrice = sharePrice;
}

532 Chapter 8 A Second Look at Classes and Objects

Although the parameter names symbol and sharePrice shadow the field names symbol and
sharePrice, the this key word overcomes the shadowing. Because this is a reference to the
calling object, the expression this.symbol refers to the calling object’s symbol field, and the
expression this.sharePrice refers to the calling object’s sharePrice field.

Using this to call an overloaded constructor
from Another constructor
You already know that a constructor is automatically called when an object is created. You
also know that you cannot call a constructor explicitly, as you do other methods. However,
there is one exception to this rule: You can use the this key word to call one constructor
from another constructor in the same class.

To illustrate this, recall the Stock class that was presented earlier in this chapter. It has the
following constructor:

public Stock(String sym, double price)
{
 symbol = sym;
 sharePrice = price;
}

This constructor accepts arguments that are assigned to the symbol and sharePrice fields.
Let’s suppose we also want a constructor that only accepts an argument for the symbol field,
and assigns 0.0 to the sharePrice field. Here’s one way to write the constructor:

public Stock(String sym)
{
 this(sym, 0.0);
}

This constructor simply uses the this variable to call the first constructor. It passes the
value in sym as the first argument, and 0.0 as the second argument. The result is that the
symbol field is assigned the value in sym and the sharePrice field is assigned 0.0.

Remember the following rules about using this to call a constructor:

•	 this can only be used to call a constructor from another constructor in the same
class.

•	 It	must be the first statement in the constructor that is making the call. If it is not the
first statement, a compiler error will result.

checkpoint

www.myprogramminglab.com

8.4 Look at the following code. (You might want to review the Stock class presented
earlier in this chapter.)

Stock stock1 = new Stock("XYZ", 9.65);
Stock stock2 = new Stock("SUNW", 7.92);

www.myprogramminglab.com

 8.9 Enumerated Types 533

 While the equals method is executing as a result of the following statement, what
object does this reference?

if (stock2.equals(stock1))
 System.out.println("The stocks are the same.");

8.9 enumerated Types

concepT: An enumerated data type consists of a set of predefined values. You can
use the data type to create variables that can hold only the values that
belong to the enumerated data type.

You’ve already learned the concept of data types and how they are used with primitive vari-
ables. For example, a variable of the int data type can hold integer values within a certain
range. You cannot assign floating-point values to an int variable because only int values
may be assigned to int variables. A data type defines the values that are legal for any vari-
able of that data type.

Sometimes it is helpful to create your own data type that has a specific set of legal values.
For example, suppose you wanted to create a data type named Day, and the legal values in
that data type were the names of the days of the week (Sunday, Monday, and so forth).
When you create a variable of the Day data type, you can only store the names of the days
of the week in that variable. Any other values would be illegal. In Java, such a type is known
as an enumerated data type.

You use the enum key word to create your own data type and specify the values that belong
to that type. Here is an example of an enumerated data type declaration:

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY }

An enumerated data type declaration begins with the key word enum, followed by the name
of the type, followed by a list of identifiers inside braces. The example declaration creates
an enumerated data type named Day. The identifiers SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, and SATURDAY, which are listed inside the braces, are known as enum con-
stants. They represent the values that belong to the Day data type. Here is the general format
of an enumerated type declaration:

enum TypeName { One or more enum constants }

Note that the enum constants are not enclosed in quotation marks; therefore, they are not
strings. enum constants must be legal Java identifiers.

Tip: When making up names for enum constants, it is not required that they be written
in all uppercase letters. We could have written the Day type’s enum constants as sunday,
monday, and so forth. Because they represent constant values, however, the standard con-
vention is to write them in all uppercase letters.

534 Chapter 8 A Second Look at Classes and Objects

enum constants, which are actually objects, come automatically equipped with a few meth-
ods. One of them is the toString method. The toString method simply returns the name of

Once you have created an enumerated data type in your program, you can declare variables
of that type. For example, the following statement declares workDay as a variable of the
Day type:

Day workDay;

Because workDay is a Day variable, the only values that we can legally assign to it are the
enum constants Day.SUNDAY, Day.MONDAY, Day.TUESDAY, Day.WEDNESDAY, Day.THURSDAY,
Day.FRIDAY, and Day.SATURDAY. If we try to assign any value other than one of the Day type’s
enum constants, a compiler error will result. For example, the following statement assigns
the value Day.WEDNESDAY to the workDay variable:

Day workDay = Day.WEDNESDAY;

Notice that we assigned Day.WEDNESDAY instead of just WEDNESDAY. The name Day.WEDNESDAY
is the fully qualified name of the Day type’s WEDNESDAY constant. Under most circumstances
you must use the fully qualified name of an enum constant.

enumerated Types Are specialized classes
When you write an enumerated type declaration, you are actually creating a special kind of
class. In addition, the enum constants that you list inside the braces are actually objects of
the class. In the previous example, Day is a class, and the enum constants Day.SUNDAY,
Day.MONDAY, Day.TUESDAY, Day.WEDNESDAY, Day.THURSDAY, Day.FRIDAY, and Day.SATURDAY are
all instances of the Day class. When we assigned Day.WEDNESDAY to the workDay variable, we
were assigning the address of the Day.WEDNESDAY object to the variable. This is illustrated in
Figure 8-15.

Each of these is an object
of the Day type, which is a
specialized class.

The workDay variable
holds the address of the
Day.WEDNESDAY object.

address

Figure 8-15 The workDay variable references the Day.WEDNESDAY object

 8.9 Enumerated Types 535

For example, assuming that the Day type has been declared as previously shown, look at the
following code segment:

Day lastWorkDay = Day.FRIDAY;
System.out.println(lastWorkDay.ordinal());
System.out.println(Day.MONDAY.ordinal());

The ordinal value for Day.FRIDAY is 5 and the ordinal value for Day.MONDAY is 1, so this code
will display:

5
1

The last enumerated data type methods that we will discuss here are equals and compareTo.
The equals method accepts an object as its argument and returns true if that object is equal
to the calling enum constant. For example, assuming that the Day type has been declared as
previously shown, the following code segment will display “The two are the same”:

Day myDay = Day.TUESDAY;
if (myDay.equals(Day.TUESDAY))
 System.out.println("The two are the same.");

The compareTo method is designed to compare enum constants of the same type. It accepts
an object as its argument and returns the following:

the calling enum constant as a string. For example, assuming that the Day type has been
declared as previously shown, both of the following code segments display the string
WEDNESDAY (recall that the toString method is implicitly called when an object is passed to
System.out.println):

// This code displays WEDNESDAY.
Day workDay = Day.WEDNESDAY;
System.out.println(workDay);

// This code also displays WEDNESDAY.
System.out.println(Day.WEDNESDAY);

enum constants also have a method named ordinal. The ordinal method returns an integer
value representing the constant’s ordinal value. The constant’s ordinal value is its position in
the enum declaration, with the first constant being at position 0. Figure 8-16 shows the ordi-
nal value of each of the constants declared in the Day data type.

Figure 8-16 The Day enumerated data type and the ordinal positions of its enum constants

536 Chapter 8 A Second Look at Classes and Objects

•	 a	negative	integer	value	if	the	calling	enum constant’s ordinal value is less than the
argument’s ordinal value

•	 zero	if	the	calling	enum constant is the same as the argument
•	 a	positive	integer	value	if	the	calling	enum constant’s ordinal value is greater than the

argument’s ordinal value

For example, assuming that the Day type has been declared as previously shown, the follow-
ing code segment will display "FRIDAY is greater than MONDAY":

Day myDay = Day.FRIDAY;
if (myDay.compareTo(Day.MONDAY) > 0)
 System.out.println(myDay + " is greater than "
 + Day.MONDAY);

One place to declare an enumerated type is inside a class. If you declare an enumerated type
inside a class, it cannot be inside a method. Code Listing 8-18 shows an example. It demon-
strates the Day enumerated type.

code Listing 8-18 (EnumDemo.java)

 1 /**
 2 This program demonstrates an enumerated type.
 3 */
 4
 5 public class EnumDemo
 6 {
 7 // Declare the Day enumerated type.
 8 enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 9 THURSDAY, FRIDAY, SATURDAY }
10
11 public static void main(String[] args)
12 {
13 // Declare a Day variable and assign it a value.
14 Day workDay = Day.WEDNESDAY;
15
16 // The following statement displays WEDNESDAY.
17 System.out.println(workDay);
18
19 // The following statement displays the ordinal
20 // value for Day.SUNDAY, which is 0.
21 System.out.println("The ordinal value for " +
22 Day.SUNDAY + " is " +
23 Day.SUNDAY.ordinal());
24
25 // The following statement displays the ordinal
26 // value for Day.SATURDAY, which is 6.
27 System.out.println("The ordinal value for " +
28 Day.SATURDAY + " is " +
29 Day.SATURDAY.ordinal());

 8.9 Enumerated Types 537

30
31 // The following statement compares two enum constants.
32 if (Day.FRIDAY.compareTo(Day.MONDAY) > 0)
33 System.out.println(Day.FRIDAY + " is greater than " +
34 Day.MONDAY);
35 else
36 System.out.println(Day.FRIDAY + " is NOT greater than " +
37 Day.MONDAY);
38 }
39 }

program output

WEDNESDAY
The ordinal value for SUNDAY is 0
The ordinal value for SATURDAY is 6
FRIDAY is greater than MONDAY

You can also write an enumerated type declaration inside its own file. If you do, the file-
name must match the name of the type. For example, if we stored the Day type in its own
file, we would name the file Day.java. This makes sense because enumerated data types are
specialized classes. For example, look at Code Listing 8-19. This file, CarType.java, contains
the declaration of an enumerated data type named CarType. When it is compiled, a byte
code file named CarType.class will be generated.

code Listing 8-19 (CarType.java)

 1 /**
 2 CarType enumerated data type
 3 */
 4
 5 enum CarType { PORSCHE, FERRARI, JAGUAR }

Also look at Code Listing 8-20. This file, CarColor.java, contains the declaration of an enu-
merated data type named CarColor. When it is compiled, a byte code file named CarColor.
class will be generated.

code Listing 8-20 (CarColor.java)

 1 /**
 2 CarColor enumerated data type
 3 */
 4
 5 enum CarColor { RED, BLACK, BLUE, SILVER }

538 Chapter 8 A Second Look at Classes and Objects

Code Listing 8-21 shows the SportsCar class, which uses these enumerated types. Code
Listing 8-22 demonstrates the class.

code Listing 8-21 (SportsCar.java)

 1 /**
 2 SportsCar class
 3 */
 4
 5 public class SportsCar
 6 {
 7 private CarType make; // The car's make
 8 private CarColor color; // The car's color
 9 private double price; // The car's price
10
11 /**
12 The constructor initializes the car's make,
13 color, and price.
14 @param aMake The car's make.
15 @param aColor The car's color.
16 @param aPrice The car's price.
17 */
18
19 public SportsCar(CarType aMake, CarColor aColor, double aPrice)
20 {
21 make = aMake;
22 color = aColor;
23 price = aPrice;
24 }
25
26 /**
27 getMake method
28 @return The car's make.
29 */
30
31 public CarType getMake()
32 {
33 return make;
34 }
35
36 /**
37 getColor method
38 @return The car's color.

 8.9 Enumerated Types 539

39 */
40
41 public CarColor getColor()
42 {
43 return color;
44 }
45
46 /**
47 getPrice method
48 @return The car's price.
49 */
50
51 public double getPrice()
52 {
53 return price;
54 }
55
56 /**
57 toString method
58 @return A string indicating the car's make,
59 color, and price.
60 */
61
62 public String toString()
63 {
64 // Create a string representing the object.
65 String str = String.format("Make: %s\nColor: %s\nPrice: $%,.2f",
66 make, color, price);
67
68 // Return the string.
69 return str;
70 }
71 }

code Listing 8-22 (SportsCarDemo.java)

 1 /**
 2 This program demonstrates the SportsCar class.
 3 */
 4
 5 public class SportsCarDemo
 6 {

540 Chapter 8 A Second Look at Classes and Objects

 7 public static void main(String[] args)
 8 {
 9 // Create a SportsCar object.
10 SportsCar yourNewCar = new SportsCar(CarType.PORSCHE,
11 CarColor.RED, 100000);
12
13 // Display the object's values.
14 System.out.println(yourNewCar);
15 }
16 }

program output

Make: PORSCHE
Color: RED
Price: $100,000.00

switching on an enumerated Type
Java allows you to test an enum constant with a switch statement. For example, look at the
program in Code Listing 8-23. It creates a SportsCar object, and then uses a switch state-
ment to test the object’s make field.

code Listing 8-23 (SportsCarDemo2.java)

 1 /**
 2 This program shows that you can switch on an
 3 enumerated type.
 4 */
 5
 6 public class SportsCarDemo2
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a SportsCar object.
11 SportsCar yourNewCar = new SportsCar(CarType.PORSCHE,
12 CarColor.RED, 100000);
13
14 // Get the car make and switch on it.
15 switch (yourNewCar.getMake())
16 {
17 case PORSCHE :
18 System.out.println("Your car was made in Germany.");
19 break;
20 case FERRARI :

 8.9 Enumerated Types 541

checkpoint

www.myprogramminglab.com

8.5 Look at the following statement, which declares an enumerated data type:

enum Flower { ROSE, DAISY, PETUNIA }

a) What is the name of the data type?
b) What is the ordinal value for the enum constant ROSE? For DAISY? For PETUNIA?
c) What is the fully qualifed name of the enum constant ROSE? Of DAISY?

Of PETUNIA?
d) Write a statement that declares a variable of this enumerated data type.

The variable should be named flora. Initialize the variable with the
PETUNIA constant.

8.6 Assume that the following enumerated data type has been declared:

enum Creatures{ HOBBIT, ELF, DRAGON }

 What will the following code display?

21 System.out.println("Your car was made in Italy.");
22 break;
23 case JAGUAR :
24 System.out.println("Your car was made in England.");
25 break;
26 default:
27 System.out.println("I'm not sure where that car "
28 + "was made.");
29 }
30 }
31 }

program output

Your car was made in Germany.

In line 15 the switch statement tests the value returned from the yourNewCar.getMake()
method. This method returns a CarType enumerated constant. Based upon the value returned
from the method, the program then branches to the appropriate case statement. Notice in
the case statements that the enumerated constants are not fully qualified. In other words,
we had to write PORSCHE, FERRARI, and JAGUAR instead of CarType.PORSCHE, CarType.FERRARI,
and CarType.JAGUAR. If you give a fully qualified enum constant name as a case expression,
a compiler error will result.

Tip: Notice that the switch statement in Code Listing 8-23 has a default section, even
though it has a case statement for every enum constant in the CarType type. This will
handle things in the event that more enum constants are added to the CarType file. This
type of planning is an example of “defensive programming.”

www.myprogramminglab.com

542 Chapter 8 A Second Look at Classes and Objects

System.out.println(Creatures.HOBBIT + " "
 + Creatures.ELF + " "
 + Creatures.DRAGON);

8.7 Assume that the following enumerated data type has been declared:

enum Letters { Z, Y, X }

 What will the following code display?

if (Letters.Z.compareTo(Letters.X) > 0)
 System.out.println("Z is greater than X.");
else
 System.out.println("Z is not greater than X.");

8.10 Garbage collection

concepT: The Java Virtual Machine periodically runs a process known as the
garbage collector, which removes unreferenced objects from memory.

When an object is no longer needed, it should be destroyed so the memory it uses can be
freed for other purposes. Fortunately, you do not have to destroy objects after you are
finished using them. The Java Virtual Machine periodically performs a process known as
garbage collection, which automatically removes unreferenced objects from memory. For
example, look at the following code:

// Declare two BankAccount reference variables.
BankAccount account1, account2;

// Create an object and reference it with account1.
account1 = new BankAccount(500.0);

// Reference the same object with account2.
account2 = account1;

// Store null in account1 so it no longer
// references the object.
account1 = null;

// The object is still referenced by account2, though.
// Store null in account2 so it no longer references
// the object.
account2 = null;

// Now the object is no longer referenced, so it
// can be removed by the garbage collector.

This code uses two reference variables, account1 and account2. A BankAccount object is cre-
ated and referenced by account1. Then, account1 is assigned to account2, which causes
account2 to reference the same object as account1. This is illustrated in Figure 8-17.

 8.10 Garbage Collection 543

Next, the null value is assigned to account1. This removes the address of the object from the
account1 variable, causing it to no longer reference the object. Figure 8-18 illustrates this.

Figure 8-17 Both account1 and account2 reference the same object

The object is still accessible, however, because it is referenced by the account2 variable. The
next statement assigns null to account2. This removes the object’s address from account2,
causing it to no longer reference the object. Figure 8-19 illustrates this. Because the object is
no longer accessible, it will be removed from memory the next time the garbage collector
process runs.

Figure 8-18 The object is only referenced by the account2 variable

Figure 8-19 The object is no longer referenced

544 Chapter 8 A Second Look at Classes and Objects

8.11 Focus on object-oriented Design:
class collaboration

concepT: It is common for classes to interact, or collaborate, with each other to
perform their operations. Part of the object-oriented design process is
identifying the collaborations among classes.

In an object-oriented application it is common for objects of different classes to collaborate.
This simply means that objects interact with each other. Sometimes one object will need the
services of another object in order to fulfill its responsibilities. For example, let’s say an
object needs to read values from the keyboard, and then write those values to a file. The
object would use the services of a Scanner object to read the values from the keyboard, and
then use the services of a PrintWriter object to write the values to a file. In this example,
the object is collaborating with objects created from classes in the Java API. The objects that
you create from your own classes can also collaborate with each other.

If one object is to collaborate with another object, then it must know something about the
other object’s class methods and how to call them. For example, suppose we were to write
a class named StockPurchase, which uses an object of the Stock class (presented earlier in
this chapter) to simulate the purchase of a stock. The StockPurchase class is responsible for
calculating the cost of the stock purchase. To do that, it must know how to call the Stock
class’s getSharePrice method to get the price per share of the stock. Code Listing 8-24
shows an example of the StockPurchase class. (This file is in the source code folder Chapter
08\StockPurchase Class.)

code Listing 8-24 (StockPurchase.java)

 1 /**
 2 The StockPurchase class represents a stock purchase.
 3 */
 4
 5 public class StockPurchase
 6 {
 7 private Stock stock; // The stock that was purchased

The finalize Method
If a class has a method named finalize, it is called automatically just before an instance of
the class is destroyed by the garbage collector. If you wish to execute code just before an
object is destroyed, you can create a finalize method in the class and place the code there.
The finalize method accepts no arguments and has a void return type.

noTe: The garbage collector runs periodically, and you cannot predict exactly when
it will execute. Therefore, you cannot know exactly when an object’s finalize method
will execute.

 8.11 Focus on Object-Oriented Design: Class Collaboration 545

 8 private int shares; // Number of shares owned
 9
10 /**
11 Constructor
12 @param stockObject The stock to purchase.
13 @param numShares The number of shares.
14 */
15
16 public StockPurchase(Stock stockObject, int numShares)
17 {
18 // Create a copy of the object referenced by
19 // stockObject.
20 stock = new Stock(stockObject);
21 shares = numShares;
22 }
23
24 /**
25 getStock method
26 @return A copy of the Stock object for the stock
27 being purchased.
28 */
29
30 public Stock getStock()
31 {
32 // Return a copy of the object referenced by stock.
33 return new Stock(stock);
34 }
35
36 /**
37 getShares method
38 @return The number of shares being purchased.
39 */
40
41 public int getShares()
42 {
43 return shares;
44 }
45
46 /**
47 getCost method
48 @return The cost of the stock purchase.
49 */
50
51 public double getCost()
52 {
53 return shares * stock.getSharePrice();
54 }
55 }

546 Chapter 8 A Second Look at Classes and Objects

The constructor for this class accepts a Stock object representing the stock that is being
purchased, and an int representing the number of shares to purchase. In line 20 we see the
first collaboration: The StockPurchase constructor makes a copy of the Stock object by
using the Stock class’s copy constructor. The copy constructor is used again in the getStock
method, in line 33, to return a copy of the Stock object.

The next collaboration takes place in the getCost method. This method calculates and
returns the cost of the stock purchase. In line 53 it calls the Stock class’s getSharePrice
method to determine the stock’s price per share. The program in Code Listing 8-25 dem-
onstrates this class. (This file is also stored in the source code folder Chapter 08\
StockPurchase Class.)

code Listing 8-25 (StockTrader.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program allows you to purchase shares of XYZ
 5 company's stock.
 6 */
 7
 8 public class StockTrader
 9 {
10 public static void main(String[] args)
11 {
12 int sharesToBuy; // Number of shares to buy.
13
14 // Create a Stock object for the company stock.
15 // The trading symbol is XYZ and the stock is
16 // currently $9.62 per share.
17 Stock xyzCompany = new Stock("XYZ", 9.62);
18
19 // Create a Scanner object for keyboard input.
20 Scanner keyboard = new Scanner(System.in);
21
22 // Display the current share price.
23 System.out.printf("XYZ stock is currently $%,.2f.\n",
24 xyzCompany.getSharePrice());
25
26 // Get the number of shares to purchase.
27 System.out.print("How many shares do you want to buy? ");
28 sharesToBuy = keyboard.nextInt();
29
30 // Create a StockPurchase object for the transaction.
31 StockPurchase buy =
32 new StockPurchase(xyzCompany, sharesToBuy);

 8.11 Focus on Object-Oriented Design: Class Collaboration 547

33
34 // Display the cost of the transaction.
35 System.out.printf("Cost of the stock: $%,.2f",
36 buy.getCost());
37 }
38 }

program output with example input shown in Bold

XYZ stock is currently $9.62.
How many shares do you want to buy? 100 [enter]
Cost of the stock: $962.00

Determining class collaborations with cRc cards
During the object-oriented design process, you can determine many of the collaborations
that will be necessary among classes by examining the responsibilities of the classes. In
Chapter 6, Section 6.9, we discussed the process of finding the classes and their responsi-
bilities. Recall from that section that a class’s responsibilities are as follows:

•	 Things	that	the	class	is	responsible	for	knowing
•	 Actions	that	the	class	is	responsible	for	doing

Often you will determine that the class must collaborate with another class in order to ful-
fill one or more of its responsibilities. One popular method of discovering a class’s respon-
sibilities and collaborations is by creating CRC cards. CRC stands for class, responsibilities,
and collaborations.

You can use simple index cards for this procedure. Once you have gone through the pro-
cess of finding the classes (which is discussed in Chapter 6, Section 6.9), set aside one
index card for each class. At the top of the index card, write the name of the class. Divide
the rest of the card into two columns. In the left column, write each of the class’s respon-
sibilities. As you write each responsibility, think about whether the class needs to collabo-
rate with another class to fulfill that responsibility. Ask yourself questions such as the
following:

•	 Will	an	object	of	this	class	need	to	get	data	from	another	object	in	order	to	fulfill	this	
responsibility?

•	 Will	an	object	of	this	class	need	to	request	another	object	to	perform	an	operation	in	
order to fulfill this responsibility?

If collaboration is required, write the name of the collaborating class in the right column,
next to the responsibility that requires it. If no collaboration is required for a responsibility,
simply write “None” in the right column, or leave it blank. Figure 8-20 shows an example
CRC card for the StockPurchase class.

548 Chapter 8 A Second Look at Classes and Objects

From the CRC card shown in the figure, we can see that the StockPurchase class has the
following responsibilities and collaborations:

•	 Responsibility: To know the stock to purchase
 Collaboration: The Stock class
•	 Responsibility: To know the number of shares to purchase
 Collaboration: None
•	 Responsibility: To calculate the cost of the purchase
 Collaboration: The Stock class

When you have completed a CRC card for each class in the application, you will have a
good idea of each class’s responsibilities and how the classes must interact.

8.12 common errors to Avoid
The following list describes several errors that are commonly committed when learning this
chapter’s topics:

•	 Attempting to refer to an instance field or instance method in a static method. Static
methods can refer only to other class members that are static.

•	 In a method that accepts an object as an argument, writing code that accidentally
modifies the object. When a reference variable is passed as an argument to a method,
the method has access to the object that the variable references. When writing a
method that receives a reference variable as an argument, you must take care not to
accidentally modify the contents of the object that is referenced by the variable.

•	 Allowing a null reference to be used. Because a null reference variable does not refer-
ence an object, you cannot use it to perform an operation that would require the exis-
tence of an object. For example, a null reference variable cannot be used to call a
method. If you attempt to perform an operation with a null reference variable, the
program will terminate. This can happen when a class has a reference variable as a
field, and it is not properly initialized with the address of an object.

•	 Forgetting to use the fully qualified name of an enum constant. Under most circum-
stances you must use the fully qualified name of an enum constant. One exception to
this is when the enum constant is used as a case expression in a switch statement.

Figure 8-20 CRC card

 Review Questions and Exercises 549

Review Questions and exercises
Multiple choice and True/False

 1. This type of method cannot access any non-static member variables in its own class.
a. instance
b. void
c. static
d. non-static

 2. When an object is passed as an argument to a method, this is actually passed.
a. a copy of the object
b. the name of the object
c. a reference to the object
d. none of these; you cannot pass an object

 3. If you write this method for a class, Java will automatically call it any time you con-
catenate an object of the class with a string.
a. toString
b. plusString
c. stringConvert
d. concatString

 4. Making an instance of one class a field in another class is called ___________.
a. nesting
b. class fielding
c. aggregation
d. concatenation

 5. This is the name of a reference variable that is always available to an instance method
and refers to the object that is calling the method.
a. callingObject
b. this
c. me
d. instance

 6. This enum method returns the position of an enum constant in the declaration.
a. position
b. location
c. ordinal
d. toString

 7. Assuming the following declaration exists:

enum Seasons { SPRING, WINTER, SUMMER, FALL }

 what is the fully qualified name of the FALL constant?
a. FALL
b. enum.FALL
c. FALL.Seasons
d. Seasons.FALL

550 Chapter 8 A Second Look at Classes and Objects

 8. You cannot use the fully qualified name of an enum constant for this.
a. a switch expression
b. a case expression
c. an argument to a method
d. all of these

 9. The Java Virtual Machine periodically performs this process, which automatically
removes unreferenced objects from memory.
a. memory cleansing
b. memory deallocation
c. garbage collection
d. object expungement

 10. If a class has this method, it is called automatically just before an instance of the class
is destroyed by the Java Virtual Machine.
a. finalize
b. destroy
c. remove
d. housekeeper

 11. CRC stands for
a. Class, Return value, Composition
b. Class, Responsibilities, Collaborations
c. Class, Responsibilities, Composition
d. Compare, Return, Continue

 12. True or False: A static member method may refer to non-static member variables of
the same class, but only after an instance of the class has been defined.

 13. True or False: All static member variables are initialized to –1 by default.

 14. True or False: When an object is passed as an argument to a method, the method can
access the argument.

 15. True or False: A method cannot return a reference to an object.

 16. True or False: You can declare an enumerated data type inside a method.

 17. True or False: Enumerated data types are actually special types of classes.

 18. True or False: enum constants have a toString method.

Find the error

The following class definition has an error. What is it?

 1. public class MyClass
{
 private int x;
 private double y;

 public static void setValues(int a, double b)
 {

 Review Questions and Exercises 551

 x = a;
 y = b;
 }
}

 2. Assume the following declaration exists :

enum Coffee { MEDIUM, DARK, DECAF }

 Find the error(s) in the following switch statement:

// This code has errors!
Coffee myCup = DARK;
switch (myCup)
{
 case Coffee.MEDIUM :
 System.out.println("Mild flavor.");
 break;
 case Coffee.DARK :
 System.out.println("Strong flavor.");
 break;
 case Coffee.DECAF :
 System.out.println("Won’t keep you awake.");
 break;
 default:
 System.out.println("Never heard of it.");
}

Algorithm Workbench

 1. Consider the following class declaration:

public class Circle
{
 private double radius;

 public Circle(double r)
 {
 radius = r;
 }

 public double getArea()
 {
 return Math.PI * radius * radius;
 }

 public double getRadius()
 {
 return radius;
 }
}

552 Chapter 8 A Second Look at Classes and Objects

a. Write a toString method for this class. The method should return a string contain-
ing the radius and area of the circle.

b. Write an equals method for this class. The method should accept a Circle object as
an argument. It should return true if the argument object contains the same data as
the calling object, or false otherwise.

c. Write a greaterThan method for this class. The method should accept a Circle
object as an argument. It should return true if the argument object has an area that
is greater than the area of the calling object, or false otherwise.

 2. Consider the following class declaration:

public class Thing
{
 private int x;
 private int y;
 private static int z = 0;

 public Thing()
 {
 x = z;
 y = z;
 }
 static void putThing(int a)
 {
 z = a;
 }
}

 Assume a program containing the class declaration defines three Thing objects with
the following statements:

Thing one = new Thing();
Thing two = new Thing();
Thing three = new Thing();

a. How many separate instances of the x member exist?
b. How many separate instances of the y member exist?
c. How many separate instances of the z member exist?
d. What value will be stored in the x and y members of each object?
e. Write a statement that will call the putThing method.

 3. A pet store sells dogs, cats, birds, and hamsters. Write a declaration for an enumerated
data type that can represent the types of pets the store sells.

short Answer

 1. Describe one thing you cannot do with a static method.

 2. Why are static methods useful in creating utility classes?

 3. Describe the difference in the way variables and class objects are passed as arguments
to a method.

 Programming Challenges 553

 4. Even if you do not write an equals method for a class, Java provides one. Describe
the behavior of the equals method that Java automatically provides.

 5. A “has a” relationship can exist between classes. What does this mean?

 6. What happens if you attempt to call a method using a reference variable that is set
to null?

 7. Is it advisable or not advisable to write a method that returns a reference to an object
that is a private field? What is the exception to this?

 8. What is the this key word?

 9. Look at the following declaration:

enum Color { RED, ORANGE, GREEN, BLUE }

a. What is the name of the data type declared by this statement?
b. What are the enum constants for this type?
c. Write a statement that defines a variable of this type and initializes it with a valid value.

 10. Assuming the following enum declaration exists:

enum Dog { POODLE, BOXER, TERRIER }

 what will the following statements display?

a. System.out.println(Dog.POODLE + "\n" +
 Dog.BOXER + "\n" +
 Dog.TERRIER);

b. System.out.println(Dog.POODLE.ordinal() + "\n” +
 Dog.BOXER.ordinal() + "\n" +
 Dog.TERRIER.ordinal());

c. Dog myDog = Dog.BOXER;
if (myDog.compareTo(Dog.TERRIER) > 0)
 System.out.println(myDog + " is greater than " +
 Dog.TERRIER);
else
 System.out.println(myDog + " is NOT greater than " +
 Dog.TERRIER);

 11. Under what circumstances does an object become a candidate for garbage collection?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Area class

Write a class that has three overloaded static methods for calculating the areas of the
following geometric shapes:

•	 circles
•	 rectangles
•	 cylinders

http://www.myprogramminglab.com

554 Chapter 8 A Second Look at Classes and Objects

Here are the formulas for calculating the area of the shapes.

Area of a circle: Area 5 πr2

 where π is Math.PI and r is the circle’s radius

Area of a rectangle: Area 5 Width 3 Length

Area of a cylinder: Area 5 πr2h
 where π is Math.PI, r is the radius of the cylinder’s base, and
 h is the cylinder’s height

Because the three methods are to be overloaded, they should each have the same name, but
different parameter lists. Demonstrate the class in a complete program.

2. BankAccount class copy constructor

Add a copy constructor to the BankAccount class. This constructor should accept a
BankAccount object as an argument. It should assign to the balance field the value in the
argument’s balance field. As a result, the new object will be a copy of the argument object.

3. carpet calculator

The Westfield Carpet Company has asked you to write an application that calculates the
price of carpeting for rectangular rooms. To calculate the price, you multiply the area of the
floor (width times length) by the price per square foot of carpet. For example, the area of
floor that is 12 feet long and 10 feet wide is 120 square feet. To cover that floor with carpet
that costs $8 per square foot would cost $960. (12 3 10 3 8 5 960.)

First, you should create a class named RoomDimension that has two fields: one for the length
of the room and one for the width. The RoomDimension class should have a method that
returns the area of the room. (The area of the room is the room’s length multiplied by the
room’s width.)

Next you should create a RoomCarpet class that has a RoomDimension object as a field. It
should also have a field for the cost of the carpet per square foot. The RoomCarpet class
should have a method that returns the total cost of the carpet.

Figure 8-21 is a UML diagram that shows possible class designs and the relationships
among the classes. Once you have written these classes, use them in an application that
asks the user to enter the dimensions of a room and the price per square foot of the desired
carpeting. The application should display the total cost of the carpet.

4. LandTract class

Make a LandTract class that has two fields: one for the tract’s length and one for the width.
The class should have a method that returns the tract’s area, as well as an equals method
and a toString method. Demonstrate the class in a program that asks the user to enter the
dimensions for two tracts of land. The program should display the area of each tract of land
and indicate whether the tracts are of equal size.

The BankAccount
Class Copy

Constructor
Problem

VideoNote

 Programming Challenges 555

5. Month class

Write a class named Month. The class should have an int field named monthNumber that
holds the number of the month. For example, January would be 1, February would be 2,
and so forth. In addition, provide the following methods:

•	 A	no-arg	constructor	that	sets	the	monthNumber field to 1.
•	 A	constructor	that	accepts	the	number	of	the	month	as	an	argument.	It	should	set	the	

monthNumber field to the value passed as the argument. If a value less than 1 or greater
than 12 is passed, the constructor should set monthNumber to 1.

•	 A	constructor	that	accepts	the	name	of	the	month,	such	as	“January”	or	“February”	as	
an argument. It should set the monthNumber field to the correct corresponding value.

•	 A	setMonthNumber method that accepts an int argument, which is assigned to the
monthNumber field. If a value less than 1 or greater than 12 is passed, the method
should set monthNumber to 1.

•	 A	getMonthNumber method that returns the value in the monthNumber field.
•	 A	getMonthName method that returns the name of the month. For example, if the

monthNumber field contains 1, then this method should return “January”.
•	 A	toString method that returns the same value as the getMonthName method.
•	 An	equals method that accepts a Month object as an argument. If the argument object

holds the same data as the calling object, this method should return true. Otherwise,
it should return false.

Figure 8-21 UML diagram for Programming Challenge 3

556 Chapter 8 A Second Look at Classes and Objects

•	 A	greaterThan method that accepts a Month object as an argument. If the calling
object’s monthNumber field is greater than the argument’s monthNumber field, this
method should return true. Otherwise, it should return false.

•	 A	lessThan method that accepts a Month object as an argument. If the calling object’s
monthNumber field is less than the argument’s monthNumber field, this method should
return true. Otherwise, it should return false.

6. CashRegister class

Write a CashRegister class that can be used with the RetailItem class that you wrote in
Chapter 6’s Programming Challenge 4. The CashRegister class should simulate the sale of
a retail item. It should have a constructor that accepts a RetailItem object as an argument.
The constructor should also accept an integer that represents the quantity of items being
purchased. In addition, the class should have the following methods:

•	 The	getSubtotal method should return the subtotal of the sale, which is the quantity
multiplied by the price. This method must get the price from the RetailItem object
that was passed as an argument to the constructor.

•	 The	getTax method should return the amount of sales tax on the purchase. The sales
tax rate is 6 percent of a retail sale.

•	 The	getTotal method should return the total of the sale, which is the subtotal plus the
sales tax.

Demonstrate the class in a program that asks the user for the quantity of items being pur-
chased, and then displays the sale’s subtotal, amount of sales tax, and total.

7. sales Receipt File

Modify the program you wrote in Programming Challenge 6 to create a file containing a
sales receipt. The program should ask the user for the quantity of items being purchased,
and then generate a file with contents similar to the following:

SALES RECEIPT
Unit Price: $10.00
Quantity: 5
Subtotal: $50.00
Sales Tax: $ 3.00
Total: $53.00

8. parking Ticket simulator

For this assignment you will design a set of classes that work together to simulate a police
officer issuing a parking ticket. You should design the following classes:

•	 The ParkedCar Class: This class should simulate a parked car. The class’s responsibili-
ties are as follows:

– To know the car’s make, model, color, license number, and the number of minutes
that the car has been parked.

•	 The ParkingMeter Class: This class should simulate a parking meter. The class’s only
responsibility is as follows:

– To know the number of minutes of parking time that has been purchased.

 Programming Challenges 557

•	 The ParkingTicket Class: This class should simulate a parking ticket. The class’s
responsibilities are as follows:

– To report the make, model, color, and license number of the illegally parked car
– To report the amount of the fine, which is $25 for the first hour or part of an

hour that the car is illegally parked, plus $10 for every additional hour or part of
an hour that the car is illegally parked

– To report the name and badge number of the police officer issuing the ticket

•	 The PoliceOfficer Class: This class should simulate a police officer inspecting parked
cars. The class’s responsibilities are as follows:

– To know the police officer’s name and badge number
– To examine a ParkedCar object and a ParkingMeter object, and determine whether

the car’s time has expired
– To issue a parking ticket (generate a ParkingTicket object) if the car’s time

has expired

Write a program that demonstrates how these classes collaborate.

9. Geometry calculator

Design a Geometry class with the following methods:

•	 A	static	method	that	accepts	the	radius	of	a	circle	and	returns	the	area	of	the	circle.	
Use the following formula:

Area 5 πr2

Use Math.PI for π and the radius of the circle for r.

•	 A	static	method	that	accepts	the	length	and	width	of	a	rectangle	and	returns	the	area	
of the rectangle. Use the following formula:

Area 5 Length 3 Width

•	 A	static	method	that	accepts	the	length	of	a	triangle’s	base	and	the	triangle’s	height.	
The method should return the area of the triangle. Use the following formula:

Area 5 Base 3 Height 3 0.5

The methods should display an error message if negative values are used for the circle’s
radius, the rectangle’s length or width, or the triangle’s base or height.

Next, write a program to test the class, which displays the following menu and responds
to the user’s selection:

Geometry Calculator
1. Calculate the Area of a Circle
2. Calculate the Area of a Rectangle
3. Calculate the Area of a Triangle
4. Quit

Enter your choice (1-4):

Display an error message if the user enters a number outside the range of 1 through 4 when
selecting an item from the menu.

558 Chapter 8 A Second Look at Classes and Objects

10. car instrument simulator

For this assignment, you will design a set of classes that work together to simulate a car’s
fuel gauge and odometer. The classes you will design are the following:

•	 The FuelGauge Class: This class will simulate a fuel gauge. Its responsibilities are
as follows:

•	 To	know	the	car’s	current	amount	of	fuel,	in	gallons.
•	 To	report	the	car’s	current	amount	of	fuel,	in	gallons.
•	 To	be	able	to	increment	the	amount	of	fuel	by	1	gallon.	This	simulates	putting	fuel	

in the car. (The car can hold a maximum of 15 gallons.)
•	 To	be	able	to	decrement	the	amount	of	fuel	by	1	gallon,	if	the	amount	of	fuel	is	

greater than 0 gallons. This simulates burning fuel as the car runs.

•	 The Odometer Class: This class will simulate the car’s odometer. Its responsibilities are
as follows:

•	 To	know	the	car’s	current	mileage.
•	 To	report	the	car’s	current	mileage.
•	 To	be	able	to	increment	the	current	mileage	by	1	mile.	The	maximum	mileage	the	

odometer can store is 999,999 miles. When this amount is exceeded, the odometer
resets the current mileage to 0.

•	 To	be	able	to	work	with	a	FuelGauge object. It should decrease the FuelGauge
object’s current amount of fuel by 1 gallon for every 24 miles traveled. (The car’s
fuel economy is 24 miles per gallon.)

Demonstrate the classes by creating instances of each. Simulate filling the car up with fuel,
and then run a loop that increments the odometer until the car runs out of fuel. During each
loop iteration, print the car’s current mileage and amount of fuel.

11. First to one Game

This game is meant for two or more players. In the game, each player starts out with 50
points, as each player takes a turn rolling the dice; the amount generated by the dice is
subtracted from the player’s points. The first player with exactly one point remaining wins.
If a player’s remaining points minus the amount generated by the dice results in a value less
than one, then the amount should be added to the player’s points. (As an alternative, the
game can be played with a set number turns. In this case, the player with the amount of
points closest to one, when all rounds have been played, wins.)

Write a program that simulates the game being played by two players. Use the Die class that
was presented in Chapter 6 to simulate the dice. Write a Player class to simulate the players.

12. Heads or Tails Game

This game is meant for two or more players. In this game, the players take turns flipping a
coin. Before the coin is flipped, players should guess if the coin will land face up or face down.
If a player guesses correctly, then that player is awarded a point. If a player guesses incorrectly,
then that player will lose a point. The first player to score five points is the winner.

Write a program that simulates the game being played by two players. Use the Coin class
that you wrote as an assignment in Chapter 6 (Programming Challenge 16) to simulate the
coin. Write a Player class to simulate the players.

559

Text Processing and More
about Wrapper ClassesC

H
A

P
T

E
R

9
Topics

 9.1 Introduction to Wrapper Classes
 9.2 Character Testing and Conversion with

the Character Class
 9.3 More String Methods
 9.4 The StringBuilder Class
 9.5 Tokenizing Strings

 9.6 Wrapper Classes for the Numeric
Data Types

 9.7 Focus on Problem Solving: The
TestScoreReader Class

 9.8 Common Errors to Avoid
 On the Web: Case Study—The

SerialNumber Class

9.1 introduction to Wrapper classes

concepT: Java provides wrapper classes for the primitive data types. The wrapper
class for a given primitive type contains not only a value of that type, but
also methods that perform operations related to the type.

Recall from Chapter 2 that the primitive data types are called “primitive” because they are
not created from classes. Instead of instantiating objects, you create variables from the
primitive data types, and variables do not have attributes or methods. They are designed
simply to hold a single value in memory.

Java also provides wrapper classes for all of the primitive data types. A wrapper class is a
class that is “wrapped around” a primitive data type and allows you to create objects
instead of variables. In addition, these wrapper classes provide methods that perform useful
operations on primitive values. For example, you have already used the wrapper class
“parse” methods to convert strings to primitive values.

Although these wrapper classes can be used to create objects instead of variables, few pro-
grammers use them that way. One reason is because the wrapper classes are immutable,
which means that once you create an object, you cannot change the object’s value. Another
reason is because they are not as easy to use as variables for simple operations. For example,
to get the value stored in an object you must call a method, whereas variables can be used
directly in assignment statements, used in mathematical operations, passed as arguments to
methods, and so forth.

560 Chapter 9 Text Processing and More about Wrapper Classes

Although it is not normally useful to create objects from the wrapper classes, they do pro-
vide static methods that are very useful. We examine several of Java’s wrapper classes in this
chapter. We begin by looking at the Character class, which is the wrapper class for the char
data type.

9.2 character Testing and conversion
with the Character class

concepT: The Character class is a wrapper class for the char data type. It provides
numerous methods for testing and converting character data.

The Character class is part of the java.lang package, so no import statement is necessary
to use this class. The class provides several static methods for testing the value of a char
variable. Some of these methods are listed in Table 9-1. Each of the methods accepts a single
char argument and returns a boolean value.

Table 9-1 Some static Character class methods for testing char values

Method Description

boolean isDigit(char ch) Returns true if the argument passed into ch is a
digit from 0 through 9. Otherwise returns false.

boolean isLetter(char ch) Returns true if the argument passed into ch is an
alphabetic letter. Otherwise returns false.

boolean isLetterOrDigit(char ch) Returns true if the character passed into ch
contains a digit (0 through 9) or an alphabetic
letter. Otherwise returns false.

boolean isLowerCase(char ch) Returns true if the argument passed into ch is a
lowercase letter. Otherwise returns false.

boolean isUpperCase(char ch) Returns true if the argument passed into ch is an
uppercase letter. Otherwise returns false.

boolean isSpaceChar(char ch) Returns true if the argument passed into ch is a
space character. Otherwise returns false.

boolean isWhiteSpace(char ch) Returns true if the argument passed into ch is a
whitespace character (a space, tab, or newline
 character). Otherwise returns false.

The program in Code Listing 9-1 demonstrates many of these methods. Figures 9-1 and 9-2
show example interactions with the program.

 9.2 Character Testing and Conversion with the Character Class 561

code Listing 9-1 (CharacterTest.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates some of the Character
 5 class's character testing methods.
 6 */
 7
 8 public class CharacterTest
 9 {
10 public static void main(String[] args)
11 {
12 String input; // To hold the user's input
13 char ch; // To hold a single character
14
15 // Get a character from the user and store
16 // it in the ch variable.
17 input = JOptionPane.showInputDialog("Enter " +
18 "any single character.");
19 ch = input.charAt(0);
20
21 // Test the character.
22 if (Character.isLetter(ch))
23 {
24 JOptionPane.showMessageDialog(null,
25 "That is a letter.");
26 }
27
28 if (Character.isDigit(ch))
29 {
30 JOptionPane.showMessageDialog(null,
31 "That is a digit.");
32 }
33
34 if (Character.isLowerCase(ch))
35 {
36 JOptionPane.showMessageDialog(null,
37 "That is a lowercase letter.");
38 }
39
40 if (Character.isUpperCase(ch))
41 {
42 JOptionPane.showMessageDialog(null,
43 "That is an uppercase letter.");
44 }
45

562 Chapter 9 Text Processing and More about Wrapper Classes

46 if (Character.isSpaceChar(ch))
47 {
48 JOptionPane.showMessageDialog(null,
49 "That is a space.");
50 }
51
52 if (Character.isWhitespace(ch))
53 {
54 JOptionPane.showMessageDialog(null,
55 "That is a whitespace character.");
56 }
57
58 System.exit(0);
59 }
60 }

Figure 9-1 Interaction with the CharacterTest.java program

Figure 9-2 Interaction with the CharacterTest.java program

Code Listing 9-2 shows a more practical application of the character testing methods. It
tests a string to determine whether it is a seven-character customer number in the proper
format. Figures 9-3 and 9-4 show example interactions with the program.

 9.2 Character Testing and Conversion with the Character Class 563

code Listing 9-2 (CustomerNumber.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program tests a customer number to
 5 verify that it is in the proper format.
 6 */
 7
 8 public class CustomerNumber
 9 {
10 public static void main(String[] args)
11 {
12 String input; // To hold the user's input
13
14 // Get a customer number.
15 input = JOptionPane.showInputDialog("Enter " +
16 "a customer number in the form LLLNNNN\n" +
17 "(LLL = letters and NNNN = numbers)");
18
19 // Validate the input.
20 if (isValid(input))
21 {
22 JOptionPane.showMessageDialog(null,
23 "That's a valid customer number.");
24 }
25 else
26 {
27 JOptionPane.showMessageDialog(null,
28 "That is not the proper format of a " +
29 "customer number.\nHere is an " +
30 "example: ABC1234");
31 }
32
33 System.exit(0);
34 }
35
36 /**
37 The isValid method determines whether a
38 String is a valid customer number. If so, it
39 returns true.
40 @param custNumber The String to test.
41 @return true if valid, otherwise false.
42 */
43
44 private static boolean isValid(String custNumber)
45 {

564 Chapter 9 Text Processing and More about Wrapper Classes

46 boolean goodSoFar = true; // Flag
47 int i = 0; // Control variable
48
49 // Test the length.
50 if (custNumber.length() != 7)
51 goodSoFar = false;
52
53 // Test the first three characters for letters.
54 while (goodSoFar && i < 3)
55 {
56 if (!Character.isLetter(custNumber.charAt(i)))
57 goodSoFar = false;
58 i++;
59 }
60
61 // Test the last four characters for digits.
62 while (goodSoFar && i < 7)
63 {
64 if (!Character.isDigit(custNumber.charAt(i)))
65 goodSoFar = false;
66 i++;
67 }
68
69 return goodSoFar;
70 }
71 }

Figure 9-3 Interaction with the CustomerNumber.java program

Figure 9-4 Interaction with the CustomerNumber.java program

 9.2 Character Testing and Conversion with the Character Class 565

In this program, the customer number is expected to be seven characters long and consist
of three alphabetic letters followed by four numeric digits. The isValid method accepts a
String argument, which will be tested. The method uses the following local variables,
which are declared in lines 46 and 47:

boolean goodSoFar = true; // Flag
int i = 0; // Control variable

The goodSoFar variable is a flag variable that is initialized with true, but will be set to false
immediately when the method determines the customer number is not in a valid format.
The i variable is a loop control variable.

The first test is to determine whether the string is the correct length. In line 50 the method
tests the length of the custNumber argument. If the argument is not seven characters long, it
is not valid and the goodSoFar variable is set to false in line 51.

Next, the method uses the following loop, in lines 54 through 59, to validate the first
three characters:

while (goodSoFar && i < 3)
{
 if (!Character.isLetter(custNumber.charAt(i)))
 goodSoFar = false;
 i++;
}

Recall from Chapter 2 that the String class’s charAt method returns a character at a specific
position in a string (position numbering starts at 0). This code uses the Character.isLetter
method to test the characters at positions 0, 1, and 2 in the custNumber string. If any of these
characters are not letters, the goodSoFar variable is set to false and the loop terminates.
Next, the method uses the following loop, in lines 62 through 67, to validate the last
four characters:

while (goodSoFar && i < 7)
{
 if (!Character.isDigit(custNumber.charAt(i)))
 goodSoFar = false;
 i++;
}

This code uses the Character.isDigit method to test the characters at positions 3, 4, 5,
and 6 in the custNumber string. If any of these characters are not digits, the goodSoFar
variable is set to false and the loop terminates. Last, the method returns the value of the
goodSoFar method.

character case conversion
The Character class also provides the static methods listed in Table 9-2 for converting the
case of a character. Each method accepts a char argument and returns a char value.

566 Chapter 9 Text Processing and More about Wrapper Classes

If the toLowerCase method’s argument is an uppercase character, the method returns the
lowercase equivalent. For example, the following statement will display the character a on
the screen:

System.out.println(Character.toLowerCase('A'));

If the argument is already lowercase, the toLowerCase method returns it unchanged. The
following statement also causes the lowercase character a to be displayed:

System.out.println(Character.toLowerCase('a'));

If the toUpperCase method’s argument is a lowercase character, the method returns the
uppercase equivalent. For example, the following statement will display the character A on
the screen:

System.out.println(Character.toUpperCase('a'));

If the argument is already uppercase, the toUpperCase method returns it unchanged.

Any non-letter argument passed to toLowerCase or toUpperCase is returned as it is. Each of
the following statements displays the method argument without any change:

System.out.println(Character.toLowerCase('*'));
System.out.println(Character.toLowerCase('$'));
System.out.println(Character.toUpperCase('&'));
System.out.println(Character.toUpperCase('%'));

The program in Code Listing 9-3 demonstrates the toUpperCase method in a loop that asks
the user to enter Y or N. The program repeats as long as the user enters Y or y in response
to the question.

code Listing 9-3 (CircleArea.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the Character
 5 class's toUpperCase method.
 6 */
 7

Table 9-2 Some Character class methods for case conversion

Method Description

char toLowerCase(char ch) Returns the lowercase equivalent of the argument
passed to ch.

char toUpperCase(char ch) Returns the uppercase equivalent of the argument
passed to ch.

 9.2 Character Testing and Conversion with the Character Class 567

 8 public class CircleArea
 9 {
10 public static void main(String[] args)
11 {
12 double radius; // The circle's radius
13 double area; // The circle's area
14 String input; // To hold a line of input
15 char choice; // To hold a single character
16
17 // Create a Scanner object to read keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 do
21 {
22 // Get the circle's radius.
23 System.out.print("Enter the circle's radius: ");
24 radius = keyboard.nextDouble();
25
26 // Consume the remaining newline character.
27 keyboard.nextLine();
28
29 // Calculate and display the area.
30 area = Math.PI * radius * radius;
31 System.out.printf("The area is %.2f.\n", area);
32
33 // Repeat this?
34 System.out.print("Do you want to do this " +
35 "again? (Y or N) ");
36 input = keyboard.nextLine();
37 choice = input.charAt(0);
38
39 } while (Character.toUpperCase(choice) == 'Y');
40 }
41 }

program output with example input shown in Bold

Enter the circle's radius: 10 [enter]
The area is 314.16.
Do you want to do this again? (Y or N) y [enter]
Enter the circle's radius: 15 [enter]
The area is 706.86.
Do you want to do this again? (Y or N) n [enter]

568 Chapter 9 Text Processing and More about Wrapper Classes

checkpoint

www.myprogramminglab.com

9.1 Write a statement that converts the contents of the char variable big to lowercase.
The converted value should be assigned to the variable little.

9.2 Write an if statement that displays the word “digit” if the char variable ch contains
a numeric digit. Otherwise, it should display “Not a digit.”

9.3 What is the output of the following statement?

System.out.println(Character.toUpperCase(Character.toLowerCase('A')));

9.4 Write a loop that asks the user, “Do you want to repeat the program or quit?
(R/Q)”. The loop should repeat until the user has entered an R or Q (either upper-
case or lowercase).

9.5 What will the following code display?

char var = '$';
System.out.println(Character.toUpperCase(var));

9.6 Write a loop that counts the number of uppercase characters that appear in the
String object str.

9.3 More String Methods

concepT: The String class provides several methods for searching and working
with String objects.

searching for substrings
The String class provides several methods that search for a string inside of a string. The
term substring commonly is used to refer to a string that is part of another string. Table 9-3
summarizes some of these methods. Each of the methods in Table 9-3 returns a boolean
value indicating whether the string was found.

Let’s take a closer look at each of these methods.

The startsWith and endsWith Methods

The startsWith method determines whether the calling object’s string begins with a specified
substring. For example, the following code determines whether the string "Four
score and seven years ago" begins with "Four". The method returns true if the string
begins with the specified substring, or false otherwise.

String str = "Four score and seven years ago";
if (str.startsWith("Four"))
 System.out.println("The string starts with Four.");
else
 System.out.println("The string does not start with Four.");

http://www.myprogramminglab.com

 9.3 More String Methods 569

In the code, the method call str.startsWith("Four") returns true because the string does
begin with "Four". The startsWith method performs a case-sensitive comparison, so the
method call str.startsWith("four") would return false.

The endsWith method determines whether the calling string ends with a specified substring.
For example, the following code determines whether the string "Four score and seven years
ago" ends with "ago". The method returns true if the string does end with the specified
substring or false otherwise.

String str = "Four score and seven years ago";
if (str.endsWith("ago"))
 System.out.println("The string ends with ago.");
else
 System.out.println("The string does not end with ago.");

In the code, the method call str.endsWith("ago") returns true because the string does end
with “ago”. The endsWith method also performs a case-sensitive comparison, so the method
call str.endsWith("Ago") would return false.

Table 9-3 String methods that search for a substring

Method Description
boolean startsWith(String str) This method returns true if the calling

string begins with the string passed
into str.

boolean endsWith(String str) This method returns true if the calling
string ends with the string passed
into str.

boolean regionMatches(int start,
 String str, int start2, int n)

This method returns true if a specified
region of the calling string matches a
specified region of the string passed into
str. The start parameter indicates the
starting position of the region within the
calling string. The start2 parameter
indicates the starting position of the
region within str. The n parameter
indicates the number of characters in
both regions.

boolean regionMatches(Boolean ignoreCase,
 int start, String str,
 int start2, int n)

This overloaded version of the
regionMatches method has an
additional parameter, ignoreCase.
If true is passed into this parameter,
the method ignores the case of the
calling string and str when comparing
the regions. If false is passed into the
ignoreCase parameter, the comparison
is case- sensitive.

570 Chapter 9 Text Processing and More about Wrapper Classes

The program in Code Listing 9-4 demonstrates a search algorithm that uses the
startsWith method. The program searches an array of strings for an element that starts
with a specified string.

code Listing 9-4 (PersonSearch.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program uses the startsWith method to search using
 5 a partial string.
 6 */
 7
 8 public class PersonSearch
 9 {
10 public static void main(String[] args)
11 {
12 String lookUp; // To hold a lookup string
13
14 // Create an array of names.
15 String[] people = { "Cutshaw, Will", "Davis, George",
16 "Davis, Jenny", "Russert, Phil",
17 "Russell, Cindy", "Setzer, Charles",
18 "Smathers, Holly", "Smith, Chris",
19 "Smith, Brad", "Williams, Jean" };
20
21 // Create a Scanner object for keyboard input.
22 Scanner keyboard = new Scanner(System.in);
23
24 // Get a partial name to search for.
25 System.out.print("Enter the first few characters of " +
26 "the last name to look up: ");
27 lookUp = keyboard.nextLine();
28
29 // Display all of the names that begin with the
30 // string entered by the user.
31 System.out.println("Here are the names that match:");
32 for (String person : people)
33 {
34 if (person.startsWith(lookUp))
35 System.out.println(person);
36 }
37 }
38 }

program output with example input shown in Bold

Enter the first few characters of the last name to look up: Davis [enter]

 9.3 More String Methods 571

Here are the names that match:
Davis, George
Davis, Jenny

program output with example input shown in Bold

Enter the first few characters of the last name to look up: Russ [enter]
Here are the names that match:
Russert, Phil
Russell, Cindy

The regionMatches Methods

The String class provides overloaded versions of the regionMatches method, which deter-
mines whether specified regions of two strings match. The following code demonstrates:

String str = "Four score and seven years ago";
String str2 = "Those seven years passed quickly";
if (str.regionMatches(15, str2, 6, 11))
 System.out.println("The regions match.");
else
 System.out.println("The regions do not match.");

This code will display “The regions match.” The specified region of the str string begins at
position 15, and the specified region of the str2 string begins at position 6. Both regions
consist of 11 characters. The specified region in the str string is “seven years” and the
specified region in the str2 string is also “seven years”. Because the two regions match,
the regionMatches method in this code returns true. This version of the regionMatches
method performs a case-sensitive comparison. An overloaded version accepts an addi-
tional argument indicating whether to perform a case-insensitive comparison. The follow-
ing code demonstrates:

String str = "Four score and seven years ago";
String str2 = "THOSE SEVEN YEARS PASSED QUICKLY";

if (str.regionMatches(true, 15, str2, 6, 11))
 System.out.println("The regions match.");
else
 System.out.println("The regions do not match.");

This code will also display “The regions match.” The first argument passed to this version
of the regionMatches method can be true or false, indicating whether a case-insensitive
comparison should be performed. In this example, true is passed, so case will be ignored
when the regions “seven years” and “SEVEN YEARS” are compared.

Each of these methods indicates by a boolean return value whether a substring appears
within a string. The String class also provides methods that not only search for items within
a string, but also report the location of those items. Table 9-4 describes overloaded versions
of the indexOf and lastIndexOf methods.

572 Chapter 9 Text Processing and More about Wrapper Classes

Table 9-4 String methods for getting a character or substring's location

Method Description

int indexOf(char ch) Searches the calling String object for the character
passed into ch. If the character is found, the posi-
tion of its first occurrence is returned. Otherwise,
21 is returned.

int indexOf(char ch, int start) Searches the calling String object for the character
passed into ch, beginning at the position passed
into start and going to the end of the string. If the
character is found, the position of its first occur-
rence is returned. Otherwise, 21 is returned.

int indexOf(String str) Searches the calling String object for the string
passed into str. If the string is found, the beginning
position of its first occurrence is returned. Otherwise,
21 is returned.

int indexOf(String str, int start) Searches the calling String object for the string
passed into str. The search begins at the position
passed into start and goes to the end of the
string. If the string is found, the beginning position
of its first occurrence is returned. Otherwise, 21
is returned.

int lastIndexOf(char ch) Searches the calling String object for the character
passed into ch. If the character is found, the posi-
tion of its last occurrence is returned. Otherwise,
21 is returned.

int lastIndexOf(char ch, int start) Searches the calling String object for the character
passed into ch, beginning at the position passed
into start. The search is conducted backward
through the string, to position 0. If the character is
found, the position of its last occurrence is returned.
Otherwise, 21 is returned.

int lastIndexOf(String str) Searches the calling String object for the string
passed into str. If the string is found, the beginning
position of its last occurrence is returned. Otherwise,
21 is returned.

int lastIndexOf(String str,
 int start)

Searches the calling String object for the string
passed into str, beginning at the position passed
into start. The search is conducted backward
through the string, to position 0. If the string is
found, the beginning position of its last occurrence
is returned. Otherwise, 21 is returned.

 9.3 More String Methods 573

Finding characters with the indexOf and lastIndexOf Methods

The indexOf and lastIndexOf methods can search for either a character or a substring
within the calling string. If the item being searched for is found, its position is returned.
Otherwise −1 is returned. Here is an example of code using two of the methods to search
for a character:

String str = "Four score and seven years ago";
int first, last;

first = str.indexOf('r');
last = str.lastIndexOf('r');

System.out.println("The letter r first appears at " +
 "position " + first);

System.out.println("The letter r last appears at " +
 "position " + last);

This code produces the following output:

The letter r first appears at position 3
The letter r last appears at position 24

The following code shows another example. It uses a loop to show the positions of each
letter ‘r’ in the string.

String str = "Four score and seven years ago";
int position;

System.out.println("The letter r appears at the " +
 "following locations:");
position = str.indexOf('r');
while (position != -1)
{
 System.out.println(position);
 position = str.indexOf('r', position + 1);
}

This code will produce the following output:

The letter r appears at the following locations:
3
8
24

The following code is very similar, but it uses the lastIndexOf method and shows the posi-
tions in reverse order:

String str = "Four score and seven years ago";
int position;

System.out.println("The letter r appears at the " +
 "following locations.");

574 Chapter 9 Text Processing and More about Wrapper Classes

position = str.lastIndexOf('r');
while (position != -1)
{
 System.out.println(position);
 position = str.lastIndexOf('r', position - 1);
}

This code will produce the following output:

The letter r appears at the following locations.
24
8
3

Finding substrings with the indexOf and lastIndexOf Methods

The indexOf and lastIndexOf methods can also search for substrings within a string. The
following code shows an example. It displays the starting positions of each occurrence of
the word “and” within a string.

String str = "and a one and a two and a three";
int position;
System.out.println("The word and appears at the " +
 "following locations.");
position = str.indexOf("and");
while (position != -1)
{
 System.out.println(position);
 position = str.indexOf("and", position + 1);
}

This code produces the following output:

The word and appears at the following locations.
0
10
20

The following code also displays the same results, but in reverse order:

String str = "and a one and a two and a three";
int position;

System.out.println("The word and appears at the " +
 "following locations.");
position = str.lastIndexOf("and");
while (position != -1)
{
 System.out.println(position);
 position = str.lastIndexOf("and", position - 1);
}

 9.3 More String Methods 575

This code produces the following output:

The word and appears at the following locations.
20
10
0

extracting substrings
The String class provides several methods that allow you to retrieve a substring from a
string. The methods we will examine are listed in Table 9-5.

Table 9-5 String methods for extracting substrings

Method Description
String substring(int start) This method returns a copy of the substring that begins

at start and goes to the end of the calling object’s
string.

String substring(int start,

 int end)

This method returns a copy of a substring. The argu-
ment passed into start is the substring’s starting
position, and the argument passed into end is the
substring’s ending position. The character at the start
position is included in the substring, but the character
at the end position is not included.

void getChars(int start,

 int end,

 char[] array,

 int arrayStart)

This method extracts a substring from the calling
object and stores it in a char array. The argument
passed into start is the substring’s starting position,
and the argument passed into end is the substring’s
ending position. The character at the start position is
included in the substring, but the character at the end
position is not included. (The last character in the sub-
string ends at end 2 1.) The characters in the substring
are stored as elements in the array that is passed into
the array parameter. The arrayStart parameter
specifies the starting subscript within the array where
the characters are to be stored.

char[] toCharArray() This method returns all of the characters in the calling
object as a char array.

The substring Methods

The substring method returns a copy of a substring from the calling object. There are two
overloaded versions of this method. The first version accepts an int argument that is the
starting position of the substring. The method returns a reference to a String object

576 Chapter 9 Text Processing and More about Wrapper Classes

containing all of the characters from the starting position to the end of the string. The char-
acter at the starting position is part of the substring. Here is an example of the method’s use:

String fullName = "Cynthia Susan Lee";
String lastName = fullName.substring(14);
System.out.println("The full name is " + fullName);
System.out.println("The last name is " + lastName);

This code will produce the following output:

The full name is Cynthia Susan Lee
The last name is Lee

Keep in mind that the substring method returns a new String object that holds a copy of
the substring. When this code executes, the fullName and lastName variables will reference
two different String objects, as shown in Figure 9-5.

Figure 9-5 The fullName and lastName variables reference separate objects

The second version of the method accepts two int arguments. The first specifies the sub-
string’s starting position and the second specifies the substring’s ending position. The char-
acter at the starting position is included in the substring, but the character at the ending
position is not. Here is an example of how the method is used:

String fullName = "Cynthia Susan Lee";
String middleName = fullName.substring(8, 13);
System.out.println("The full name is " + fullName);
System.out.println("The middle name is " + middleName);

The code will produce the following output:

The full name is Cynthia Susan Lee
The middle name is Susan

The getChars and toCharArray Methods

The getChars and toCharArray methods convert the calling String object to a char array.
The getChars method can be used to convert a substring, while the toCharArray method
converts the entire string. Here is an example of how the getChars method might be used:

String fullName = "Cynthia Susan Lee";
char[] nameArray = new char[5];

 9.3 More String Methods 577

fullName.getChars(8, 13, nameArray, 0);
System.out.println("The full name is " + fullName);
System.out.println("The values in the array are:");
for (int i = 0; i < nameArray.length; i++)
 System.out.print(nameArray[i] + " ");

This code stores the individual characters of the substring “Susan” in the elements of the
nameArray array, beginning at element 0. The code will produce the following output:

The full name is Cynthia Susan Lee
The values in the array are:
S u s a n

The toCharArray method returns a reference to a char array that contains all of the charac-
ters in the calling object. Here is an example:

String fullName = "Cynthia Susan Lee";
char[] nameArray;
nameArray = fullName.toCharArray();
System.out.println("The full name is " + fullName);
System.out.println("The values in the array are:");
for (int i = 0; i < nameArray.length; i++)
 System.out.print(nameArray[i] + " ");

This code will produce the following output:

The full name is Cynthia Susan Lee
The values in the array are:
C y n t h i a S u s a n L e e

These methods can be used when you want to use an array processing algorithm on the
contents of a String object. The program in Code Listing 9-5 converts a String object to an
array and then uses the array to determine the number of letters, digits, and whitespace
characters in the string. Figure 9-6 shows an example of interaction with the program.

code Listing 9-5 (StringAnalyzer.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program displays the number of letters,
 5 digits, and whitespace characters in a string.
 6 */
 7
 8 public class StringAnalyzer
 9 {
10 public static void main(String [] args)
11 {
12 String input; // To hold input
13 char[] array; // Array for input

578 Chapter 9 Text Processing and More about Wrapper Classes

14 int letters = 0; // Number of letters
15 int digits = 0; // Number of digits
16 int whitespaces = 0; // Number of whitespaces
17
18 // Get a string from the user.
19 input = JOptionPane.showInputDialog("Enter " +
20 "a string:");
21
22 // Convert the string to a char array.
23 array = input.toCharArray();
24
25 // Analyze the characters.
26 for (int i = 0; i < array.length; i++)
27 {
28 if (Character.isLetter(array[i]))
29 letters++;
30 else if (Character.isDigit(array[i]))
31 digits++;
32 else if (Character.isWhitespace(array[i]))
33 whitespaces++;
34 }
35
36 // Display the results.
37 JOptionPane.showMessageDialog(null,
38 "That string contains " +
39 letters + " letters, " +
40 digits + " digits, and " +
41 whitespaces +
42 " whitespace characters.");
43
44 System.exit(0);
45 }
46 }

Figure 9-6 Interaction with the StringAnalyzer.java program

 9.3 More String Methods 579

Methods That Return a Modified String
The String class methods listed in Table 9-6 return a modified copy of a String object.

Table 9-6 Methods that return a modified copy of a String object

Method Description

String concat(String str) This method returns a copy of the calling String object
with the contents of str concatenated to it.

String replace(char oldChar,
 char newChar)

This method returns a copy of the calling String object,
in which all occurrences of the character passed into
oldChar have been replaced by the character passed
into newChar.

String trim() This method returns a copy of the calling String object,
in which all leading and trailing whitespace characters
have been deleted.

The concat method performs the same operation as the + operator when used with strings.
For example, look at the following code, which uses the + operator:

String fullName;
String firstName = "Timothy ";
String lastName = "Haynes";
fullName = firstName + lastName;

Equivalent code can also be written with the concat method. Here is an example:

String fullName;
String firstName = "Timothy ";
String lastName = "Haynes";
fullName = firstName.concat(lastName);

The replace method returns a copy of a String object, where every occurrence of a speci-
fied character has been replaced with another character. For example, look at the following
code:

String str1 = "Tom Talbert Tried Trains";
String str2;
str2 = str1.replace('T', 'D');
System.out.println(str1);
System.out.println(str2);

In this code, the replace method will return a copy of the str1 object with every occurrence
of the letter ‘T’ replaced with the letter ‘D’. The code will produce the following output:

Tom Talbert Tried Trains
Dom Dalbert Dried Drains

580 Chapter 9 Text Processing and More about Wrapper Classes

Remember that the replace method does not modify the contents of the calling String
object, but returns a reference to a String that is a modified copy of it. After the previous
code executes, the str1 and str2 variables will reference different String objects.

The trim method returns a copy of a String object with all leading and trailing
whitespace characters deleted. A leading whitespace character is one that appears at the
beginning, or left side, of a string. For example, the following string has three leading
whitespace characters:

" Hello"

A trailing whitespace character is one that appears at the end, or right side, of a string, after
the non-space characters. For example, the following string has three trailing whitespace
characters:

"Hello "

Here is an example:

String greeting1 = " Hello ";
String greeting2;
greeting2 = greeting1.trim();
System.out.println("*" + greeting1 + "*");
System.out.println("*" + greeting2 + "*");

In this code, the first statement assigns the string " Hello " (with three leading spaces
and three trailing spaces) to the greeting1 variable. The trim method is called, which
returns a copy of the string with the leading and trailing spaces removed. The code will
produce the following output:

* Hello *
Hello

One common use of the trim method is to remove any leading or trailing spaces that the
user might have entered while inputting data.

The static valueOf Methods
The String class has several overloaded versions of a method named valueOf. This method
accepts a value of any primitive data type as its argument and returns a string representa-
tion of the value. Table 9-7 describes these methods.

The following code demonstrates several of these methods:

boolean b = true;
char [] letters = { 'a', 'b', 'c', 'd', 'e' };
double d = 2.4981567;
int i = 7;

System.out.println(String.valueOf(b));
System.out.println(String.valueOf(letters));
System.out.println(String.valueOf(letters, 1, 3));
System.out.println(String.valueOf(d));
System.out.println(String.valueOf(i));

 9.3 More String Methods 581

This code will produce the following output:

true
abcde
bcd
2.4981567
7

checkpoint

www.myprogramminglab.com

9.7 Write a method that accepts a reference to a String object as an argument and
returns true if the argument ends with the substring “ger”. Otherwise, the method
should return false.

9.8 Modify the method you wrote for Checkpoint 9.7 so it performs a case-insensitive
test. The method should return true if the argument ends with “ger” in any possible
combination of uppercase and lowercase letters.

9.9 Look at the following declaration:

String cafeName = "Broadway Cafe";
String str;

 Which of the following methods would you use to make str reference the
string “Broadway”?

Table 9-7 Some of the String class's valueOf methods

Method Description

String valueOf(boolean b) If the boolean argument passed to b is true, the
method returns the string "true". If the argument is
false, the method returns the string "false".

String valueOf(char c) This method returns a String containing the charac-
ter passed into c.

String valueOf(char[] array) This method returns a String that contains all of
the elements in the char array passed into array.

String valueOf(char[] array,
 int subscript,
 int count)

This method returns a String that contains part of
the elements in the char array passed into array.
The argument passed into subscript is the starting
subscript and the argument passed into count is the
number of elements.

String valueOf(double number) This method returns the String representation of
the double argument passed into number.

String valueOf(float number) This method returns the String representation of
the float argument passed into number.

String valueOf(int number) This method returns the String representation of
the int argument passed into number.

String valueOf(long number) This method returns the String representation of
the long argument passed into number.

http://www.myprogramminglab.com

582 Chapter 9 Text Processing and More about Wrapper Classes

startsWith
regionMatches
substring
indexOf

9.10 What is the difference between the indexOf and lastIndexOf methods?

9.11 What is the difference between the getChars and substring methods?

9.12 The + operator, when used with strings, performs the same operation as what
String method?

9.13 What is the difference between the getChars and toCharArray methods?

9.14 Look at the following code:

String str1 = "To be, or not to be";
String str2 = str1.replace('o', 'u');
System.out.println(str1);
System.out.println(str2);

 You hear a fellow student claim that the code will display the following:

Tu be ur nut tu be
Tu be ur nut tu be

 Is your fellow student right or wrong? Why?

9.15 What will the following code display?

String str1 = "William ";
String str2 = " the ";
String str3 = " Conqueror";
System.out.println(str1.trim() + str2.trim() +
 str3.trim());

9.16 Assume that a program has the following declarations:

double number = 9.47;
String str;

 Write a statement that assigns a string representation of the number variable
to str.

9.4 The StringBuilder class

concepT: The StringBuilder class is similar to the String class, except
that you may change the contents of StringBuilder objects. The
StringBuilder class also provides several useful methods that the
String class does not have.

The StringBuilder class is similar to the String class. The main difference between the two
is that you can change the contents of a StringBuilder object, but you cannot change the
contents of a String object. Recall that String objects are immutable. This means that once
you set the contents of a String object, you cannot change the string value that it holds. For
example, look at the following code:

 9.4 The StringBuilder Class 583

String name;
name = "George";
name = "Sally";

The first statement creates the name variable. The second creates a String object contain-
ing the string “George” and assigns its address to the name variable. Although we cannot
change the contents of the String object, we can make the name variable reference a differ-
ent String object. That’s what the third statement does: It creates another String object
containing the string “Sally”, and assigns its address to name. This is illustrated by
Figure 9-7.

Table 9-8 StringBuilder constructors

Constructor Description

StringBuilder() This constructor accepts no arguments. It gives the object
enough storage space to hold 16 characters, but no charac-
ters are stored in it.

StringBuilder(int length) This constructor gives the object enough storage space to
hold length characters, but no characters are stored in it.

StringBuilder(String str) This constructor initializes the object with the string in str.
The object’s initial storage space will be the length of the
string plus 16.

Figure 9-7 The String object containing “George” is no longer referenced

Unlike String objects, StringBuilder objects have methods that allow you to modify their
contents without creating a new object in memory. You can change specific characters,
insert characters, delete characters, and perform other operations. The StringBuilder object
will grow or shrink in size, as needed, to accommodate the changes.

The fact that String objects are immutable is rarely a problem, but you might consider
using StringBuilder objects if your program needs to make a lot of changes to one or more
strings. This will improve the program’s efficiency by reducing the number of String objects
that must be created and then removed by the garbage collector. Now let’s look at the
StringBuilder class’s constructors and methods.

The StringBuilder constructors
Table 9-8 lists three of the StringBuilder constructors.

584 Chapter 9 Text Processing and More about Wrapper Classes

The first two constructors create empty StringBuilder objects of a specified size. The first
constructor makes the StringBuilder object large enough to hold 16 characters, and the
second constructor makes the object large enough to hold length characters. Remember,
StringBuilder objects automatically resize themselves, so it is not a problem if you later
want to store a larger string in the object. The third constructor accepts a String object as
its argument and assigns the object’s contents to the StringBuilder object. Here is an exam-
ple of its use:

StringBuilder city = new StringBuilder("Charleston");
System.out.println(city);

This code creates a StringBuilder object and assigns its address to the city variable. The
object is initialized with the string “Charleston”. As demonstrated by this code, you can
pass a StringBuilder object to the println and print methods.

One limitation of the StringBuilder class is that you cannot use the assignment operator to
assign strings to StringBuilder objects. For example, the following code will not work:

StringBuilder city = "Charleston"; // ERROR!!! Will not work!

Instead of using the assignment operator, you must use the new key word and a constructor,
or one of the StringBuilder methods, to store a string in a StringBuilder object.

other StringBuilder Methods
The StringBuilder class provides many of the same methods as the String class.
Table 9-9 lists several of the StringBuilder methods that work exactly like their
String class counterparts.

Table 9-9 Methods that are common to the String and StringBuilder classes

char charAt(int position)

void getChars(int start, int end, char[] array, int arrayStart)
int indexOf(String str)
int indexOf(String str, int start)
int lastIndexOf(String str)
int lastIndexOf(String str, int start)
int length()
String substring(int start)
String substring(int start, int end)

In addition, the StringBuilder class provides several methods that the String class does not
have. Let’s look at a few of them.

The append Methods

The StringBuilder class has several overloaded versions of a method named append.
These methods accept an argument, which may be of any primitive data type, a char array,

 9.4 The StringBuilder Class 585

or a String object. They append a string representation of their argument to the calling
object’s current contents. Because there are so many overloaded versions of append, we will
examine the general form of a typical call to the method as follows:

object.append(item);

After the method is called, a string representation of item will be appended to object’s
contents. The following code shows some of the append methods being used:

StringBuilder str = new StringBuilder();

// Append values to the object.
str.append("We sold "); // Append a String object.
str.append(12); // Append an int.
str.append(" doughnuts for $"); // Append another String.
str.append(15.95); // Append a double.

// Display the object's contents.
System.out.println(str);

This code will produce the following output:

We sold 12 doughnuts for $15.95

The insert Methods

The StringBuilder class also has several overloaded versions of a method named insert,
which inserts a value into the calling object’s string. These methods accept two arguments:
an int that specifies the position in the calling object’s string where the insertion should
begin, and the value to be inserted. The value to be inserted may be of any primitive data
type, a char array, or a String object. Because there are so many overloaded versions of
insert, we will examine the general form of a typical call to the method as follows:

object.insert(start, item);

In the general form, start is the starting position of the insertion and item is the item to be
inserted. The following code shows an example:

StringBuilder str = new StringBuilder("New City");
str.insert(4, "York ");
System.out.println(str);

The first statement creates a StringBuilder object initialized with the string "New City".
The second statement inserts the string "York " into the StringBuilder object, beginning at
position 4. The characters that are currently in the object beginning at position 4 are moved
to the right. In memory, the StringBuilder object is automatically expanded in size to
accommodate the inserted characters. If these statements were in a complete program and
we ran it, we would see New York City displayed on the screen.

The following code shows how a char array can be inserted into a StringBuilder object:

char cArray[] = { '2', '0', ' ' };
StringBuilder str = new StringBuilder("In July we sold cars.");
str.insert(16, cArray);
System.out.println(str);

586 Chapter 9 Text Processing and More about Wrapper Classes

The first statement declares a char array named cArray, containing the characters '2', '0',
and ' '. The second statement creates a StringBuilder object initialized with the string
"In July we sold cars." The third statement inserts the characters in cArray into the
StringBuilder object, beginning at position 16. The characters that are currently in the
object beginning at position 16 are moved to the right. If these statements were in a com-
plete program and we ran it, we would see In July we sold 20 cars. displayed on the screen.

The replace Method

The StringBuilder class has a replace method that differs slightly from the String class’s
replace method. While the String class’s replace method replaces the occurrences of one
character with another character, the StringBuilder class’s replace method replaces a spec-
ified substring with a string. Here is the general form of a call to the method:

object.replace(start, end, str);

In the general form, start is an int that specifies the starting position of a substring in the
calling object, and end is an int that specifies the ending position of the substring. (The
starting position is included in the substring, but the ending position is not.) The str param-
eter is a String object. After the method executes, the substring will be replaced with str.
Here is an example:

StringBuilder str =
 new StringBuilder("We moved from Chicago to Atlanta.");
str.replace(14, 21, "New York");
System.out.println(str);

The replace method in this code replaces the word “Chicago” with “New York”. The code
will produce the following output:

We moved from New York to Atlanta.

The delete, deleteCharAt, and setCharAt Methods

The delete and deleteCharAt methods are used to delete a substring or a character from a
StringBuilder object. The setCharAt method changes a specified character to another
value. Table 9-10 describes these methods.

Table 9-10 The StringBuilder class’s delete, deleteCharAt, and setCharAt methods

Method Description
StringBuilder delete(int start,
 int end)

The start parameter is an int that specifies the start-
ing position of a substring in the calling object, and
the end parameter is an int that specifies the ending
position of the substring. (The starting position is
included in the substring, but the ending position is
not.) The method will delete the substring.

StringBuilder deleteCharAt
 (int position)

The position parameter specifies the location of a
character that will be deleted.

void setCharAt(int position,
 char ch)

This method changes the character at position to
the value passed into ch.

 9.4 The StringBuilder Class 587

The following code demonstrates all three of these methods:

StringBuilder str =
 new StringBuilder("I ate 100 blueberries!");

// Display the StringBuilder object.
System.out.println(str);

// Delete the '0'.
str.deleteCharAt(8);

// Delete "blue".
str.delete(9, 13);

// Display the StringBuilder object.
System.out.println(str);

// Change the '1' to '5'
str.setCharAt(6, '5');

// Display the StringBuilder object.
System.out.println(str);

This code will produce the following output:

I ate 100 blueberries!
I ate 10 berries!
I ate 50 berries!

The toString Method
If you need to convert a StringBuilder object to a regular string, you can call the object’s
toString method. The following code shows an example of a StringBuilder object’s con-
tents being assigned to a String variable:

StringBuilder strb = new StringBuilder("This is a test.");
String str = strb.toString();

In the Spotlight:
Formatting and Unformatting Telephone Numbers
Telephone numbers in the United States are commonly formatted to appear in the following
manner:

(XXX)XXX-XXXX

In the format, X represents a digit. The three digits that appear inside the parentheses are the
area code. The three digits following the area code are the prefix, and the four digits after
the hyphen are the line number. Here is an example:

(919)555-1212

Although the parentheses and the hyphen make the number easier for people to read, those
characters are unnecessary for processing by a computer. In a computer system, a telephone
number is commonly stored as an unformatted series of digits, as shown here:

9195551212

A program that works with telephone numbers usually needs to unformat numbers
that have been entered by the user. This means that the parentheses and the hyphen
must be removed before the number is stored in a file or processed in some other way.
In addition, such a program needs the ability to format the digits so that the number
contains the parentheses and the hyphen when it appears on the screen or is printed
on paper.

Code Listing 9-6 shows a class named Telephone that contains the following static methods:

•	 isFormatted – This method accepts a String argument and returns true if the argu-
ment is formatted as (XXX)XXX-XXXX. If the argument is not formatted this way, the
method returns false.

•	 unformat – This method accepts a String argument. If the argument is formatted as
(XXX)XXX-XXXX, the method returns an unformatted version of the argument with the
parentheses and the hyphen removed. Otherwise, the method returns the original
argument.

•	 format – This method’s purpose is to format a sequence of digits as (XXX)XXX-XXXX.
The sequence of digits is passed as a String argument. If the argument is 10 characters
in length, then the method returns the argument with parentheses and a hyphen
inserted. Otherwise, the method returns the original argument.

The program in Code Listing 9-7 demonstrates the Telephone class.

code Listing 9-6 (Telephone.java)

 1 /**
 2 The Telephone class provides static methods
 3 for formatting and unformatting U.S. telephone
 4 numbers.
 5 */
 6
 7 public class Telephone
 8 {
 9 // These constant fields hold the valid lengths of
 10 // strings that are formatted and unformatted.
 11 public final static int FORMATTED_LENGTH = 13;
 12 public final static int UNFORMATTED_LENGTH = 10;
 13
 14 /**
 15 The isFormatted method determines whether a
 16 string is properly formatted as a U.S. telephone
 17 number in the following manner:
 18 (XXX)XXX-XXXX
 19 @param str The string to test.

588 Chapter 9 Text Processing and More about Wrapper Classes

 9.4 The StringBuilder Class 589

 20 @return true if the string is properly formatted,
 21 or false otherwise.
 22 */
 23
 24 public static boolean isFormatted(String str)
 25 {
 26 boolean valid; // Flag to indicate valid format
 27
 28 // Determine whether str is properly formatted.
 29 if (str.length() == FORMATTED_LENGTH &&
 30 str.charAt(0) == '(' &&
 31 str.charAt(4) == ')' &&
 32 str.charAt(8) == '-')
 33 valid = true;
 34 else
 35 valid = false;
 36
 37 // Return the value of the valid flag.
 38 return valid;
 39 }
 40
 41 /**
 42 The unformat method accepts a string containing
 43 a telephone number formatted as:
 44 (XXX)XXX-XXXX.
 45 If the argument is formatted in this way, the
 46 method returns an unformatted string where the
 47 parentheses and hyphen have been removed. Otherwise,
 48 it returns the original argument.
 49 @param str The string to unformat.
 50 @return An unformatted string.
 51 */
 52
 53 public static String unformat(String str)
 54 {
 55 // Create a StringBuilder initialized with str.
 56 StringBuilder strb = new StringBuilder(str);
 57
 58 // If the argument is properly formatted, then
 59 // unformat it.
 60 if (isFormatted(str))
 61 {
 62 // First, delete the left paren at position 0.
 63 strb.deleteCharAt(0);
 64
 65 // Next, delete the right paren. Because of the
 66 // previous deletion it is now located at
 67 // position 3.

 68 strb.deleteCharAt(3);
 69
 70 // Next, delete the hyphen. Because of the
 71 // previous deletions it is now located at
 72 // position 6.
 73 strb.deleteCharAt(6);
 74 }
 75
 76 // Return the unformatted string.
 77 return strb.toString();
 78 }
 79
 80 /**
 81 The format method formats a string as:
 82 (XXX)XXX-XXXX.
 83 If the length of the argument is UNFORMATTED_LENGTH
 84 the method returns the formatted string. Otherwise,
 85 it returns the original argument.
 86 @param str The string to format.
 87 @return A string formatted as a U.S. telephone number.
 88 */
 89
 90 public static String format(String str)
 91 {
 92 // Create a StringBuilder initialized with str.
 93 StringBuilder strb = new StringBuilder(str);
 94
 95 // If the argument is the correct length, then
 96 // format it.
 97 if (str.length() == UNFORMATTED_LENGTH)
 98 {
 99 // First, insert the left paren at position 0.
100 strb.insert(0, "(");
101
102 // Next, insert the right paren at position 4.
103 strb.insert(4, ")");
104
105 // Next, insert the hyphen at position 8.
106 strb.insert(8, "-");
107 }
108
109 // Return the formatted string.
110 return strb.toString();
111 }
112 }

590 Chapter 9 Text Processing and More about Wrapper Classes

 9.4 The StringBuilder Class 591

code Listing 9-7 (TelephoneTester.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the Telephone
 5 class's static methods.
 6 */
 7
 8 public class TelephoneTester
 9 {
10 public static void main(String[] args)
11 {
12 String phoneNumber; // To hold a phone number
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Get an unformatted telephone number.
18 System.out.print("Enter an unformatted telephone number: ");
19 phoneNumber = keyboard.nextLine();
20
21 // Format the telephone number.
22 System.out.println("Formatted: " +
23 Telephone.format(phoneNumber));
24
25 // Get a formatted telephone number.
26 System.out.println("Enter a telephone number formatted as");
27 System.out.print("(XXX)XXX-XXXX : ");
28 phoneNumber = keyboard.nextLine();
29
30 // Unformat the telephone number.
31 System.out.println("Unformatted: " +
32 Telephone.unformat(phoneNumber));
33 }
34 }

program output with example input shown in Bold

Enter an unformatted telephone number: 9195551212 [enter]
Formatted: (919)555-1212
Enter a telephone number formatted as
(XXX)XXX-XXXX : (828)555-1212 [enter]

Unformatted: 8285551212

592 Chapter 9 Text Processing and More about Wrapper Classes

checkpoint

www.myprogramminglab.com

9.17 The String class is immutable. What does this mean?

9.18 In a program that makes lots of changes to strings, would it be more efficient to use
String objects or StringBuilder objects? Why?

9.19 Look at the following statement:

String city = "Asheville";

 Rewrite this statement so that city references a StringBuilder object instead of a
String object.

9.20 You wish to add a string to the end of the existing contents of a StringBuilder
object. What method do you use?

9.21 You wish to insert a string into the existing contents of a StringBuilder object.
What method do you use?

9.22 You wish to delete a specific character from the existing contents of a
StringBuilder object. What method do you use?

9.23 You wish to change a specific character in a StringBuilder object. What method
do you use?

9.24 How does the StringBuilder class’s replace method differ from the String class’s
replace method?

noTe: The Java API provides a class named StringBuffer, which is essentially the same
as the StringBuilder class, with the same constructors and the same methods. The differ-
ence is that the methods in the StringBuffer class are synchronized. This means that the
StringBuffer class is safe to use in a multithreaded application. Multithreaded program-
ming is beyond the scope of this book, but in a nutshell, a multithreaded application is
one that concurrently runs multiple threads of execution. In such an application, it is pos-
sible for more than one thread to access the same objects in memory at the same time. In
multithreaded applications, it is important that the methods be synchronized, to prevent
the possibility of data corruption.

Because synchronization requires extra steps to be performed, the StringBuffer class is
slower than the StringBuilder class. In an application where the object will not be
accessed by multiple threads, you should use the StringBuilder class to get the best per-
formance. In an application where multiple threads will be accessing the object, you
should use the StringBuffer class to ensure that its data does not become corrupted.

http://www.myprogramminglab.com

 9.5 Tokenizing Strings 593

9.5 Tokenizing strings

concepT: Tokenizing a string is a process of breaking a string down into its
components, which are called tokens. The String class’s split method
can be used to tokenize strings.

Sometimes a string will contain a series of words or other items of data separated by spaces
or other characters. For example, look at the following string:

"peach raspberry strawberry vanilla"

This string contains the following four items of data: peach, raspberry, strawberry, and
vanilla. In programming terms, items such as these are known as tokens. Notice that a
space appears between the items. The character that separates tokens is known as a delimiter.
Here is another example:

"17;92;81;12;46;5"

This string contains the following tokens: 17, 92, 81, 12, 46, and 5. Notice that a semicolon
appears between each item. In this example the semicolon is used as a delimiter. Some pro-
gramming problems require you to read a string that contains a list of items and then
extract all of the tokens from the string for processing. For example, look at the following
string that contains a date:

"3-22-2015"

The tokens in this string are 3, 22, and 2015, and the delimiter is the hyphen character.
Perhaps a program needs to extract the month, day, and year from such a string. Another
example is an operating system pathname, such as the following:

/home/rsullivan/data

The tokens in this string are home, rsullivan, and data, and the delimiter is the / character.
Perhaps a program needs to extract all of the directory names from such a pathname.

The process of breaking a string into tokens is known as tokenizing. In this section, we will
discuss the String class’s split method, a tool that you can use to tokenize strings.

The String class has a method named split, which tokenizes a string and returns an array
of String objects. Each element in the array is one of the tokens. As an example, look at
Code Listing 9-8.

code Listing 9-8

 1 /**
 2 This program demonstrates the String class's
 3 split method.
 4 */
 5
 6 public class SplitDemo1

594 Chapter 9 Text Processing and More about Wrapper Classes

 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a string to tokenize.
11 String str = "one two three four";
12
13 // Get the tokens, using a space delimiter.
14 String[] tokens = str.split(" ");
15
16 // Display the tokens.
17 for (String s : tokens)
18 System.out.println(s);
19 }
20 }

program output

one
two
three
four

In line 11, we assign the string "one two three four" to the str variable. Notice that the
words are separated by spaces. Line 14 calls the str object’s split method. The argument
passed to the split method indicates the delimiter. In this example, a space is used as the
delimiter. The method returns an array containing the strings "one", "two", "three", and
"four". The array is assigned to the tokens variable. Then, the for loop in lines 17 and 18
displays the elements of the array.

The argument that you pass to the split method is a regular expression. A regular expression
is a string that specifies a pattern of characters. Regular expressions can be powerful tools,
and are commonly used to search for patterns that exist in strings, files, or other collections
of text. A complete discussion of regular expressions is outside the scope of this book.
However, we will discuss some basic uses of regular expressions for the purpose of tokeniz-
ing strings.

In the previous example, we passed a string containing a single space to the split method.
This specified that the space character was the delimiter. The split method also allows you
to use multi-character delimiters. This means you are not limited to a single character as a
delimiter. Your delimiters can be entire words, if you wish. The following code, which is
taken from the program SplitDemo2.java in this chapter’s source code, demonstrates:

// Create a string to tokenize.
String str = "one and two and three and four";

// Get the tokens, using " and " as the delimiter.
String[] tokens = str.split(" and ");

 9.5 Tokenizing Strings 595

// Display the tokens.
for (String s : tokens)
 System.out.println(s);

This code will produce the following output:

one
two
three
four

The previous code demonstrates multi-character delimiters (delimiters containing multiple
characters). You can also specify a series of characters where each individual character is a
delimiter. For example, look at the following email address:

joe@gaddisbooks.com

This string uses two delimiters: @ (the “at” character) and . (the period). To specify that
both the @ character and the . character are delimiters, we must enclose them in brackets
inside our regular expression. The regular expression will look like this:

"[@.]"

Because the @ and . characters are enclosed in brackets, they will each be considered as a
delimiter. The following code, which is taken from the program SplitDemo3.java in this
chapter’s source code, demonstrates:

// Create a string to tokenize.
String str = "joe@gaddisbooks.com";

// Get the tokens, using @ and . as delimiters.
String[] tokens = str.split("[@.]");

// Display the tokens.
for (String s : tokens)
 System.out.println(s);

This code will produce the following output:

joe
gaddisbooks
com

Trimming a string before Tokenizing

When you are tokenizing a string that was entered by the user, and you are using characters
other than whitespaces as delimiters, you will probably want to trim the string before
tokenizing it. Otherwise, if the user enters leading whitespace characters, they will become
part of the first token. Likewise, if the user enters trailing whitespace characters, they will
become part of the last token. For example, look at the following code:

// Create a string with leading and trailing whitespaces.
String str = " one;two;three ";

mailto:joe@gaddisbooks.com
mailto:joe@gaddisbooks.com

596 Chapter 9 Text Processing and More about Wrapper Classes

// Tokenize the string using the semicolon as a delimiter.
String[] tokens = str.split(";");

// Display the tokens.
for (String s : tokens)
{
 System.out.println("*" + s + "*");
}

Notice that the string referenced by str contains a leading and a trailing space. This code
will produce the following output:

* one*
two
*three *

Notice in the output that the first token contains the leading space and the last token con-
tains the trailing space. To prevent leading and/or trailing whitespace characters from being
included in the tokens, use the String class’s trim method to remove them. Here is the
same code, modified to use the trim method:

// Create a string with leading and trailing whitespaces.
String str = " one;two;three ";

// Trim leading and trailing whitespace.
str = str.trim();

// Tokenize the string using the semicolon as a delimiter.
String[] tokens = str.split(";");

// Display the tokens.
for (String s : tokens)
{
 System.out.println("*" + s + "*");
}

This code will produce the following output:

one
two
three

checkpoint

www.myprogramminglab.com

9.25 The following string contains three tokens. What are they? What character is
the delimiter?

"apples pears bananas"

http://www.myprogramminglab.com

 9.6 Wrapper Classes for the Numeric Data Types 597

9.6 Wrapper classes for the numeric Data Types

concepT: The Java API provides wrapper classes for each of the numeric data types.
These classes have methods that perform useful operations involving
primitive numeric values.

Earlier in this chapter, we discussed the Character wrapper class and some of its static
methods. The Java API also provides wrapper classes for all of the numeric primitive data
types, as listed in Table 9-13.

You have already used many of these wrapper classes’ “parse” methods, which convert
strings to values of the primitive types. For example, the Integer.parseInt method con-
verts a string to an int, and the Double.parseDouble method converts a string to a double.
Now we will examine other methods and uses of the wrapper classes.

Table 9-13 Wrapper classes for the numeric primitive data types

Wrapper Class Primitive Type It Applies To

Byte byte

Double double

Float float

Integer int

Long long

Short short

9.26 Look at the following code:

String str = "one two three four";
String[] tokens = str.split(" ");
int x = tokens.length;

String first = tokens[0];

 What value will be stored in x? What value will the first variable reference?

9.27 Look at the following string:

"/home/rjones/mydata.txt"

 Write code using the String class’s split method that can be used to extract the
following tokens from the string: home , rjones , mydata , and txt.

9.28 Look at the following string:

"dog$cat@bird%squirrel"

 Write code using the String class’s split method that can be used to extract the
following tokens from the string: dog, cat, bird, and squirrel.

598 Chapter 9 Text Processing and More about Wrapper Classes

The static toString Methods
Each of the numeric wrapper classes has a static toString method that converts a number
to a string. The method accepts the number as its argument and returns a string representa-
tion of that number. The following code demonstrates:

int i = 12;
double d = 14.95;
String str1 = Integer.toString(i);
String str2 = Double.toString(d);

The toBinaryString, toHexString,
and toOctalString Methods
The toBinaryString, toHexString, and toOctalString methods are static members of the
Integer and Long wrapper classes. These methods accept an integer as an argument and
return a string representation of that number converted to binary, hexadecimal, or octal.
The following code demonstrates these methods:

int number = 14;
System.out.println(Integer.toBinaryString(number));
System.out.println(Integer.toHexString(number));
System.out.println(Integer.toOctalString(number));

This code will produce the following output:

1110
e
16

The MIN_VALUE and MAX_VALUE constants
The numeric wrapper classes each have a set of static final variables named MIN_VALUE
and MAX_VALUE. These variables hold the minimum and maximum values for a particular
data type. For example, Integer.MAX_VALUE holds the maximum value that an int can
hold. For example, the following code displays the minimum and maximum values for
an int:

System.out.println("The minimum value for an " +
 "int is " + Integer.MIN_VALUE);
System.out.println("The maximum value for an " +
 "int is " + Integer.MAX_VALUE);

Autoboxing and Unboxing
It is possible to create objects from the wrapper classes. One way is to pass an initial value
to the constructor, as shown here:

Integer number = new Integer(7);

 9.6 Wrapper Classes for the Numeric Data Types 599

This creates an Integer object initialized with the value 7, referenced by the variable number.
Another way is to simply declare a wrapper class variable, and then assign a primitive value
to it. For example, look at the following code:

Integer number;
number = 7;

The first statement in this code declares an Integer variable named number. It does not cre-
ate an Integer object, just a variable. The second statement is a simple assignment state-
ment. It assigns the primitive value 7 to the variable. You might suspect that this will cause
an error. After all, number is a reference variable, not a primitive variable. However, because
number is a wrapper class variable, Java performs an autoboxing operation. Autoboxing is
Java’s process of automatically “boxing up” a value inside an object. When this assignment
statement executes, Java boxes up the value 7 inside an Integer object, and then assigns the
address of that object to the number variable.

Unboxing is the opposite of boxing. It is the process of converting a wrapper class object to
a primitive type. The following code demonstrates an unboxing operation:

Integer myInt = 5; // Autoboxes the value 5
int primitiveNumber;
primitiveNumber = myInt; // Unboxes the object

The first statement in this code declares myInt as an Integer reference variable. The primi-
tive value 5 is autoboxed, and the address of the resulting object is assigned to the myInt
variable. The second statement declares primitiveNumber as an int variable. Then, the third
statement assigns the myInt object to primitiveNumber. When this statement executes, Java
automatically unboxes the myInt wrapper class object and stores the resulting value, which
is 5, in primitiveNumber.

Although you rarely need to create an instance of a wrapper class, Java’s autoboxing and
unboxing features make some operations more convenient. Occasionally, you will find
yourself in a situation where you want to perform an operation using a primitive variable,
but the operation can only be used with an object. For example, recall the ArrayList class
that we discussed in Chapter 7. An ArrayList is an array-like object that can be used to store
other objects. You cannot, however, store primitive values in an ArrayList. It is intended for
objects only. If you try to compile the following statement, an error will occur:

ArrayList<int> list = new ArrayList<int>(); // ERROR!

However, you can store wrapper class objects in an ArrayList. If we need to store int values
in an ArrayList, we have to specify that the ArrayList will hold Integer objects. Here is
an example:

ArrayList<Integer> list = new ArrayList<Integer>(); // Okay.

This statement declares that list references an ArrayList that can hold Integer objects.
One way to store an int value in the ArrayList is to instantiate an Integer object, initialize
it with the desired int value, and then pass the Integer object to the ArrayList’s add
method. Here is an example:

ArrayList<Integer> list = new ArrayList<Integer>();
Integer myInt = 5;
list.add(myInt);

600 Chapter 9 Text Processing and More about Wrapper Classes

checkpoint

www.myprogramminglab.com

9.29 Write a statement that converts the following integer to a string and stores it in the
String object referenced by str:

int i = 99;

9.30 What wrapper class methods convert a number from decimal to another numbering
system? What wrapper classes are these methods a member of?

9.31 What is the purpose of the MIN_VALUE and MAX_VALUE variables that are members of
the numeric wrapper classes?

9.7 Focus on problem solving:
The TestScoreReader class
Professor Harrison keeps her students’ test scores in a Microsoft Excel spreadsheet.
Figure 9-8 shows a set of five test scores for five students. Each column holds a test score
and each row represents the scores for one student.

Figure 9-8 Microsoft Excel spreadsheet

However, Java’s autoboxing and unboxing features make it unnecessary to create the
Integer object. If you add an int value to the ArrayList, Java will autobox the value. The
following code works without any problems:

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(5);

When the value 5 is passed to the add method, Java boxes the value up in an Integer object.
When necessary, Java also unboxes values that are retrieved from the ArrayList. The follow-
ing code demonstrates this:

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(5);
int primitiveNumber = list.get(0);

The last statement in this code retrieves the item at index 0. Because the item is being assigned
to an int variable, Java unboxes it and stores the primitive value in the int variable.

In addition to manipulating the scores in Excel, Dr. Harrison wants to write a Java applica-
tion that accesses them. Excel, like many commercial applications, has the ability to export
data to a text file. When the data in a spreadsheet is exported, each row is written to a line,

http://www.myprogramminglab.com

 9.7 Focus on Problem Solving: The TestScoreReader Class 601

and the values in the cells are separated by commas. For example, when the data shown in
Figure 9-8 is exported, it will be written to a text file in the following format:

87,79,91,82,94
72,79,81,74,88
94,92,81,89,96
77,56,67,81,79
79,82,85,81,90

This is called the comma separated value file format. When you save a spreadsheet in this
format, Excel saves it to a file with the .csv extension. Dr. Harrison decides to export her
spreadsheet to a .csv file, and then write a Java program that reads the file. The program
will use the String class’s split method to extract the test scores from each line, and a
wrapper class to convert the tokens to numeric values. As an experiment, she writes the
TestScoreReader class shown in Code Listing 9-9.

code Listing 9-9 (TestScoreReader.java)

 1 import java.io.*;
 2 import java.util.Scanner;
 3
 4 /**
 5 The TestScoreReader class reads test scores as
 6 tokens from a file and calculates the average
 7 of each line of scores.
 8 */
 9
10 public class TestScoreReader
11 {
12 private Scanner inputFile;
13 private String line;
14
15 /**
16 The constructor opens a file to read
17 the grades from.
18 @param filename The file to open.
19 */
20
21 public TestScoreReader(String filename)
22 throws IOException
23 {
24 File file = new File(filename);
25 inputFile = new Scanner(file);
26 }
27
28 /**
29 The readNextLine method reads the next line
30 from the file.
31 @return true if the line was read, false

602 Chapter 9 Text Processing and More about Wrapper Classes

32 otherwise.
33 */
34
35 public boolean readNextLine() throws IOException
36 {
37 boolean lineRead; // Flag variable
38
39 // Determine whether there is more to read.
40 lineRead = inputFile.hasNext();
41
42 // If so, read the next line.
43 if (lineRead)
44 line = inputFile.nextLine();
45
46 return lineRead;
47 }
48
49 /**
50 The getAverage method calculates the average
51 of the last set of test scores read from the file.
52 @return The average.
53 */
54
55 public double getAverage()
56 {
57 int total = 0; // Accumulator
58 double average; // The average test score
59
60 // Tokenize the last line read from the file.
61 String[] tokens = line.split(",");
62
63 // Calculate the total of the test scores.
64 for (String str : tokens)
65 {
66 total += Integer.parseInt(str);
67 }
68
69 // Calculate the average of the scores.
70 // Use a cast to avoid integer division.
71 average = (double) total / tokens.length;
72
73 // Return the average.
74 return average;
75 }
76
77 /**
78 The close method closes the file.
79 */

 9.7 Focus on Problem Solving: The TestScoreReader Class 603

80
81 public void close() throws IOException
82 {
83 inputFile.close();
84 }
85 }

The constructor accepts the name of a file as an argument and opens the file. The
readNextLine method reads a line from the file and stores it in the line field. The method
returns true if a line was successfully read from the file, or false if there are no more lines
to read. The getAverage method tokenizes the last line read from the file, converts the
tokens to int values, and calculates the average of the values. The average is returned. The
program in Code Listing 9-10 uses the TestScoreReader class to open the file Grades.csv
and get the averages of the test scores it contains.

code Listing 9-10 (TestAverages.java)

 1 import java.io.*; // Needed for IOException
 2
 3 /**
 4 This program uses the TestScoreReader class
 5 to read test scores from a file and get
 6 their averages.
 7 */
 8
 9 public class TestAverages
10 {
11 public static void main(String[] args)
12 throws IOException
13 {
14 double average; // Test average
15 int studentNumber = 1; // Control variable
16
17 // Create a TestScoreReader object.
18 TestScoreReader scoreReader =
19 new TestScoreReader("Grades.csv");
20
21 // Display the averages.
22 while (scoreReader.readNextLine())
23 {
24 // Get the average from the TestScoreReader.
25 average = scoreReader.getAverage();
26
27 // Display the student's average.
28 System.out.println("Average for student " +
29 studentNumber + " is " +
30 average);

604 Chapter 9 Text Processing and More about Wrapper Classes

9.8 common errors to Avoid
The following list describes several errors that are commonly committed when learning this
chapter’s topics:

•	 Using static wrapper class methods as if they were instance methods. Many of the
most useful wrapper class methods are static, and you should call them directly from
the class.

•	 Trying to use String comparison methods such as startsWith and endsWith for case-
insensitive comparisons. Most of the String comparison methods are case-sensitive.
Only the regionMatches method performs a case-insensitive comparison.

•	 Thinking of the first position of a string as 1. Many of the String and StringBuilder
methods accept a character position within a string as an argument. Remember, the
position numbers in a string start at zero. If you think of the first position in a string
as 1, you will cause an off-by-one error.

•	 Thinking of the ending position of a substring as part of the substring. Methods such
as getChars accept the starting and ending position of a substring as arguments. The
character at the start position is included in the substring, but the character at the
end position is not included. (The last character in the substring ends at end − 1.)

•	 Forgetting to trim a string before tokenizing it. When tokenizing a string, and using
characters other than whitespaces as delimiters, you will probably want to trim the
string before tokenizing it. Otherwise, if the string contains leading and/or trailing
whitespace characters, they will become part of the first and last tokens.

31
32 // Increment the student number.
33 studentNumber++;
34 }
35
36 // Close the TestScoreReader.
37 scoreReader.close();
38 System.out.println("No more scores.");
39 }
40 }

program output

Average for student 1 is 86.6
Average for student 2 is 78.8
Average for student 3 is 90.4
Average for student 4 is 72.0
Average for student 5 is 83.4
No more scores.

Dr. Harrison’s class works properly, and she decides that she can expand it to perform other,
more complex, operations.

 Review Questions and Exercises 605

Review Questions and exercises
Multiple choice and True/False

 1. The isDigit, isLetter, and isLetterOrDigit methods are members of this class.
a. String
b. Char
c. Character
d. StringBuilder

 2. This method converts a character to uppercase.
a. makeUpperCase
b. toUpperCase
c. isUpperCase
d. upperCase

 3. The startsWith, endsWith, and regionMatches methods are members of this class.
a. String
b. Char
c. Character
d. Wrapper

 4. The indexOf and lastIndexOf methods are members of this class.
a. String
b. Integer
c. Character
d. Wrapper

 5. The substring, getChars, and toCharArray methods are members of this class.
a. String
b. Float
c. Character
d. Wrapper

 6. This String class method performs the same operation as the + operator when used
on strings.
a. add
b. join
c. concat
d. plus

 7. The String class has several overloaded versions of a method that accepts a value of
any primitive data type as its argument and returns a string representation of the
value. The name of the method is ___________.
a. stringValue
b. valueOf
c. getString
d. valToString

606 Chapter 9 Text Processing and More about Wrapper Classes

 8. If you do not pass an argument to the StringBuilder constructor, the object will have
enough memory to store this many characters.
a. 16
b. 1
c. 256
d. Unlimited

 9. This is one of the methods that are common to both the String and StringBuilder
classes.
a. append
b. insert
c. delete
d. length

 10. To change the value of a specific character in a StringBuilder object, use this method.
a. changeCharAt
b. setCharAt
c. setChar
d. change

 11. To delete a specific character in a StringBuilder object, use this method.
a. deleteCharAt
b. removeCharAt
c. removeChar
d. expunge

 12. The character that separates tokens in a string is known as a __________.
a. separator
b. tokenizer
c. delimiter
d. terminator

 13. This String method breaks a string into tokens.
a. break
b. tokenize
c. getTokens
d. split

 14. These static final variables are members of the numeric wrapper classes and hold the
minimum and maximum values for a particular data type.
a. MIN_VALUE and MAX_VALUE
b. MIN and MAX
c. MINIMUM and MAXIMUM
d. LOWEST and HIGHEST

 15. True or False: Character testing methods, such as isLetter, accept strings as argu-
ments and test each character in the string.

 16. True or False: If the toUpperCase method’s argument is already uppercase, it is returned
as is, with no changes.

 17. True or False: If toLowerCase method’s argument is already lowercase, it will be inad-
vertently converted to uppercase.

 Review Questions and Exercises 607

 18. True or False: The startsWith and endsWith methods are case-sensitive.

 19. True or False: There are two versions of the regionMatches method: one that is case-
sensitive and one that can be case-insensitive.

 20. True or False: The indexOf and lastIndexOf methods can find characters, but cannot
find substrings.

 21. True or False: The String class’s replace method can replace individual characters,
but cannot replace substrings.

 22. True or False: The StringBuilder class’s replace method can replace individual char-
acters, but cannot replace substrings.

 23. True or False: You can use the = operator to assign a string to a StringBuilder object.

Find the error

Find the error in each of the following code segments:

 1. int number = 99;
String str;
// Convert number to a string.
str.valueOf(number);

 2. // Store a name in a StringBuilder object.
StringBuilder name = "Joe Schmoe";

 3. // Change the very first character of a
// StringBuilder object to 'Z'.
str.setCharAt(1, 'Z');

 4. // Tokenize a string that is delimited
// with semicolons. The string has 3 tokens.
String str = "one;two;three";
String tokens = str.split(";");
System.out.println(tokens);

Algorithm Workbench

 1. The following if statement determines whether choice is equal to ‘Y’ or ‘y’:

if (choice == 'Y' || choice == 'y')

 Rewrite this statement so it makes only one comparison and does not use the ||
operator. (Hint: Use either the toUpperCase or toLowerCase method.)

 2. Write a loop that counts the number of space characters that appear in the String
object str.

 3. Write a loop that counts the number of digits that appear in the String object str.

 4. Write a loop that counts the number of lowercase characters that appear in the String
object str.

 5. Write a method that accepts a reference to a String object as an argument and returns
true if the argument ends with the substring “.com”. Otherwise, the method should
return false.

 6. Modify the method you wrote for Algorithm Workbench 5 so it performs a case-
insensitive test. The method should return true if the argument ends with “.com” in
any possible combination of uppercase and lowercase letters.

608 Chapter 9 Text Processing and More about Wrapper Classes

 7. Write a method that accepts a StringBuilder object as an argument and converts all
occurrences of the lowercase letter ‘t’ in the object to uppercase.

 8. Look at the following string:

"cookies>milk>fudge:cake:ice cream"

 Write code using the String class’s split method that can be used to extract the fol-
lowing tokens from the string: cookies, milk, fudge, cake, and ice cream.

 9. Assume that d is a double variable. Write an if statement that assigns d to the int
variable i if the value in d is not larger than the maximum value for an int.

 10. Write code that displays the contents of the int variable i in binary, hexadecimal,
and octal.

short Answer

 1. Why should you use StringBuilder objects instead of String objects in a program
that makes lots of changes to strings?

 2. A program reads a string as input from the user for the purpose of tokenizing it. Why
is it a good idea to trim the string before tokenizing it?

 3. Each of the numeric wrapper classes has a static toString method. What do these
methods do?

 4. How can you determine the minimum and maximum values that may be stored in a
variable of a given data type?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Backward string

Write a method that accepts a String object as an argument and displays its contents back-
ward. For instance, if the string argument is “gravity” the method should display -“ytivarg”.
Demonstrate the method in a program that asks the user to input a string and then passes it
to the method.

2. Word counter

Write a method that accepts a String object as an argument and returns the number of
words it contains. For instance, if the argument is “Four score and seven years ago” the
method should return the number 6. Demonstrate the method in a program that asks the
user to input a string and then passes it to the method. The number of words in the string
should be displayed on the screen.

3. sentence capitalizer

Write a method that accepts a String object as an argument and returns a copy of the string
with the first character of each sentence capitalized. For instance, if the argument is “hello.
my name is Joe. what is your name?” the method should return the string “Hello. My name
is Joe. What is your name?” Demonstrate the method in a program that asks the user to

The Sentence
Capitalizer

Problem

VideoNote

http://www.myprogramminglab.com

 Programming Challenges 609

input a string and then passes it to the method. The modified string should be displayed on
the screen.

4. Vowels and consonants

Write a class with a constructor that accepts a String object as its argument. The class
should have a method that returns the number of vowels in the string, and another method
that returns the number of consonants in the string. Demonstrate the class in a program
that performs the following steps:

1. The user is asked to enter a string.
2. The program displays the following menu:

a. Count the number of vowels in the string
b. Count the number of consonants in the string
c. Count both the vowels and consonants in the string
d. Enter another string
e. Exit the program

3. The program performs the operation selected by the user and repeats until the user
selects e, to exit the program.

5. password Verifier

Imagine you are developing a software package for Amazon.com that requires users
to enter their own passwords. Your software requires that users’ passwords meet the
following criteria:

•	 The	password	should	be	at	least	six	characters	long.
•	 The	password	should	contain	at	least	one	uppercase	and	at	least	one	lowercase	letter.
•	 The	password	should	have	at	least	one	digit.

Write a class that verifies that a password meets the stated criteria. Demonstrate the class in
a program that allows the user to enter a password and then displays a message indicating
whether it is valid or not.

6. Telemarketing phone number List

Write a program that has two parallel arrays of String objects. One of the arrays should
hold people’s names and the other should hold their phone numbers. Here are example
contents of both arrays:

name Array Example Contents phone Array Example Contents
"Harrison, Rose" "555-2234"
"James, Jean" "555-9098"
"Smith, William" "555-1785"
"Smith, Brad" "555-9224"

The program should ask the user to enter a name or the first few characters of a name to
search for in the array. The program should display all of the names that match the user’s
input and their corresponding phone numbers. For example, if the user enters “Smith”, the
program should display the following names and phone numbers from the list:

Smith, William: 555-1785
Smith, Brad: 555-9224

610 Chapter 9 Text Processing and More about Wrapper Classes

7. check Writer

Write a program that displays a simulated paycheck. The program should ask the user to
enter the date, the payee’s name, and the amount of the check. It should then display a
simulated check with the dollar amount spelled out, as shown here:

Date: 11/24/2012

Pay to the Order of: John Phillips $1920.85

One thousand nine hundred twenty and 85 cents

8. sum of numbers in a string

Write a program that asks the user to enter a series of numbers separated by commas. Here
is an example of valid input:

7,9,10,2,18,6

The program should calculate and display the sum of all the numbers.

9. sum of Digits in a string

Write a program that asks the user to enter a series of single digit numbers with nothing
separating them. The program should display the sum of all the single digit numbers in the
string. For example, if the user enters 2514, the method should return 12, which is the sum
of 2, 5, 1, and 4. The program should also display the highest and lowest digits in the string.
(Hint: Convert the string to an array.)

10. Word counter

Write a program that asks the user for the name of a file. The program should display the
number of words that the file contains.

11. sales Analysis

The file SalesData.txt, in this chapter’s source code folder, contains the dollar amount of
sales that a retail store made each day for a number of weeks. Each line in the file contains
seven numbers, which are the sales numbers for one week. The numbers are separated by a
comma. The following line is an example from the file:

2541.36,2965.88,1965.32,1845.23,7021.11,9652.74,1469.36

Write a program that opens the file and processes its contents. The program should display
the following:

•	 The	total	sales	for	each	week
•	 The	average	daily	sales	for	each	week
•	 The	total	sales	for	all	of	the	weeks
•	 The	average	weekly	sales
•	 The	week	number	that	had	the	highest	amount	of	sales
•	 The	week	number	that	had	the	lowest	amount	of	sales

 Programming Challenges 611

12. Miscellaneous string operations

Write a class with the following static methods:

•	 WordCount. This method should accept a reference to a String object as an argument
and return the number of words contained in the object.

•	 arrayToString. This method accepts a char array as an argument and converts it to a
String object. The method should return a reference to the String object.

•	 mostFrequent. This method accepts a reference to a String object as an argument and
returns the character that occurs the most frequently in the object.

•	 replaceSubstring. This method accepts three references to String objects as arguments.
Let’s call them string1, string2, and string3. It searches string1 for all occurrences
of string2. When it finds an occurrence of string2, it replaces it with string3. For
example, suppose the three arguments have the following values:

string1: “the dog jumped over the fence”

string2: “the”

string3: “that”

With these three arguments, the method would return a reference to a String object with
the value “that dog jumped over that fence”.

Demonstrate each of these methods in a complete program.

13. Alphabetic Telephone number Translator

Many companies use telephone numbers like 555-GET-FOOD so the number is easier for
their customers to remember. On a standard telephone, the alphabetic letters are mapped to
numbers in the following fashion:

A, B, and C = 2
D, E, and F = 3
G, H, and I = 4
J, K, and L = 5
M, N, and O = 6
P, Q, R, and S = 7
T, U, and V = 8
W, X, Y, and Z = 9

Write an application that asks the user to enter a 10-character telephone number in the for-
mat XXX-XXX-XXXX. The application should display the telephone number with any alpha-
betic characters that appeared in the original translated to their numeric equivalent. For
example, if the user enters 555-GET-FOOD the application should display 555-438-3663.

14. Word separator

Write a program that accepts as input a sentence in which all of the words are run together,
but the first character of each word is uppercase. Convert the sentence to a string in which
the words are separated by spaces and only the first word starts with an uppercase letter.
For example, the string “StopAndSmellTheRoses.” would be converted to “Stop and smell
the roses.”

612 Chapter 9 Text Processing and More about Wrapper Classes

15. pig Latin

Write a program that reads a sentence as input and converts each word to “Pig Latin”. In
one version of Pig Latin, you convert a word by removing the first letter, placing that letter
at the end of the word, and then appending “ay” to the word. Here is an example:

English: I SLEPT MOST OF THE NIGHT

Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

16. Morse code converter

Morse code is a code where each letter of the English alphabet, each digit, and various
punctuation characters are represented by a series of dots and dashes. Table 9-14 shows
part of the code. Write a program that asks the user to enter a string, and then converts that
string to Morse code. Use hyphens for dashes and periods for dots.

Table 9-14 Morse code

Character Code Character Code Character Code Character Code

space space 6 -…. G --. Q --.-

comma --..-- 7 --… H …. R .-.

period .-.-.- 8 ---.. I .. S …

question
mark

..--.. 9 ----. J .--- T -

0 ----- A .- K -.- U ..-

1 .---- B -… L .-.. V …-

2 ..--- C -.-. M -- W .--

3 …-- D -.. N -. X -..-

4 ….- E . O --- Y -.--

5 ….. F ..-. P .--. Z --..

613

Inheritance

C
H

A
P

T
E

R

10
TOPICS

 10.1 What Is Inheritance?
 10.2 Calling the Superclass Constructor
 10.3 Overriding Superclass Methods
 10.4 Protected Members
 10.5 Chains of Inheritance
 10.6 The Object Class
 10.7 Polymorphism

 10.8 Abstract Classes and Abstract
Methods

 10.9 Interfaces
 10.10 Anonymous Inner Classes
 10.11 Functional Interfaces and Lambda

Expressions
 10.12 Common Errors to Avoid

10.1 What Is Inheritance?

COnCePT: Inheritance allows a new class to extend an existing class. The new class
inherits the members of the class it extends.

Generalization and Specialization
In the real world, you can find many objects that are specialized versions of other more
general objects. For example, the term insect describes a very general type of creature with
numerous characteristics. Because grasshoppers and bumblebees are insects, they have all
the general characteristics of an insect. In addition, they have special characteristics of their
own. For example, the grasshopper has its jumping ability, and the bumblebee has its stinger.
Grasshoppers and bumblebees are specialized versions of an insect. This is illustrated in
Figure 10-1.

Inheritance
VideoNote

614 Chapter 10 Inheritance

Inheritance and the “Is a” Relationship
When one object is a specialized version of another object, there is an “is a” relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the “is a” relationship:

•	 A	poodle	is	a	dog.
•	 A	car	is	a	vehicle.
•	 A	flower	is	a	plant.
•	 A	rectangle	is	a	shape.
•	 A	football	player	is	an	athlete.

When an “is a” relationship exists between objects, it means that the specialized object has
all of the characteristics of the general object, plus additional characteristics that make it
special. In object-oriented programming, inheritance is used to create an “is a” relationship
among classes. This allows you to extend the capabilities of a class by creating another class
that is a specialized version of it.

Inheritance involves a superclass and a subclass. The superclass is the general class and
the subclass is the specialized class. You can think of the subclass as an extended ver-
sion of the superclass. The subclass inherits fields and methods from the superclass
without any of them having to be rewritten. Furthermore, new fields and methods
may be added to the subclass, and that is what makes it a specialized version of
the superclass.

nOTe: At	the	risk	of	confusing	you	with	too	much	terminology,	 it	should	be	men-
tioned that superclasses are also called base classes, and subclasses are also called
derived classes. Either set of terms is correct. For consistency, this text will use the terms
superclass and subclass.

Figure 10-1 Bumblebees and grasshoppers are specialized versions of an insect

Let’s look at an example of how inheritance can be used. Most teachers assign various
graded	activities	for	their	students	to	complete.	A	graded	activity	can	be	given	a	numeric	

 10.1 What Is Inheritance? 615

score	such	as	70,	85,	90,	and	so	on,	and	a	letter	grade	such	as	A,	B,	C,	D,	or	F.	Figure	10-2	
shows a UML diagram for the GradedActivity class, which is designed to hold the
numeric score of a graded activity. The setScore method sets a numeric score, and
the getScore method returns the numeric score. The getGrade method returns the letter
grade that corresponds to the numeric score. Notice that the class does not have a
programmer-defined constructor, so Java will automatically generate a default construc-
tor	for	it.	This	will	be	a	point	of	discussion	later.	Code	Listing	10-1	shows	the	code	for	
the class.

Code Listing 10-1 (GradedActivity.java)

 1 /**
 2 A class that holds a grade for a graded activity.
 3 */
 4
 5 public class GradedActivity
 6 {
 7 private double score; // Numeric score
 8
 9 /**
10 The setScore method sets the score field.
11 @param s The value to store in score.
12 */
13
14 public void setScore(double s)
15 {
16 score = s;
17 }
18
19 /**
20 The getScore method returns the score.
21 @return The value stored in the score field.
22 */
23

Figure 10-2 UML diagram for the GradedActivity class

616 Chapter 10 Inheritance

24 public double getScore()
25 {
26 return score;
27 }
28
29 /**
30 The getGrade method returns a letter grade
31 determined from the score field.
32 @return The letter grade.
33 */
34
35 public char getGrade()
36 {
37 char letterGrade;
38
39 if (score >= 90)
40 letterGrade = 'A';
41 else if (score >= 80)
42 letterGrade = 'B';
43 else if (score >= 70)
44 letterGrade = 'C';
45 else if (score >= 60)
46 letterGrade = 'D';
47 else
48 letterGrade = 'F';
49
50 return letterGrade;
51 }
52 }

The	program	in	Code	Listing	10-2	demonstrates	the	class.	Figures	10-3	and	10-4	show	
examples of interaction with the program.

Code Listing 10-2 (GradeDemo.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates the GradedActivity
 5 class.
 6 */
 7
 8 public class GradeDemo
 9 {
10 public static void main(String[] args)
11 {

 10.1 What Is Inheritance? 617

12 String input; // To hold input
13 double testScore; // A test score
14
15 // Create a GradedActivity object.
16 GradedActivity grade = new GradedActivity();
17
18 // Get a test score.
19 input = JOptionPane.showInputDialog("Enter " +
20 "a numeric test score.");
21 testScore = Double.parseDouble(input);
22
23 // Store the score in the grade object.
24 grade.setScore(testScore);
25
26 // Display the letter grade for the score.
27 JOptionPane.showMessageDialog(null,
28 "The grade for that test is " +
29 grade.getGrade());
30
31 System.exit(0);
32 }
33 }

1 2

Figure 10-3 Interaction with the GradeDemo.java program

1 2

Figure 10-4 Interaction with the GradeDemo.java program

The GradedActivity class represents the general characteristics of a student’s graded activ-
ity. Many different types of graded activities exist, however, such as quizzes, midterm exams,
final exams, lab reports, essays, and so on. Because the numeric scores might be determined
differently for each of these graded activities, we can create subclasses to handle each one.
For example, we could create a FinalExam class that would be a subclass of the

618 Chapter 10 Inheritance

GradedActivity	class.	Figure	10-5	shows	the	UML	diagram	for	such	a	class,	and	Code	
Listing	 10-3	 shows	 its	 code.	 It	 has	 fields	 for	 the	 number	 of	 questions	 on	 the	 exam	
(numQuestions), the number of points each question is worth (pointsEach), and the number
of questions missed by the student (numMissed).

Figure 10-5 UML diagram for the FinalExam class

Code Listing 10-3 (FinalExam.java)

 1 /**
 2 This class determines the grade for a final exam.
 3 */
 4
 5 public class FinalExam extends GradedActivity
 6 {
 7 private int numQuestions; // Number of questions
 8 private double pointsEach; // Points for each question
 9 private int numMissed; // Questions missed
10
11 /**
12 The constructor sets the number of questions on the
13 exam and the number of questions missed.
14 @param questions The number of questions.
15 @param missed The number of questions missed.
16 */
17
18 public FinalExam(int questions, int missed)
19 {
20 double numericScore; // To hold a numeric score
21
22 // Set the numQuestions and numMissed fields.
23 numQuestions = questions;
24 numMissed = missed;
25
26 // Calculate the points for each question and

 10.1 What Is Inheritance? 619

27 // the numeric score for this exam.
28 pointsEach = 100.0 / questions;
29 numericScore = 100.0 - (missed * pointsEach);
30
31 // Call the inherited setScore method to
32 // set the numeric score.
33 setScore(numericScore);
34 }
35
36 /**
37 The getPointsEach method returns the number of
38 points each question is worth.
39 @return The value in the pointsEach field.
40 */
41
42 public double getPointsEach()
43 {
44 return pointsEach;
45 }
46
47 /**
48 The getNumMissed method returns the number of
49 questions missed.
50 @return The value in the numMissed field.
51 */
52
53 public int getNumMissed()
54 {
55 return numMissed;
56 }
57 }

Look at the header for the FinalExam class in line 5. The header uses the extends key word,
which indicates that this class extends another class (a superclass). The name of the super-
class is listed after the word extends. So, this line indicates that FinalExam is the name of the
class being declared and GradedActivity is the name of the superclass it extends. This is
illustrated in Figure 10-6.

Figure 10-6 FinalExam class header

620 Chapter 10 Inheritance

If we want to express the relationship between the two classes, we can say that a FinalExam
is a GradedActivity.

Because the FinalExam class extends the GradedActivity class, it inherits all of the public
members of the GradedActivity class. Here is a list of the members of the FinalExam class.

Fields:

int numQuestions; Declared	in	FinalExam

double pointsEach; Declared	in	FinalExam

int numMissed; Declared	in	FinalExam

Constructor Declared	in	FinalExam

getPointsEach Declared	in	FinalExam

getNumMissed Declared	in	FinalExam

setScore Inherited from GradedActivity

getScore Inherited from GradedActivity

getGrade Inherited from GradedActivity

Methods:

Notice that the GradedActivity class’s score field is not listed among the members of the
FinalExam class. That is because the score field is private. Private members of the superclass
cannot be accessed by the subclass, so technically speaking, they are not inherited. When an
object of the subclass is created, the private members of the superclass exist in memory, but
only methods in the superclass can access them. They are truly private to the superclass.

You will also notice that the superclass’s constructor is not listed among the members of the
FinalExam class. It makes sense that superclass constructors are not inherited because their
purpose is to construct objects of the superclass. In the next section we discuss in more
detail how superclass constructors operate.

To see how inheritance works in this example, let’s take a closer look at the FinalExam con-
structor	in	lines	18	through	34.	The	constructor	accepts	two	arguments:	the	number	of	test	
questions	on	the	exam,	and	the	number	of	questions	missed	by	the	student.	In	lines	23	and	24	
these values are assigned to the numQuestions and numMissed	fields.	Then,	in	lines	28	and	29,	
the	number	of	points	for	each	question	and	the	numeric	test	score	are	calculated.	In	line	33,	the	
last statement in the constructor reads as follows:

setScore(numericScore);

This is a call to the setScore	method.	Although	no	setScore method appears in the
FinalExam class, the method is inherited from the GradedActivity class. The program in
Code	Listing	10-4	demonstrates	the	FinalExam class. Figure 10-7 shows an example of
interaction with the program.

 10.1 What Is Inheritance? 621

Code Listing 10-4 (FinalExamDemo.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates the FinalExam class,
 5 which extends the GradedActivity class.
 6 */
 7
 8 public class FinalExamDemo
 9 {
10 public static void main(String[] args)
11 {
12 String input; // To hold input
13 int questions; // Number of questions
14 int missed; // Number of questions missed
15
16 // Get the number of questions on the exam.
17 input = JOptionPane.showInputDialog("How many " +
18 "questions are on the final exam?");
19 questions = Integer.parseInt(input);
20
21 // Get the number of questions the student missed.
22 input = JOptionPane.showInputDialog("How many " +
23 "questions did the student miss?");
24 missed = Integer.parseInt(input);
25
26 // Create a FinalExam object.
27 FinalExam exam = new FinalExam(questions, missed);
28
29 // Display the test results.
30 JOptionPane.showMessageDialog(null,
31 "Each question counts " + exam.getPointsEach() +
32 " points.\nThe exam score is " +
33 exam.getScore() + "\nThe exam grade is " +
34 exam.getGrade());
35
36 System.exit(0);
37 }
38 }

622 Chapter 10 Inheritance

In	line	27	the	following	statement	creates	an	instance	of	the	FinalExam class and assigns its
address to the exam variable:

FinalExam exam = new FinalExam(questions, missed);

When a FinalExam object is created in memory, it not only has the members declared in the
FinalExam class, but also the non-private members declared in the GradedActivity class.
Notice	in	lines	30	through	34,	shown	here,	that	two	public	methods	of	the	GradedActivity
class, getScore and getGrade, are directly called from the exam object:

JOptionPane.showMessageDialog(null,
 "Each question counts " + exam.getPointsEach() +
 " points.\nThe exam score is " +
 exam.getScore() + "\nThe exam grade is " +
 exam.getGrade());

When a subclass extends a superclass, the public members of the superclass become public
members of the subclass. In this program the getScore and getGrade methods can be called
from the exam object because they are public members of the object’s superclass.

As	mentioned	before,	the	private	members	of	the	superclass	(in	this	case,	the	score field)
cannot be accessed by the subclass. When the exam object is created in memory, a score
field exists, but only the methods defined in the superclass, GradedActivity, can access it.
It is truly private to the superclass. Because the FinalExam constructor cannot directly
access the score field, it must call the superclass’s setScore method (which is public) to
store a value in it.

Inheritance in UML Diagrams
You show inheritance in a UML diagram by connecting two classes with a line that has an
open arrowhead at one end. The arrowhead points to the superclass. Figure 10-8 is a UML
diagram showing the relationship between the GradedActivity and FinalExam classes.

1

2

3

Figure 10-7 Interaction with the FinalExamDemo.java program

 10.1 What Is Inheritance? 623

The Superclass’s Constructor
You might be wondering how the constructors work together when one class inherits from
another. In an inheritance relationship, the superclass constructor always executes before
the	subclass	constructor.	As	was	mentioned	earlier,	the	GradedActivity class has only one
constructor, which is the default constructor that Java automatically generated for it. When
a FinalExam object is created, the GradedActivity class’s default constructor is executed just
before the FinalExam constructor is executed.

Code	Listing	10-5	shows	a	class,	SuperClass1, that has a no-arg constructor. The construc-
tor	simply	displays	the	message	“This	 is	 the	superclass	constructor.”	Code	Listing	10-6	
shows SubClass1, which extends SuperClass1. This class also has a no-arg constructor,
which displays the message “This is the subclass constructor.”

Code Listing 10-5 (SuperClass1.java)

 1 public class SuperClass1
 2 {
 3 /**
 4 Constructor
 5 */
 6
 7 public SuperClass1()
 8 {

Figure 10-8 UML diagram showing inheritance

624 Chapter 10 Inheritance

 9 System.out.println("This is the " +
10 "superclass constructor.");
11 }
12 }

Code Listing 10-6 (SubClass1.java)

 1 public class SubClass1 extends SuperClass1
 2 {
 3 /**
 4 Constructor
 5 */
 6
 7 public SubClass1()
 8 {
 9 System.out.println("This is the " +
10 "subclass constructor.");
11 }
12 }

The	program	in	Code	Listing	10-7	creates	a	SubClass1	object.	As	you	can	see	from	the	pro-
gram output, the superclass constructor executes first, followed by the subclass constructor.

Code Listing 10-7 (ConstructorDemo1.java)

 1 /**
 2 This program demonstrates the order in which
 3 superclass and subclass constructors are called.
 4 */
 5
 6 public class ConstructorDemo1
 7 {
 8 public static void main(String[] args)
 9 {
10 SubClass1 obj = new SubClass1();
11 }
12 }

Program Output

This is the superclass constructor.
This is the subclass constructor.

 10.1 What Is Inheritance? 625

If a superclass has either (a) a default constructor or (b) a no-arg constructor that was writ-
ten into the class, then that constructor will be automatically called just before a subclass
constructor executes. In a moment we will discuss other situations that can arise involving
superclass constructors.

Inheritance Does not Work in Reverse
In an inheritance relationship, the subclass inherits members from the superclass, not the
other way around. This means it is not possible for a superclass to call a subclass’s method.
For example, if we create a GradedActivity object, it cannot call the getPointsEach or the
getNumMissed methods because they are members of the FinalExam class.

Checkpoint

www.myprogramminglab.com

10.1 Here is the first line of a class declaration. What is the name of the superclass?
What is the name of the subclass?

public class Truck extends Vehicle

10.2	 Look at the following class declarations and answer the questions that follow
them:

public class Shape
{
 private double area;
 public void setArea(double a)
 {
 area = a;
 }
 public double getArea()
 {
 return area;
 }
}
public class Circle extends Shape
{
 private double radius;
 public void setRadius(double r)
 {
 radius = r;
 setArea(Math.PI * r * r);
 }
 public double getRadius()
 {
 return radius;
 }
}

http://www.myprogramminglab.com

626 Chapter 10 Inheritance

a) Which class is the superclass? Which class is the subclass?
b)	 Draw	a	UML	diagram	showing	the	relationship	between	these	two	classes.
c) When a Circle object is created, what are its public members?
d) What members of the Shape class are not accessible to the Circle

class’s methods?
e)	 Assume	a	program	has	the	following	declarations:

Shape s = new Shape();
Circle c = new Circle();

 Indicate whether the following statements are legal or illegal:

c.setRadius(10.0);
s.setRadius(10.0);
System.out.println(c.getArea());
System.out.println(s.getArea());

10.3	 Class	B	extends	class	A.	(Class	A	is	the	superclass	and	class	B	is	the	subclass.)	
Describe	the	order	in	which	the	class’s	constructors	execute	when	a	class	B	object	
is created.

10.2 Calling the Superclass Constructor

COnCePT: The super key word refers to an object’s superclass. You can use the super
key word to call a superclass constructor.

In the previous section you saw examples illustrating how a superclass’s default constructor
or no-arg constructor is automatically called just before the subclass’s constructor executes.
But what if the superclass does not have a default constructor or a no-arg constructor? Or,
what if the superclass has multiple overloaded constructors and you want to make sure a
specific one is called? In either of these situations, you use the super key word to call a
superclass constructor explicitly. The super key word refers to an object’s superclass and
can be used to access members of the superclass.

Code	Listing	10-8	shows	a	class,	SuperClass2, which has a no-arg constructor and a con-
structor that accepts an int	argument.	Code	Listing	10-9	shows	SubClass2, which extends
SuperClass2. This class’s constructor uses the super key word to call the superclass’s con-
structor and pass an argument to it.

Code Listing 10-8 (SuperClass2.java)

 1 public class SuperClass2
 2 {
 3 /**
 4 Constructor #1
 5 */
 6
 7 public SuperClass2()
 8 {

 10.2 Calling the Superclass Constructor 627

 9 System.out.println("This is the superclass " +
10 "no-arg constructor.");
11 }
12
13 /**
14 Constructor #2
15 */
16
17 public SuperClass2(int arg)
18 {
19 System.out.println("The following argument " +
20 "was passed to the superclass " +
21 "constructor: " + arg);
22 }
23 }

Code Listing 10-9 (SubClass2.java)

 1 public class SubClass2 extends SuperClass2
 2 {
 3 /**
 4 Constructor
 5 */
 6
 7 public SubClass2()
 8 {
 9 super(10);
10 System.out.println("This is the " +
11 "subclass constructor.");
12 }
13 }

The statement in line 9 of the SubClass2 constructor calls the superclass constructor and
passes the argument 10 to it. Here are three guidelines you should remember about calling
a superclass constructor:

•	 The	super statement that calls the superclass constructor may be written only in the sub-
class’s constructor. You cannot call the superclass constructor from any other method.

•	 The	super statement that calls the superclass constructor must be the first statement in
the subclass’s constructor. This is because the superclass’s constructor must execute
before the code in the subclass’s constructor executes.

•	 If	a	subclass	constructor	does	not	explicitly	call	a	superclass	constructor,	Java	will	
automatically call the superclass’s default constructor, or no-arg constructor, just

628 Chapter 10 Inheritance

before the code in the subclass’s constructor executes. This is equivalent to placing the
following statement at the beginning of a subclass constructor:

super();

The	program	in	Code	Listing	10-10	demonstrates	these	classes.

Code Listing 10-10 (ConstructorDemo2.java)

 1 /**
 2 This program demonstrates how a superclass
 3 constructor is called with the super key word.
 4 */
 5
 6 public class ConstructorDemo2
 7 {
 8 public static void main(String[] args)
 9 {
10 SubClass2 obj = new SubClass2();
11 }
12 }

Program Output

The following argument was passed to the superclass constructor: 10
This is the subclass constructor.

Let’s look at a more meaningful example. Recall the Rectangle	class	from	Chapter	6.	Figure	
10-9 shows a UML diagram for the class.

Figure 10-9 UML diagram for the Rectangle class

Here is part of the class’s code:

public class Rectangle
{
 private double length;
 private double width;
 /**

 10.2 Calling the Superclass Constructor 629

 Constructor
 @param len The length of the rectangle.
 @param w The width of the rectangle.
 */

 public Rectangle(double len, double w)
 {
 length = len;
 width = w;
 }
 (Other methods follow . . .)
}

Next we will design a Cube class, which extends the Rectangle class. The Cube class is
designed to hold data about cubes, which not only have a length, width, and area (the area
of	the	base),	but	also	a	height,	surface	area,	and	volume.	A	UML	diagram	showing	the	
inheritance relationship between the Rectangle and Cube classes is shown in Figure 10-10,
and the code for the Cube	class	is	shown	in	Code	Listing	10-11.

Code Listing 10-11 (Cube.java)

 1 /**
 2 This class holds data about a cube.
 3 */
 4
 5 public class Cube extends Rectangle
 6 {

Figure 10-10 UML diagram for the Rectangle and Cube classes

630 Chapter 10 Inheritance

 7 private double height; // The cube's height
 8
 9 /**
10 The constructor sets the cube's length,
11 width, and height.
12 @param len The cube's length.
13 @param w The cube's width.
14 @param h The cube's height.
15 */
16
17 public Cube(double len, double w, double h)
18 {
19 // Call the superclass constructor.
20 super(len, w);
21
22 // Set the height.
23 height = h;
24 }
25
26 /**
27 The getHeight method returns the cube's height.
28 @return The value in the height field.
29 */
30
31 public double getHeight()
32 {
33 return height;
34 }
35
36 /**
37 The getSurfaceArea method calculates and
38 returns the cube's surface area.
39 @return The surface area of the cube.
40 */
41
42 public double getSurfaceArea()
43 {
44 return getArea() * 6;
45 }
46
47 /**
48 The getVolume method calculates and
49 returns the cube's volume.
50 @return The volume of the cube.
51 */
52
53 public double getVolume()
54 {

 10.2 Calling the Superclass Constructor 631

55 return getArea() * height;
56 }
57 }

The Cube constructor accepts arguments for the parameters len, w, and h. The values that
are passed to len and w are subsequently passed as arguments to the Rectangle constructor
in	line	20:

super(len, w);

When the Rectangle constructor finishes, the remaining code in the Cube constructor is
executed.	The	program	in	Code	Listing	10-12	demonstrates	the	class.

Code Listing 10-12 (CubeDemo.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates passing arguments to a
 5 superclass constructor.
 6 */
 7
 8 public class CubeDemo
 9 {
10 public static void main(String[] args)
11 {
12 double length; // The cube's length
13 double width; // The cube's width
14 double height; // The cube's height
15
16 // Create a Scanner object for keyboard input.
17 Scanner keyboard = new Scanner(System.in);
18
19 // Get cube's length.
20 System.out.println("Enter the following " +
21 "dimensions of a cube:");
22 System.out.print("Length: ");
23 length = keyboard.nextDouble();
24
25 // Get the cube's width.
26 System.out.print("Width: ");
27 width = keyboard.nextDouble();
28
29 // Get the cube's height.
30 System.out.print("Height: ");
31 height = keyboard.nextDouble();
32

632 Chapter 10 Inheritance

33 // Create a cube object and pass the
34 // dimensions to the constructor.
35 Cube myCube =
36 new Cube(length, width, height);
37
38 // Display the cube's properties.
39 System.out.println("Here are the cube's " +
40 "properties.");
41 System.out.println("Length: " +
42 myCube.getLength());
43 System.out.println("Width: " +
44 myCube.getWidth());
45 System.out.println("Height: " +
46 myCube.getHeight());
47 System.out.println("Base Area: " +
48 myCube.getArea());
49 System.out.println("Surface Area: " +
50 myCube.getSurfaceArea());
51 System.out.println("Volume: " +
52 myCube.getVolume());
53 }
54 }

Program Output with example Input Shown in Bold

Enter the following dimensions of a cube:
Length: 10 [enter]
Width: 15 [enter]
Height: 12 [enter]
Here are the cube's properties.
Length: 10.0
Width: 15.0
Height: 12.0
Base Area: 150.0
Surface Area: 900.0
Volume: 1800.0

When the Superclass Has no Default
or no-Arg Constructors
Recall	from	Chapter	6	that	Java	provides	a	default	constructor	for	a	class	only	when	you	
provide no constructors for the class. This makes it possible to have a class with no default
constructor. The Rectangle class we just looked at is an example. It has a constructor that
accepts two arguments. Because we have provided this constructor, the Rectangle class does
not have a default constructor. In addition, we have not written a no-arg constructor for
the class.

 10.2 Calling the Superclass Constructor 633

If a superclass does not have a default constructor and does not have a no-arg constructor,
then a class that inherits from it must call one of the constructors that the superclass does
have. If it does not, an error will result when the subclass is compiled.

Summary of Constructor Issues in Inheritance
We have covered a number of important issues that you should remember about construc-
tors in an inheritance relationship. The following list summarizes them:

•	 The	superclass	constructor	always	executes	before	the	subclass	constructor.
•	 You	can	write	a	super statement that calls a superclass constructor, but only in the sub-

class’s constructor. You cannot call the superclass constructor from any other method.
•	 If	a	super statement that calls a superclass constructor appears in a subclass construc-

tor, it must be the first statement.
•	 If	a	subclass	constructor	does	not	explicitly	call	a	superclass	constructor,	Java	will	

automatically call super() just before the code in the subclass’s constructor executes.
•	 If	 a	 superclass	 does	 not	 have	 a	 default	 constructor	 and	 does	 not	 have	 a	 no-arg	

constructor, then a class that inherits from it must call one of the constructors that the
superclass does have.

Checkpoint

www.myprogramminglab.com

10.4	 Look at the following classes:

public class Ground
{
 public Ground()
 {
 System.out.println("You are on the ground.");
 }
}
public class Sky extends Ground
{
 public Sky()
 {
 System.out.println("You are in the sky.");
 }
}

 What will the following program display?

public class Checkpoint
{
 public static void main(String[] args)
 {
 Sky object = new Sky();
 }
}

http://www.myprogramminglab.com

634 Chapter 10 Inheritance

10.5 Look at the following classes:

public class Ground
{
 public Ground()
 {
 System.out.println("You are on the ground.");
 }
 public Ground(String groundColor)
 {
 System.out.println("The ground is " +
 groundColor);
 }
}
public class Sky extends Ground
{
 public Sky()
 {
 System.out.println("You are in the sky.");
 }
 public Sky(String skyColor)
 {
 super("green");
 System.out.println("The sky is " + skyColor);
 }
}

 What will the following program display?

public class Checkpoint
{
 public static void main(String[] args)
 {
 Sky object = new Sky("blue");
 }
}

10.3 Overriding Superclass Methods

COnCept: A subclass may have a method with the same signature as a superclass
method. In such a case, the subclass method overrides the superclass method.

Sometimes a subclass inherits a method from its superclass, but the method is inadequate
for the subclass’s purpose. Because the subclass is more specialized than the superclass, it is
sometimes necessary for the subclass to replace inadequate superclass methods with more
suitable ones. This is known as method overriding.

 10.3 Overriding Superclass Methods 635

For example, recall the GradedActivity class that was presented earlier in this chapter. This
class has a setScore method that sets a numeric score and a getGrade method that returns
a letter grade based on that score. But, suppose a teacher wants to curve a numeric score
before	the	letter	grade	is	determined.	For	example,	Dr.	Harrison	determines	that	in	order	to	
curve the grades in her class she must multiply each student’s score by a certain percentage.
This gives an adjusted score that is used to determine the letter grade. To satisfy this need
we can design a new class, CurvedActivity, which extends the GradedActivity class and
has its own specialized version of the setScore method. The setScore method in the sub-
class overrides the setScore method in the superclass. Figure 10-11 is a UML diagram
showing the relationship between the GradedActivity class and the CurvedActivity class.

Table 10-1 CurvedActivity class fields

Field Description

rawScore This field holds the student’s unadjusted score.

percentage This field holds the value that the unadjusted score must be multiplied
by to get the curved score.

Figure 10-11 The GradedActivity and CurvedActivity classes

Table 10-1 summarizes the CurvedActivity	class’s	fields,	and	Table	10-2	summarizes	the	
class’s methods.

636 Chapter 10 Inheritance

Code	Listing	10-13	shows	the	CurvedActivity class. The setScore method appears in lines
31	through	35.	It	is	important	to	note	that	the	setScore method in the CurvedActivity class
has the same signature as the setScore method in the superclass, GradedActivity. In order
for overriding to occur, the subclass method must have the same signature as the superclass
method. When an object of the subclass invokes the setScore method, it invokes the sub-
class’s version of the method, not the superclass’s.

Table 10-2 CurvedActivity class methods

Method Description

Constructor The constructor accepts a double argument that is the curve percentage.
This value is assigned to the percentage field and the rawScore field is
assigned 0.0.

setScore This method overrides the setScore method in the superclass. It accepts a
double argument that is the student’s unadjusted score. The method stores
the argument in the rawScore field, and then passes the result of rawScore *
percentage as an argument to the superclass’s setScore method.

getRawScore This method returns the value in the rawScore field.

getPercentage This method returns the value in the percentage field.

nOTe: Recall	from	Chapter	6	that	a	method’s	signature	consists	of	the	method’s	name	
and the data types of the method’s parameters, in the order that they appear.

Code Listing 10-13 (CurvedActivity.java)

 1 /**
 2 This class computes a curved grade. It extends
 3 the GradedActivity class.
 4 */
 5
 6 public class CurvedActivity extends GradedActivity
 7 {
 8 double rawScore; // Unadjusted score
 9 double percentage; // Curve percentage
10
11 /**
12 The constructor sets the curve percentage.
13 @param percent The curve percentage.
14 */
15
16 public CurvedActivity(double percent)
17 {
18 percentage = percent;
19 rawScore = 0.0;
20 }
21

 10.3 Overriding Superclass Methods 637

22 /**
23 The setScore method overrides the superclass setScore method.
24 This version accepts the unadjusted score as an argument. That
25 score is multiplied by the curve percentage and the result is
26 sent as an argument to the superclass's setScore method.
27 @param s The unadjusted score.
28 */
29
30 @Override
31 public void setScore(double s)
32 {
33 rawScore = s;
34 super.setScore(rawScore * percentage);
35 }
36
37 /**
38 The getRawScore method returns the raw score.
39 @return The value in the rawScore field.
40 */
41
42 public double getRawScore()
43 {
44 return rawScore;
45 }
46
47 /**
48 The getPercentage method returns the curve
49 percentage.
50 @return The value in the percentage field.
51 */
52
53 public double getPercentage()
54 {
55 return percentage;
56 }
57 }

Notice that in line 30, the @Override annotation appears just before the setScore method
definition. This annotation tells the Java compiler that the setScore method is meant to
override a method in the superclass.

The @Override annotation in line 30 is not required, but it is recommended that you use it. If
the method fails to correctly override a method in the superclass, the compiler will display an
error message. For example, suppose we had written the method header in line 31 like this:

public void setscore(double s)

If you look closely at the method name, you will see that all the letters are written in lowercase.
This does not match the method’s name in the superclass, which is setScore. Without the

638 Chapter 10 Inheritance

@Override annotation, the code would still compile and execute, but we would not get the
expected results because the method in the subclass would not override the method in the super-
class. However, by using the @Override	annotation	in	line	30,	the	compiler	would	generate	an	
error letting us know that the subclass method does not override any method in the superclass.

Let’s take a closer look at the setScore method in the CurvedActivity class. It accepts an
argument, which is the student’s unadjusted numeric score. This value is stored in the
rawScore	field.	Then,	in	line	34,	the	following	statement	is	executed:

super.setScore(rawScore * percentage);

As	you	already	know,	the	super key word refers to the object’s superclass. This statement
calls the superclass’s version of the setScore method with the result of the expression
rawScore * percentage passed as an argument. This is necessary because the superclass’s
score field is private, and the subclass cannot access it directly. In order to store a value in
the superclass’s score field, the subclass must call the superclass’s setScore	method.	A	
subclass may call an overridden superclass method by prefixing its name with the super key
word and a dot (.).	The	program	in	Code	Listing	10-14	demonstrates	this	class.

Code Listing 10-14 (CurvedActivityDemo.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the CurvedActivity class,
 5 which inherits from the GradedActivity class.
 6 */
 7
 8 public class CurvedActivityDemo
 9 {
10 public static void main(String[] args)
11 {
12 double score; // Raw score
13 double curvePercent; // Curve percentage
14
15 // Create a Scanner object to read keyboard input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Get the unadjusted exam score.
19 System.out.print("Enter the student's " +
20 "raw numeric score: ");
21 score = keyboard.nextDouble();
22
23 // Get the curve percentage.
24 System.out.print("Enter the curve percentage: ");
25 curvePercent = keyboard.nextDouble();
26
27 // Create a CurvedActivity object.
28 CurvedActivity curvedExam =
29 new CurvedActivity(curvePercent);

 10.3 Overriding Superclass Methods 639

30
31 // Set the exam score.
32 curvedExam.setScore(score);
33
34 // Display the raw score.
35 System.out.println("The raw score is " +
36 curvedExam.getRawScore() +
37 " points.");
38
39 // Display the curved score.
40 System.out.println("The curved score is " +
41 curvedExam.getScore());
42
43 // Display the exam grade.
44 System.out.println("The exam grade is " +
45 curvedExam.getGrade());
46 }
47 }

Program Output with example Input Shown in Bold

Enter the student's raw numeric score: 87 [enter]
Enter the curve percentage: 1.06 [enter]
The raw score is 87.0 points.
The curved score is 92.22
The exam grade is A

This program uses the curvedExam variable to reference a CurvedActivity	object.	In	line	32	
the following statement is used to call the setScore method:

curvedExam.setScore(score);

Because curvedExam references a CurvedActivity object, this statement calls the
CurvedActivity class’s setScore method, not the superclass’s version.

Even though a subclass may override a method in the superclass, superclass objects still call
the superclass version of the method. For example, the following code creates an object of
the GradedActivity class and calls the setScore method:

GradedActivity regularExam = new GradedActivity();
regularExam.setScore(85);

Because regularExam references a GradedActivity object, this code calls the GradedActivity
class’s version of the setScore method.

Overloading versus Overriding
There is a distinction between overloading a method and overriding a method. Recall from
Chapter	6	that	overloading	is	when	a	method	has	the	same	name	as	one	or	more	other	
methods,	but	a	different	parameter	list.	Although	overloaded	methods	have	the	same	name,	
they have different signatures. When a method overrides another method, however, they
both have the same signature.

640 Chapter 10 Inheritance

Both overloading and overriding can take place in an inheritance relationship. You already
know that overloaded methods can appear within the same class. In addition, a method in
a subclass can overload a method in the superclass. If class A is the superclass and class B is
the subclass, a method in class B may overload a method in class A, or another method in
class B. Overriding, on the other hand, can only take place in an inheritance relationship. If
class A is the superclass and class B is the subclass, a method in class B may override a
method in class A. However, a method cannot override another method in the same class.
The following list summarizes the distinction between overloading and overriding:

•	 If	two	methods	have	the	same	name	but	different	signatures,	they	are	overloaded.	This	
is true where the methods are in the same class or where one method is in the super-
class and the other method is in the subclass.

•	 If	a	method	in	a	subclass	has	the	same	signature	as	a	method	in	the	superclass,	the	
subclass method overrides the superclass method.

The distinction between overloading and overriding is important because it can affect the
accessibility of superclass methods in a subclass. When a subclass overloads a superclass
method, both methods may be called with a subclass object. However, when a subclass
overrides a superclass method, only the subclass’s version of the method can be called with
a subclass object. For example, look at the SuperClass3	class	in	Code	Listing	10-15.	It	has	
two overloaded methods named showValue. One of the methods accepts an int argument
and the other accepts a String argument.

Code Listing 10-15 (SuperClass3.java)

 1 public class SuperClass3
 2 {
 3 /**
 4 This method displays an int.
 5 @param arg An int.
 6 */
 7
 8 public void showValue(int arg)
 9 {
10 System.out.println("SUPERCLASS: " +
11 "The int argument was " + arg);
12 }
13
14 /**
15 This method displays a String.
16 @param arg A String.
17 */
18
19 public void showValue(String arg)
20 {
21 System.out.println("SUPERCLASS: " +
22 "The String argument was " + arg);
23 }
24 }

 10.3 Overriding Superclass Methods 641

Now look at the SubClass3	class	in	Code	Listing	10-16.	It	inherits	from	the	SuperClass3
class.

Code Listing 10-16 (SubClass3.java)

 1 public class SubClass3 extends SuperClass3
 2 {
 3 /**
 4 This method overrides one of the superclass methods.
 5 @param arg An int.
 6 */
 7
 8 @Override
 9 public void showValue(int arg)
10 {
11 System.out.println("SUBCLASS: " +
12 "The int argument was " + arg);
13 }
14
15 /**
16 This method overloads the superclass methods.
17 @param arg A double.
18 */
19
20 public void showValue(double arg)
21 {
22 System.out.println("SUBCLASS: " +
23 "The double argument was " + arg);
24 }
25 }

Notice that SubClass3 also has two methods named showValue. The first one, in lines 9
through	13,	accepts	an	int argument. This method overrides one of the superclass methods
because they have the same signature. The second showValue	method,	in	lines	20	through	
24,	accepts	a	double argument. This method overloads the other showValue methods because
none	of	the	others	have	the	same	signature.	Although	there	is	a	total	of	four	showValue
methods in these classes, only three of them may be called from a SubClass3 object. This is
demonstrated	in	Code	Listing	10-17.

Code Listing 10-17 (ShowValueDemo.java)

 1 /**
 2 This program demonstrates the methods in the
 3 SuperClass3 and SubClass3 classes.
 4 */
 5
 6 public class ShowValueDemo
 7 {

642 Chapter 10 Inheritance

 8 public static void main(String[] args)
 9 {
10 // Create a SubClass3 object.
11 SubClass3 myObject = new SubClass3();
12
13 myObject.showValue(10); // Pass an int.
14 myObject.showValue(1.2); // Pass a double.
15 myObject.showValue("Hello"); // Pass a String.
16 }
17 }

Program Output

SUBCLASS: The int argument was 10
SUBCLASS: The double argument was 1.2
SUPERCLASS: The String argument was Hello

When an int argument is passed to showValue, the subclass’s method is called because it
overrides the superclass method. In order to call the overridden superclass method, we
would have to use the super key word in the subclass method. Here is an example:

public void showValue(int arg)
{
 super.showValue(arg); // Call the superclass method.
 System.out.println("SUBCLASS: The int argument was " +
 arg);
}

Preventing a Method from Being Overridden
When a method is declared with the final modifier, it cannot be overridden in a subclass.
The following method header is an example that uses the final modifier:

public final void message()

If a subclass attempts to override a final method, the compiler generates an error. This
technique can be used to make sure that a particular superclass method is used by sub-
classes and not a modified version of it.

Checkpoint

www.myprogramminglab.com

10.6 Under what circumstances would a subclass need to override a superclass method?

10.7 How can a subclass method call an overridden superclass method?

10.8 If a method in a subclass has the same signature as a method in the superclass, does
the subclass method overload or override the superclass method?

10.9 If a method in a subclass has the same name as a method in the superclass, but
uses a different parameter list, does the subclass method overload or override the
superclass method?

10.10 How do you prevent a method from being overridden?

http://www.myprogramminglab.com

 10.4 Protected Members 643

10.4 Protected Members

COnCePT: Protected members of a class may be accessed by methods in a subclass,
and by methods in the same package as the class.

Until now you have used two access specifications within a class: private and public. Java
provides a third access specification, protected.	A	protected	member	of	a	class	may	be	
directly accessed by methods of the same class or methods of a subclass. In addition, pro-
tected members may be accessed by methods of any class that are in the same package as
the	protected	member’s	class.	A	protected	member	is	not	quite	private,	because	it	may	be	
accessed by some methods outside the class. Protected members are not quite public either
because access to them is restricted to methods in the same class, subclasses, and classes in
the	same	package	as	the	member’s	class.	A	protected	member’s	access	is	somewhere	between	
private and public.

Let’s	look	at	a	class	with	a	protected	member.	Code	Listing	10-18	shows	the	GradedActivity2
class, which is a modification of the GradedActivity class presented earlier. In this class, the
score field has been made protected instead of private.

Code Listing 10-18 (GradedActivity2.java)

 1 /**
 2 A class that holds a grade for a graded activity.
 3 */
 4
 5 public class GradedActivity2
 6 {
 7 protected double score; // Numeric score
 8
 9 /**
10 The setScore method sets the score field.
11 @param s The value to store in score.
12 */
13
14 public void setScore(double s)
15 {
16 score = s;
17 }
18
19 /**
20 The getScore method returns the score.
21 @return The value stored in the score field.
22 */
23
24 public double getScore()
25 {
26 return score;

644 Chapter 10 Inheritance

27 }
28
29 /**
30 The getGrade method returns a letter grade
31 determined from the score field.
32 @return The letter grade.
33 */
34
35 public char getGrade()
36 {
37 char letterGrade;
38
39 if (score >= 90)
40 letterGrade = 'A';
41 else if (score >= 80)
42 letterGrade = 'B';
43 else if (score >= 70)
44 letterGrade = 'C';
45 else if (score >= 60)
46 letterGrade = 'D';
47 else
48 letterGrade = 'F';
49
50 return letterGrade;
51 }
52 }

Because in line 7 the score field is declared as protected, any class that inherits from
this class has direct access to it. The FinalExam2	class,	shown	in	Code	Listing	10-19,	is	
an example. This class is a modification of the FinalExam class, which was presented ear-
lier. This class has a new method, adjustScore, which directly accesses the superclass’s
score field. If the contents of score have a fractional part of .5 or greater, the method
rounds up score to the next whole number. The adjustScore method is called from
the constructor.

Code Listing 10-19 (FinalExam2.java)

 1 /**
 2 This class determines the grade for a final exam.
 3 The numeric score is rounded up to the next whole
 4 number if its fractional part is .5 or greater.
 5 */
 6
 7 public class FinalExam2 extends GradedActivity2
 8 {
 9 private int numQuestions; // Number of questions

 10.4 Protected Members 645

10 private double pointsEach; // Points for each question
11 private int numMissed; // Number of questions missed
12
13 /**
14 The constructor sets the number of questions on the
15 exam and the number of questions missed.
16 @param questions The number of questions.
17 @param missed The number of questions missed.
18 */
19
20 public FinalExam2(int questions, int missed)
21 {
22 double numericScore; // To hold a numeric score
23
24 // Set the numQuestions and numMissed fields.
25 numQuestions = questions;
26 numMissed = missed;
27
28 // Calculate the points for each question and
29 // the numeric score for this exam.
30 pointsEach = 100.0 / questions;
31 numericScore = 100.0 - (missed * pointsEach);
32
33 // Call the inherited setScore method to
34 // set the numeric score.
35 setScore(numericScore);
36
37 // Adjust the score.
38 adjustScore();
39 }
40
41 /**
42 The getPointsEach method returns the number of
43 points each question is worth.
44 @return The value in the pointsEach field.
45 */
46
47 public double getPointsEach()
48 {
49 return pointsEach;
50 }
51
52 /**
53 The getNumMissed method returns the number of
54 questions missed.
55 @return The value in the numMissed field.
56 */
57

646 Chapter 10 Inheritance

58 public int getNumMissed()
59 {
60 return numMissed;
61 }
62
63 /**
64 The adjustScore method adjusts a numeric score.
65 If score is within 0.5 points of the next whole
66 number, it rounds the score up.
67 */
68
69 private void adjustScore()
70 {
71 double fraction;
72
73 // Get the fractional part of the score.
74 fraction = score - (int) score;
75
76 // If the fractional part is .5 or greater,
77 // round the score up to the next whole number.
78 if (fraction >= 0.5)
79 score = score + (1.0 - fraction);
80 }
81 }

The	program	in	Code	Listing	10-20	demonstrates	the	class.	Figure	10-12	shows	an	example	
of interaction with the program.

Code Listing 10-20 (ProtectedDemo.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates the FinalExam2 class,
 5 which extends the GradedActivity2 class.
 6 */
 7
 8 public class ProtectedDemo
 9 {
10 public static void main(String[] args)
11 {
12 String input; // To hold input
13 int questions; // Number of questions
14 int missed; // Number of questions missed
15

 10.4 Protected Members 647

16 // Get the number of questions on the exam.
17 input = JOptionPane.showInputDialog("How many " +
18 "questions are on the final exam?");
19 questions = Integer.parseInt(input);
20
21 // Get the number of questions the student missed.
22 input = JOptionPane.showInputDialog("How many " +
23 "questions did the student miss?");
24 missed = Integer.parseInt(input);
25
26 // Create a FinalExam object.
27 FinalExam2 exam = new FinalExam2(questions, missed);
28
29 // Display the test results.
30 JOptionPane.showMessageDialog(null,
31 "Each question counts " + exam.getPointsEach() +
32 " points.\nThe exam score is " +
33 exam.getScore() + "\nThe exam grade is " +
34 exam.getGrade());
35
36 System.exit(0);
37 }
38 }

In	the	example	running	of	the	program	in	Figure	10-12,	the	student	missed	5	out	of	40	
questions. The unadjusted numeric score would be 87.5, but the adjustScore method
rounded up the score field to 88.

1

2

3

Figure 10-12 Interaction with the ProtectedDemo.java program

648 Chapter 10 Inheritance

Protected class members may be denoted in a UML diagram with the # symbol. Figure
10-13	shows	a	UML	diagram	for	the	GradedActivity2 class, with the score field denoted
as protected.

Although	making	a	class	member	protected	instead	of	private	might	make	some	tasks	easier,	
you should avoid this practice when possible because any class that inherits from the class,
or is in the same package, has unrestricted access to the protected member. It is always bet-
ter to make all fields private and then provide public methods for accessing those fields.

Package Access
If you do not provide an access specifier for a class member, the class member is given pack-
age access by default. This means that any method in the same package may access the
member. Here is an example:

public class Circle
{
 double radius;
 int centerX, centerY;

 (Method definitions follow . . .)
}

In this class, the radius, centerX, and centerY fields were not given an access specifier, so
the	compiler	grants	them	package	access.	Any	method	in	the	same	package	as	the	Circle
class may directly access these members.

There is a subtle difference between protected access and package access. Protected mem-
bers may be accessed by methods in the same package or in a subclass. This is true even if
the subclass is in a different package. Members with package access, however, cannot be
accessed by subclasses that are in a different package.

It is more likely that you will give package access to class members by accident than by
design,	because	it	 is	easy	to	forget	the	access	specifier.	Although	there	are	circumstances	
under which package access can be helpful, you should normally avoid it. Be careful always
to specify an access specifier for class members.

Figure 10-13 UML diagram for the GradedActivity2 class

 10.5 Chains of Inheritance 649

Tables	10-3	and	10-4	summarize	how	each	of	the	access	specifiers	affects	a	class	member’s	
accessibility within and outside of the class’s package.

Table 10-3 Accessibility from within the class’s package

Access Specifier

Accessible to a subclass inside
the same package?

Accessible to all other classes in the
same package?

default (no modifier) Yes Yes

public Yes Yes

protected Yes Yes

private No No

Table 10-4 Accessibility from outside the class’s package

Access Specifier

Accessible to a subclass outside
the same package?

Accessible to all other classes outside
the same package?

default (no modifier) No No

public Yes Yes

protected Yes No

private No No

Checkpoint

www.myprogramminglab.com

10.11 When a class member is declared as protected, what code may access it?

10.12	 What is the difference between private members and protected members?

10.13	 Why should you avoid making class members protected when possible?

10.14	 What is the difference between private access and package access?

10.15 Why is it easy to give package access to a class member by accident?

10.5 Chains of Inheritance

COnCePT: A superclass can also inherit from another class.

Sometimes it is desirable to establish a chain of inheritance in which one class inherits from
a	second	class,	which	in	turn	inherits	from	a	third	class,	as	illustrated	by	Figure	10-14.	In	
some cases, this chaining of classes goes on for many layers.

In	Figure	10-14,	ClassC inherits ClassB’s members, including the ones that ClassB inherited
from ClassA.	 Let’s	 look	 at	 an	 example	 of	 such	 a	 chain	 of	 inheritance.	 Consider	 the	
PassFailActivity	 class,	 shown	 in	 Code	 Listing	 10-21,	 which	 inherits	 from	 the	
GradedActivity class. The class is intended to determine a letter grade of ‘P’ for passing, or
‘F’ for failing.

http://www.myprogramminglab.com

650 Chapter 10 Inheritance

Code Listing 10-21 (PassFailActivity.java)

 1 /**
 2 This class holds a numeric score and determines
 3 whether the score is passing or failing.
 4 */
 5
 6 public class PassFailActivity extends GradedActivity
 7 {
 8 private double minPassingScore; // Minimum passing score
 9
10 /**
11 The constructor sets the minimum passing score.
12 @param mps The minimum passing score.
13 */
14
15 public PassFailActivity(double mps)
16 {
17 minPassingScore = mps;
18 }
19
20 /**
21 The getGrade method returns a letter grade
22 determined from the score field. This
23 method overrides the superclass method.
24 @return The letter grade.
25 */
26
27 @Override
28 public char getGrade()
29 {

Figure 10-14 A chain of inheritance

 10.5 Chains of Inheritance 651

30 char letterGrade;
31
32 if (super.getScore() >= minPassingScore)
33 letterGrade = 'P';
34 else
35 letterGrade = 'F';
36
37 return letterGrade;
38 }
39 }

The PassFailActivity constructor, in lines 15 through 18, accepts a double argument,
which is the minimum passing grade for the activity. This value is stored in the
minPassingScore field. The getGrade	method,	in	lines	28	through	38,	overrides	the	super-
class method of the same name. This method returns a grade of 'P' if the numeric score is
greater-than or equal-to minPassingScore. Otherwise, the method returns a grade of 'F'.

Suppose we wish to extend this class with another more specialized class. For example, the
PassFailExam	class,	shown	in	Code	Listing	10-22,	determines	a	passing	or	failing	grade	for	
an exam. It has fields for the number of questions on the exam (numQuestions), the number
of points each question is worth (pointsEach), and the number of questions missed by the
student (numMissed).

Code Listing 10-22 (PassFailExam.java)

 1 /**
 2 This class determines a passing or failing grade for
 3 an exam.
 4 */
 5
 6 public class PassFailExam extends PassFailActivity
 7 {
 8 private int numQuestions; // Number of questions
 9 private double pointsEach; // Points for each question
10 private int numMissed; // Number of questions missed
11
12 /**
13 The constructor sets the number of questions, the
14 number of questions missed, and the minimum passing
15 score.
16 @param questions The number of questions.
17 @param missed The number of questions missed.
18 @param minPassing The minimum passing score.
19 */
20
21 public PassFailExam(int questions, int missed,
22 double minPassing)

652 Chapter 10 Inheritance

23 {
24 // Call the superclass constructor.
25 super(minPassing);
26
27 // Declare a local variable for the score.
28 double numericScore;
29
30 // Set the numQuestions and numMissed fields.
31 numQuestions = questions;
32 numMissed = missed;
33
34 // Calculate the points for each question and
35 // the numeric score for this exam.
36 pointsEach = 100.0 / questions;
37 numericScore = 100.0 - (missed * pointsEach);
38
39 // Call the superclass's setScore method to
40 // set the numeric score.
41 setScore(numericScore);
42 }
43
44 /**
45 The getPointsEach method returns the number of
46 points each question is worth.
47 @return The value in the pointsEach field.
48 */
49
50 public double getPointsEach()
51 {
52 return pointsEach;
53 }
54
55 /**
56 The getNumMissed method returns the number of
57 questions missed.
58 @return The value in the numMissed field.
59 */
60
61 public int getNumMissed()
62 {
63 return numMissed;
64 }
65 }

The PassFailExam class inherits the PassFailActivity class’s members, including the ones
that PassFailActivity inherited from GradedActivity.	The	program	in	Code	Listing	10-23	
demonstrates the class.

 10.5 Chains of Inheritance 653

Code Listing 10-23 (PassFailExamDemo.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the PassFailExam class.
 5 */
 6
 7 public class PassFailExamDemo
 8 {
 9 public static void main(String[] args)
10 {
11 int questions; // Number of questions
12 int missed; // Number of questions missed
13 double minPassing; // Minimum passing score
14
15 // Create a Scanner object for keyboard input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Get the number of questions on the exam.
19 System.out.print("How many questions are " +
20 "on the exam? ");
21 questions = keyboard.nextInt();
22
23 // Get the number of questions missed.
24 System.out.print("How many questions did " +
25 "the student miss? ");
26 missed = keyboard.nextInt();
27
28 // Get the minimum passing score.
29 System.out.print("What is the minimum " +
30 "passing score? ");
31 minPassing = keyboard.nextDouble();
32
33 // Create a PassFailExam object.
34 PassFailExam exam =
35 new PassFailExam(questions, missed, minPassing);
36
37 // Display the points for each question.
38 System.out.println("Each question counts " +
39 exam.getPointsEach() + " points.");
40
41 // Display the exam score.
42 System.out.println("The exam score is " +
43 exam.getScore());
44
45 // Display the exam grade.

654 Chapter 10 Inheritance

46 System.out.println("The exam grade is " +
47 exam.getGrade());
48 }
49 }

Program Output with example Input Shown in Bold

How many questions are on the exam? 100 [enter]
How many questions did the student miss? 25 [enter]
What is the minimum passing score? 60 [enter]
Each question counts 1.0 points.
The exam score is 75.0
The exam grade is P

Figure 10-15 is a UML diagram showing the inheritance relationship among the
GradedActivity, PassFailActivity, and PassFailExam classes.

Figure 10-15 The GradedActivity, PassFailActivity, and PassFailExam classes

 10.6 The Object Class 655

Class Hierarchies
Classes	often	are	depicted	graphically	in	a	class	hierarchy.	Like	a	family	tree,	a	class	hierar-
chy shows the inheritance relationships between classes. Figure 10-16 shows a class hierar-
chy for the GradedActivity, FinalExam, PassFailActivity, and PassFailExam classes. The
more general classes are toward the top of the tree and the more specialized classes are
toward the bottom.

10.6 The Object Class

COnCePT: The Java API has a class named Object, which all other classes directly or
indirectly inherit from.

Every	class	in	Java,	including	the	ones	in	the	API	and	the	classes	that	you	create,	directly	or	
indirectly inherits from a class named Object, which is part of the java.lang package.
Here’s how it happens: When a class does not use the extends key word to inherit from
another class, Java automatically extends it from the Object class. For example, look at the
following class declaration:

public class MyClass
{
 (Member Declarations . . .)
}

This class does not explicitly extend any other class, so Java treats it as though it were writ-
ten as follows:

public class MyClass extends Object
{
 (Member Declarations . . .)
}

Ultimately, every class extends the Object class. Figure 10-17 shows how the PassFailExam
class inherits from Object.

Figure 10-16 Class hierarchy

656 Chapter 10 Inheritance

Because every class directly or indirectly extends the Object class, every class inherits the
Object class’s members. Two of the most useful are the toString and equals methods. In
Chapter	8	you	learned	that	every	class	has	a	toString and an equals method, and now you
know why! It is because those methods are inherited from the Object class.

In the Object class, the toString method returns a reference to a String containing the
object’s class name, followed by the @ sign, followed by the object’s hash code, which is a
hexadecimal number. The equals method accepts a reference to an object as its argument. It
returns true	 if	the	argument	references	the	calling	object.	This	is	demonstrated	in	Code	
Listing	10-24.

Code Listing 10-24 (ObjectMethods.java)

 1 /**
 2 This program demonstrates the toString and equals
 3 methods that are inherited from the Object class.
 4 */
 5
 6 public class ObjectMethods
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create two objects.
11 PassFailExam exam1 =

Figure 10-17 The line of inheritance from Object to PassFailExam

 10.7 Polymorphism 657

12 new PassFailExam(0, 0, 0);
13 PassFailExam exam2 =
14 new PassFailExam(0, 0, 0);
15
16 // Send the objects to println, which
17 // will call the toString method.
18 System.out.println(exam1);
19 System.out.println(exam2);
20
21 // Test the equals method.
22 if (exam1.equals(exam2))
23 System.out.println("They are the same.");
24 else
25 System.out.println("They are not the same.");
26 }
27 }

Program Output

PassFailExam@16f0472
PassFailExam@18d107f
They are not the same.

If you wish to change the behavior of either of these methods for a given class, you must
override them in the class.

Checkpoint

www.myprogramminglab.com

10.16 Look at the following class definition:

public class ClassD extends ClassB
{
 (Member Declarations . . .)
}

 Because ClassD inherits from ClassB, is it true that ClassD does not inherit from the
Object class? Why or why not?

10.17 When you create a class, it automatically has a toString method and an equals
method. Why?

10.7 Polymorphism

COnCePT: A superclass reference variable can reference objects of a subclass.

Look at the following statement that declares a reference variable named exam:

GradedActivity exam;Polymorphism
VideoNote

http://www.myprogramminglab.com

658 Chapter 10 Inheritance

This statement tells us that the exam variable’s data type is GradedActivity. Therefore, we can
use the exam variable to reference a GradedActivity object, as shown in the following statement:

exam = new GradedActivity();

The GradedActivity class is also used as the superclass for the FinalExam class. Because of
the “is-a” relationship between a superclass and a subclass, an object of the FinalExam class
is not just a FinalExam object. It is also a GradedActivity	object.	(A	final	exam	is	a	graded	
activity.) Because of this relationship, we can use a GradedActivity variable to reference a
FinalExam object. For example, look at the following statement:

GradedActivity exam = new FinalExam(50, 7);

This statement declares exam as a GradedActivity variable. It creates a FinalExam object
and stores the object’s address in the exam variable. This statement is perfectly legal and
will not cause an error message because a FinalExam object is also a GradedActivity object.

This is an example of polymorphism. The term polymorphism means the ability to take
many forms. In Java, a reference variable is polymorphic because it can reference objects of
types	different	from	its	own,	as	long	as	those	types	are	subclasses	of	its	type.	All	of	the	fol-
lowing declarations are legal because the FinalExam, PassFailActivity, and PassFailExam
classes inherit from GradedActivity:

GradedActivity exam1 = new FinalExam(50, 7);
GradedActivity exam2 = new PassFailActivity(70);
GradedActivity exam3 = new PassFailExam(100, 10, 70);

Although	 a	 GradedActivity variable can reference objects of any class that extends
GradedActivity, there is a limit to what the variable can do with those objects. Recall that
the GradedActivity class has three methods: setScore, getScore, and getGrade. So, a
GradedActivity variable can be used to call only those three methods, regardless of the type
of object the variable references. For example, look at the following code:

GradedActivity exam = new PassFailExam(100, 10, 70);
System.out.println(exam.getScore()); // This works.
System.out.println(exam.getGrade()); // This works.
System.out.println(exam.getPointsEach()); // ERROR! Won't work.

In this code, exam is declared as a GradedActivity variable and is assigned the address of a
PassFailExam object. The GradedActivity class has only the setScore, getScore, and
getGrade methods, so those are the only methods that the exam variable knows how to
execute. The last statement in this code is a call to the getPointsEach method, which is
defined in the PassFailExam class. Because the exam variable only knows about methods in
the GradedActivity class, it cannot execute this method.

Polymorphism and Dynamic Binding
When a superclass variable references a subclass object, a potential problem exists. What if
the subclass has overridden a method in the superclass, and the variable makes a call to that

 10.7 Polymorphism 659

method?	Does	the	variable	call	the	superclass’s	version	of	the	method,	or	the	subclass’s	ver-
sion? For example, look at the following code:

GradedActivity exam = new PassFailActivity(60);
exam.setScore(70);
System.out.println(exam.getGrade());

Recall that the PassFailActivity class extends the GradedActivity class, and it overrides
the getGrade method. When the last statement calls the getGrade method, does it call the
GradedActivity class’s version (which returns 'A', 'B', 'C', 'D', or 'F') or does it call the
PassFailActivity class’s version (which returns 'P' or 'F')?

Recall	from	Chapter	6	that	the	process	of	matching	a	method	call	with	the	correct	method	
definition is known as binding. Java performs dynamic binding or late binding when a vari-
able contains a polymorphic reference. This means that the Java Virtual Machine deter-
mines at runtime which method to call, depending on the type of object that the variable
references. So, it is the object’s type that determines which method is called, not the vari-
able’s type. In this case, the exam variable references a PassFailActivity object, so the
PassFailActivity class’s version of the getGrade method is called. The last statement in this
code will display a grade of P.

The	program	in	Code	Listing	10-25	demonstrates	polymorphic	behavior.	It	declares	an	
array of GradedActivity variables, and then assigns the addresses of objects of various
types to the elements of the array.

Code Listing 10-25 (Polymorphic.java)

 1 /**
 2 This program demonstrates polymorphic behavior.
 3 */
 4
 5 public class Polymorphic
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Create an array of GradedActivity references.
10 GradedActivity[] tests = new GradedActivity[3];
11
12 // The first test is a regular exam with a
13 // numeric score of 75.
14 tests[0] = new GradedActivity();
15 tests[0].setScore(95);
16
17 // The second test is a pass/fail test. The
18 // student missed 5 out of 20 questions, and
19 // the minimum passing grade is 60.
20 tests[1] = new PassFailExam(20, 5, 60);
21

660 Chapter 10 Inheritance

22 // The third test is the final exam. There were
23 // 50 questions and the student missed 7.
24 tests[2] = new FinalExam(50, 7);
25
26 // Display the grades.
27 for (int i = 0; i < tests.length; i++)
28 {
29 System.out.println("Test " + (i + 1) + ": " +
30 "score " + tests[i].getScore() +
31 ", grade " + tests[i].getGrade());
32 }
33 }
34 }

Program Output

Test 1: score 95.0, grade A
Test 2: score 75.0, grade P
Test 3: score 86.0, grade B

You can also use parameters to accept arguments to methods polymorphically. For example,
look at the following method:

public static void displayGrades(GradedActivity g)
{
 System.out.println("Score " + g.getScore() +
 ", grade " + g.getGrade());
}

This method’s parameter, g, is a GradedActivity variable. But, it can be used to accept
arguments of any type that inherit from GradedActivity. For example, the following code
passes objects of the FinalExam, PassFailActivity, and PassFailExam classes to the
method:

GradedActivity exam1 = new FinalExam(50, 7);
GradedActivity exam2 = new PassFailActivity(70);
GradedActivity exam3 = new PassFailExam(100, 10, 70);
displayGrades(exam1); // Pass a FinalExam object.
displayGrades(exam2); // Pass a PassFailActivity object.
displayGrades(exam3); // Pass a PassFailExam object.

The “Is-a” Relationship Does not Work in Reverse
It	is	important	to	note	that	the	“is-a”	relationship	does	not	work	in	reverse.	Although	the	
statement “a final exam is a graded activity” is true, the statement “a graded activity is a
final exam” is not true. This is because not all graded activities are final exams. Likewise,
not all GradedActivity objects are FinalExam objects. So, the following code will not work:

 10.7 Polymorphism 661

GradedActivity activity = new GradedActivity();
FinalExam exam = activity; // ERROR!

You cannot assign the address of a GradedActivity object to a FinalExam variable. This
makes sense because FinalExam objects have capabilities that go beyond those of a
GradedActivity object. Interestingly, the Java compiler will let you make such an assign-
ment if you use a type cast, as shown here:

GradedActivity activity = new GradedActivity();
FinalExam exam = (FinalExam) activity; // Will compile but not run.

But, the program will crash when the assignment statement executes.

The instanceof Operator
There is an operator in Java named instanceof that you can use to determine whether an
object is an instance of a particular class. Here is the general form of an expression that uses
the instanceof operator:

refVar instanceof ClassName

In the general form, refVar is a reference variable and ClassName is the name of a class.
This is the form of a boolean expression that will return true if the object referenced by
refVar is an instance of ClassName. Otherwise, the expression returns false. For example,
the if statement in the following code determines whether the reference variable activity
references a GradedActivity object:

GradedActivity activity = new GradedActivity();
if (activity instanceof GradedActivity)
 System.out.println("Yes, activity is a GradedActivity.");
else
 System.out.println("No, activity is not a GradedActivity.");

This code will display "Yes, activity is a GradedActivity."

The instanceof operator understands the “is-a” relationship that exists when a class inher-
its from another class. For example, look at the following code:

FinalExam exam = new FinalExam(20, 2);
if (exam instanceof GradedActivity)
 System.out.println("Yes, exam is a GradedActivity.");
else
 System.out.println("No, exam is not a GradedActivity.");

Even though the object referenced by exam is a FinalExam object, this code will display
"Yes, exam is a GradedActivity." The instanceof operator returns true because
FinalExam is a subclass of GradedActivity.

Checkpoint

www.myprogramminglab.com

10.18 Recall the Rectangle and Cube classes discussed earlier, as shown in Figure 10-18.

http://www.myprogramminglab.com

662 Chapter 10 Inheritance

a) Is the following statement legal or illegal? If it is illegal, why?

Rectangle r = new Cube(10, 12, 5);

b) If you determined that the statement in part a is legal, are the following state-
ments legal or illegal? (Indicate legal or illegal for each statement.)

System.out.println(r.getLength());
System.out.println(r.getWidth());
System.out.println(r.getHeight());
System.out.println(r.getSurfaceArea());

c) Is the following statement legal or illegal? If it is illegal, why?

Cube c = new Rectangle(10, 12);

10.8 Abstract Classes and Abstract Methods

COnCePT: An abstract class is not instantiated, but other classes extend it. An
abstract method has no body and must be overridden in a subclass.

An	abstract	method	is	a	method	that	appears	in	a	superclass,	but	expects	to	be	overridden	
in	a	subclass.	An	abstract	method	has	only	a	header	and	no	body.	Here	is	the	general	format	
of an abstract method header:

AccessSpecifier abstract ReturnType MethodName(ParameterList);

Notice that the key word abstract appears in the header, and that the header ends with a
semicolon. There is no body for the method. Here is an example of an abstract method header:

Figure 10-18 Rectangle and Cube classes

 10.8 Abstract Classes and Abstract Methods 663

public abstract void setValue(int value);

When an abstract method appears in a class, the method must be overridden in a subclass.
If	a	subclass	fails	to	override	the	method,	an	error	will	result.	Abstract	methods	are	used	to	
ensure that a subclass implements the method.

When a class contains an abstract method, you cannot create an instance of the class.
Abstract	methods	are	commonly	used	in	abstract	classes.	An	abstract	class	is	not	instanti-
ated itself, but serves as a superclass for other classes. The abstract class represents the
generic or abstract form of all the classes that inherit from it.

For example, consider a factory that manufactures airplanes. The factory does not make a
generic airplane, but makes three specific types of airplanes: two different models of prop-
driven planes and one commuter jet model. The computer software that catalogs the planes
might use an abstract class named Airplane. That class has members representing the com-
mon characteristics of all airplanes. In addition, the software has classes for each of the three
specific airplane models the factory manufactures. These classes all extend the Airplane
class, and they have members representing the unique characteristics of each type of plane.
The Airplane class is never instantiated, but is used as a superclass for the other classes.

A	class	becomes	abstract	when	you	place	the	abstract key word in the class definition.
Here is the general format:

AccessSpecifier abstract class ClassName

An	abstract	class	is	not	instantiated,	but	other	classes	extend	it.	An	abstract	method	has	no	
body and must be overridden in a subclass.

For example, look at the following abstract class Student	shown	in	Code	Listing	10-26.	It	
holds data common to all students, but does not hold all the data needed for students of
specific majors.

Code Listing 10-26 (Student.java)

 1 /**
 2 The Student class is an abstract class that holds
 3 general data about a student. Classes representing
 4 specific types of students should inherit from
 5 this class.
 6 */
 7
 8 public abstract class Student
 9 {
10 private String name; // Student name
11 private String idNumber; // Student ID
12 private int yearAdmitted; // Year admitted
13
14 /**
15 The constructor sets the student's name,
16 ID number, and year admitted.

664 Chapter 10 Inheritance

17 @param n The student's name.
18 @param id The student's ID number.
19 @param year The year the student was admitted.
20 */
21
22 public Student(String n, String id, int year)
23 {
24 name = n;
25 idNumber = id;
26 yearAdmitted = year;
27 }
28
29 /**
30 The toString method returns a String containing
31 the student's data.
32 @return A reference to a String.
33 */
34
35 public String toString()
36 {
37 String str;
38
39 str = "Name: " + name
40 + "\nID Number: " + idNumber
41 + "\nYear Admitted: " + yearAdmitted;
42 return str;
43 }
44
45 /**
46 The getRemainingHours method is abstract.
47 It must be overridden in a subclass.
48 @return The hours remaining for the student.
49 */
50
51 public abstract int getRemainingHours();
52 }

The Student	 class	contains	 fields	 for	 storing	a	 student’s	name,	 ID	number,	and	year	
admitted. It also has a constructor, a toString method, and an abstract method named
getRemainingHours.

This abstract method must be overridden in classes that inherit from the Student class. The
idea behind this method is that it returns the number of hours remaining for a student to
take in his or her major. It was made abstract because this class is intended to be the base
for other classes that represent students of specific majors. For example, a CompSciStudent
class might hold the data for a computer science student, and a BiologyStudent class
might	hold	the	data	for	a	biology	student.	Computer	science	students	must	take	courses	in	
different disciplines than those taken by biology students. It stands to reason that the

 10.8 Abstract Classes and Abstract Methods 665

CompSciStudent class will calculate the number of hours remaining to be taken differently
than the BiologyStudent class. Let’s look at an example of the CompSciStudent class, which
is	shown	in	Code	Listing	10-27.

Code Listing 10-27 (CompSciStudent.java)

 1 /**
 2 This class holds data for a computer science student.
 3 */
 4
 5 public class CompSciStudent extends Student
 6 {
 7 // Required hours
 8 private final int MATH_HOURS = 20; // Math hours
 9 private final int CS_HOURS = 40; // Comp sci hours
 10 private final int GEN_ED_HOURS = 60; // Gen ed hours
 11
 12 // Hours taken
 13 private int mathHours; // Math hours taken
 14 private int csHours; // Comp sci hours taken
 15 private int genEdHours; // General ed hours taken
 16
 17 /**
 18 The Constructor sets the student's name,
 19 ID number, and the year admitted.
 20 @param n The student's name.
 21 @param id The student's ID number.
 22 @param year The year the student was admitted.
 23 */
 24
 25 public CompSciStudent(String n, String id, int year)
 26 {
 27 super(n, id, year);
 28 }
 29
 30 /**
 31 The setMathHours method sets the number of
 32 math hours taken.
 33 @param math The math hours taken.
 34 */
 35
 36 public void setMathHours(int math)
 37 {
 38 mathHours = math;
 39 }
 40
 41 /**

666 Chapter 10 Inheritance

 42 The setCsHours method sets the number of
 43 computer science hours taken.
 44 @param cs The computer science hours taken.
 45 */
 46
 47 public void setCsHours(int cs)
 48 {
 49 csHours = cs;
 50 }
 51
 52 /**
 53 The setGenEdHours method sets the number of
 54 general ed hours taken.
 55 @param genEd The general ed hours taken.
 56 */
 57
 58 public void setGenEdHours(int genEd)
 59 {
 60 genEdHours = genEd;
 61 }
 62
 63 /**
 64 The getRemainingHours method returns the
 65 the number of hours remaining to be taken.
 66 @return The hours remaining for the student.
 67 */
 68
 69 @Override
 70 public int getRemainingHours()
 71 {
 72 int reqHours, // Total required hours
 73 remainingHours; // Remaining hours
 74
 75 // Calculate the required hours.
 76 reqHours = MATH_HOURS + CS_HOURS + GEN_ED_HOURS;
 77
 78 // Calculate the remaining hours.
 79 remainingHours = reqHours - (mathHours + csHours
 80 + genEdHours);
 81
 82 return remainingHours;
 83 }
 84
 85 /**
 86 The toString method returns a string containing
 87 the student's data.
 88 @return A reference to a String.
 89 */

 10.8 Abstract Classes and Abstract Methods 667

 90
 91 @Override
 92 public String toString()
 93 {
 94 String str;
 95
 96 str = super.toString() +
 97 "\nMajor: Computer Science" +
 98 "\nMath Hours Taken: " + mathHours +
 99 "\nComputer Science Hours Taken: " + csHours +
100 "\nGeneral Ed Hours Taken: " + genEdHours;
101
102 return str;
103 }
104 }

The CompSciStudent class, which extends the Student class, declares the following final
integer fields in lines 8 through 10: MATH_HOURS, CS_HOURS, and GEN_ED_HOURS. These fields
hold the required number of math, computer science, and general education hours for a com-
puter	science	student.	It	also	declares	the	following	fields	in	lines	13	through	15:	mathHours,
csHours, and genEdHours. These fields hold the number of math, computer science, and gen-
eral education hours taken by the student. Mutator methods are provided to store values in
these fields. In addition, the class overrides the toString method and the abstract
getRemainingHours	method.	The	program	in	Code	Listing	10-28	demonstrates	the	class.

Code Listing 10-28 (CompSciStudentDemo.java)

 1 /**
 2 This program demonstrates the CompSciStudent class.
 3 */
 4
 5 public class CompSciStudentDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 // Create a CompSciStudent object.
10 CompSciStudent csStudent =
11 new CompSciStudent("Jennifer Haynes",
12 "167W98337", 2015);
13
14 // Store values for math, CS, and gen ed hours.
15 csStudent.setMathHours(12);
16 csStudent.setCsHours(20);
17 csStudent.setGenEdHours(40);
18
19 // Display the student's data.

668 Chapter 10 Inheritance

20 System.out.println(csStudent);
21
22 // Display the number of remaining hours.
23 System.out.println("Hours remaining: " +
24 csStudent.getRemainingHours());
25 }
26 }

Program Output

Name: Jennifer Haynes
ID Number: 167W98337
Year Admitted: 2015
Major: Computer Science
Math Hours Taken: 12
Computer Science Hours Taken: 20
General Ed Hours Taken: 40
Hours remaining: 48

Remember the following points about abstract methods and classes:

•	 Abstract	methods	and	abstract	classes	are	defined	with	the	abstract key word.
•	 Abstract	methods	have	no	body,	and	their	header	must	end	with	a	semicolon.
•	 An	abstract	method	must	be	overridden	in	a	subclass.
•	 When	a	class	contains	an	abstract	method,	it	cannot	be	instantiated.	It	must	serve	as	

a superclass.
•	 An	abstract	class	cannot	be	instantiated.	It	must	serve	as	a	superclass.

Abstract Classes in UML
Abstract	classes	are	drawn	like	regular	classes	in	UML,	except	the	name	of	the	class	and	the	
names of abstract methods are shown in italics. For example, Figure 10-19 shows a UML
diagram for the Student class.

Student

name : String
idNumber : String
yearAdmitted : int

Student(n : String, id : String,
 year : int)
toString() : String
getRemainingHours() : int

Figure 10-19 UML diagram for the Student class

 10.9 Interfaces 669

Checkpoint

www.myprogramminglab.com

10.19 What is the purpose of an abstract method?

10.20	 If a subclass extends a superclass with an abstract method, what must you do in
the subclass?

10.21	 What is the purpose of an abstract class?

10.22	 If a class is defined as abstract, what can you not do with the class?

10.9 Interfaces

COnCePT: An interface specifies behavior for a class.

In	its	simplest	form,	an	interface	is	like	a	class	that	contains	only	abstract	methods.	An	interface	
cannot be instantiated. Instead, it is implemented by other classes. When a class implements an
interface, the class must override the methods that are specified by the interface.

An	interface	looks	similar	to	a	class,	except	the	key	word	interface is used instead of the key
word class, and the methods that are specified in an interface have no bodies, only headers
that are terminated by semicolons. Here is the general format of an interface definition:

public interface InterfaceName
{
 (Method headers . . .)
}

Code	Listing	10-29	shows	an	example	of	an	interface	named	Displayable.	In	line	3,	the	
interface specifies a void method named display().

Code Listing 10-29 (Displayable.java)

1 public interface Displayable
2 {
3 void display();
4 }

Notice that the display	method	header	in	line	3	does	not	have	an	access	specifier.	This	is	
because all methods in an interface are implicitly public. You can optionally write public in
the method header, but most programmers leave it out because all interface methods must
be public.

Any	class	that	implements	the	Displayable	 interface	shown	in	Code	Listing	10-29	must
provide an implementation of the display method (with the exact signatures specified by
the interface, and with the same return type). The Person	class	shown	in	Code	Listing	
10-30	is	an	example.

http://www.myprogramminglab.com

670 Chapter 10 Inheritance

Code Listing 10-30 (Person.java)

 1 public class Person implements Displayable
 2 {
 3 private String name;
 4
 5 // Constructor
 6 public Person(String n)
 7 {
 8 name = n;
 9 }
10
11 // display method
12 public void display()
13 {
14 System.out.println("My name is " + name);
15 }
16 }

When you want a class to implement an interface, you use the implements key word in the
class	header.	Notice	in	line	1	of	Code	Listing	10-30,	the	Person class header ends with the
clause implements Displayable. Because the Person class implements the Displayable
interface, it must provide an implementation of the interface’s display method. This is done
in	lines	12	through	15	of	the	Person	class.	The	program	in	Code	Listing	10-31	demonstrates	
the Person class.

Code Listing 10-31 (InterfaceDemo.java)

 1 /**
 2 This program demonstrates a class that implements
 3 the Displayable interface.
 4 */
 5
 6 public class InterfaceDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create an instance of the Person class.
11 Person p = new Person("Antonio");
12
13 // Call the object's display method.
14 p.display();
15 }
16 }

Program Output

My name is Antonio

 10.9 Interfaces 671

An Interface is a Contract
When a class implements an interface, it is agreeing to provide all of the methods that are
specified by the interface. It is often said that an interface is like a “contract,” and when a
class implements an interface it must adhere to the contract.

For	example,	Code	Listing	10-32	shows	an	interface	named	Relatable, which is intended to
be used with the GradedActivity class presented earlier. This interface has three method
headers: equals, isGreater, and isLess. Notice that each method accepts a GradedActivity
object as its argument.

Code Listing 10-32 (Relatable.java)

 1 /**
 2 Relatable interface
 3 */
 4
 5 public interface Relatable
 6 {
 7 boolean equals(GradedActivity g);
 8 boolean isGreater(GradedActivity g);
 9 boolean isLess(GradedActivity g);
10 }

You might have guessed that the Relatable interface is named “Relatable” because it speci-
fies methods that presumably, make relational comparisons with GradedActivity objects.
The intent is to make any class that implements this interface “relatable” with GradedActivity
objects by ensuring that it has an equals, an isGreater, and an isLess method that perform
relational comparisons. But, the interface only specifies the headers for these methods, not
what	the	methods	should	do.	Although	the	programmer	of	a	class	that	 implements	the	
Relatable interface can choose what those methods should do, he or she should provide
methods that comply with this intent.

Code	Listing	10-33	shows	the	code	for	the	FinalExam3 class, which implements the Relatable
interface. The equals, isGreater, and isLess methods compare the calling object with the
object	passed	as	an	argument.	The	program	in	Code	Listing	10-34	demonstrates	the	class.

Code Listing 10-33 (FinalExam3.java)

 1 /**
 2 This class determines the grade for a final exam.
 3 */
 4
 5 public class FinalExam3 extends GradedActivity implements Relatable
 6 {
 7 private int numQuestions; // Number of questions
 8 private double pointsEach; // Points for each question
 9 private int numMissed; // Questions missed

672 Chapter 10 Inheritance

 10
 11 /**
 12 The constructor sets the number of questions on the
 13 exam and the number of questions missed.
 14 @param questions The number of questions.
 15 @param missed The number of questions missed.
 16 */
 17
 18 public FinalExam3(int questions, int missed)
 19 {
 20 double numericScore; // To hold a numeric score
 21
 22 // Set the numQuestions and numMissed fields.
 23 numQuestions = questions;
 24 numMissed = missed;
 25
 26 // Calculate the points for each question and
 27 // the numeric score for this exam.
 28 pointsEach = 100.0 / questions;
 29 numericScore = 100.0 - (missed * pointsEach);
 30
 31 // Call the inherited setScore method to
 32 // set the numeric score.
 33 setScore(numericScore);
 34 }
 35
 36 /**
 37 The getPointsEach method returns the number of
 38 points each question is worth.
 39 @return The value in the pointsEach field.
 40 */
 41
 42 public double getPointsEach()
 43 {
 44 return pointsEach;
 45 }
 46
 47 /**
 48 The getNumMissed method returns the number of
 49 questions missed.
 50 @return The value in the numMissed field.
 51 */
 52
 53 public int getNumMissed()
 54 {
 55 return numMissed;
 56 }
 57

 10.9 Interfaces 673

 58 /**
 59 The equals method compares the calling object
 60 to the argument object for equality.
 61 @return true if the calling
 62 object's score is equal to the argument's
 63 score.
 64 */
 65
 66 public boolean equals(GradedActivity g)
 67 {
 68 boolean status;
 69
 70 if (this.getScore() == g.getScore())
 71 status = true;
 72 else
 73 status = false;
 74
 75 return status;
 76 }
 77
 78 /**
 79 The isGreater method determines whether the calling
 80 object is greater than the argument object.
 81 @return true if the calling object's score is
 82 greater than the argument object's score.
 83 */
 84
 85 public boolean isGreater(GradedActivity g)
 86 {
 87 boolean status;
 88
 89 if (this.getScore() > g.getScore())
 90 status = true;
 91 else
 92 status = false;
 93
 94 return status;
 95 }
 96
 97 /**
 98 The isLess method determines whether the calling
 99 object is less than the argument object.
100 @return true if the calling object's score is
101 less than the argument object's score.
102 */
103
104 public boolean isLess(GradedActivity g)
105 {

674 Chapter 10 Inheritance

106 boolean status;
107
108 if (this.getScore() < g.getScore())
109 status = true;
110 else
111 status = false;
112
113 return status;
114 }
115 }

Code Listing 10-34 (RelatableExams.java)

 1 /**
 2 This program demonstrates the FinalExam3 class which
 3 implements the Relatable interface.
 4 */
 5
 6 public class RelatableExams
 7 {
 8 public static void main(String[] args)
 9 {
10 // Exam #1 had 100 questions and the student
11 // missed 20 questions.
12 FinalExam3 exam1 = new FinalExam3(100, 20);
13
14 // Exam #2 had 100 questions and the student
15 // missed 30 questions.
16 FinalExam3 exam2 = new FinalExam3(100, 30);
17
18 // Display the exam scores.
19 System.out.println("Exam 1: " + exam1.getScore());
20 System.out.println("Exam 2: " + exam2.getScore());
21
22 // Compare the exam scores.
23 if (exam1.equals(exam2))
24 System.out.println("The exam scores are equal.");
25
26 if (exam1.isGreater(exam2))
27 System.out.println("The Exam 1 score is the highest.");
28
29 if (exam1.isLess(exam2))
30 System.out.println("The Exam 1 score is the lowest.");
31 }
32 }

 10.9 Interfaces 675

Program Output

Exam 1: 80.0
Exam 2: 70.0
The Exam 1 score is the highest.

Fields in Interfaces
An	interface	can	contain	field	declarations,	but	all	fields	in	an	interface	are	treated	as	final
and static. Because they automatically become final, you must provide an initialization
value. For example, look at the following interface definition:

public interface Doable
{
 int FIELD1 = 1;
 int FIELD2 = 2;
 (Method headers . . .)
}

In this interface, FIELD1 and FIELD2 are final static int	variables.	Any	class	that	imple-
ments this interface has access to these variables.

Implementing Multiple Interfaces
You might be wondering why we need both abstract classes and interfaces, since they are so
similar to each other. The reason is that a class can extend only one superclass, but Java
allows a class to implement multiple interfaces. When a class implements multiple inter-
faces, it must provide the methods specified by all of them.

To specify multiple interfaces in a class definition, simply list the names of the interfaces,
separated by commas, after the implements key word. Here is the first line of an example of
a class that implements multiple interfaces:

public class MyClass implements Interface1,
 Interface2,
 Interface3

This class implements three interfaces: Interface1, Interface2, and Interface3.

Interfaces in UML
In a UML diagram, an interface is drawn like a class, except the interface name and the
method names are italicized, and the <<interface>> tag is shown above the interface name.
The relationship between a class and an interface is known as a realization relationship
(the class realizes the interfaces). You show a realization relationship in a UML diagram
by connecting a class and an interface with a dashed line that has an open arrowhead at
one end. The arrowhead points to the interface. This depicts the realization relationship.
Figure	10-20	is	a	UML	diagram	showing	the	relationships	among	the	GradedActivity class,
the FinalExam3 class, and the Relatable interface.

676 Chapter 10 Inheritance

Default Methods
Beginning in Java 8, interfaces may have default methods.	A	default	method	is	an	interface	
method	that	has	a	body.	Code	Listing	10-35	shows	another	version	of	the	Displayable
interface, in which the display method is a default method.

Code Listing 10-35 (Displayable.java)

1 public interface Displayable
2 {
3 default void display()
4 {
5 System.out.println("This is the default display method.");
6 }
7 }

Notice	in	line	3	that	the	method	header	begins	with	the	key	word	default. This is required
for an interface method that has a body. When a class implements an interface with a
default method, the class can override the default method, but it is not required to. For

+ equals (g : GradedActivity)
 : boolean
+ isGreater(g : GradedActivity)
 : boolean
+ isLess (g : GradedActivity)
 : boolean

<<interface>>
Relatable

Figure 10-20 Realization relationship in a UML diagram

 10.9 Interfaces 677

example, the Person	class	shown	in	Code	Listing	10-36	implements	the	Displayable inter-
face, but does not override the display	method.	The	program	in	Code	Listing	10-37	instan-
tiates the Person class, and calls the display	method.	As	you	can	see	from	the	program	
output, the code in the interface’s default method is executed.

Code Listing 10-36 (Person.java)

 1 /**
 2 This class implements the Displayable
 3 interface, but does not override the
 4 default display method.
 5 */
 6
 7 public class Person implements Displayable
 8 {
 9 private String name;
10
11 // Constructor
12 public Person(String n)
13 {
14 name = n;
15 }
16 }

Code Listing 10-37 (InterfaceDemoDefaultMethod.java)

 1 /**
 2 This program demonstrates a class that implements
 3 the Displayable interface (with a default method).
 4 */
 5
 6 public class InterfaceDemoDefaultMethod
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create an instance of the Person class.
11 Person p = new Person("Antonio");
12
13 // Call the object's display method.
14 p.display();
15 }
16 }

Program Output

This is the default display method.

678 Chapter 10 Inheritance

Polymorphism and Interfaces
Just as you can create reference variables of a class type, Java allows you to create reference
variables	of	an	interface	type.	An	interface	reference	variable	can	reference	any	object	that	
implements that interface, regardless of its class type. This is another example of polymor-
phism. For example, look at the RetailItem	interface	in	Code	Listing	10-38.

Code Listing 10-38 (RetailItem.java)

 1 /**
 2 RetailItem interface
 3 */
 4
 5 public interface RetailItem
 6 {
 7 public double getRetailPrice();
 8 }

This interface specifies only one method: getRetailPrice. Both the CompactDisc and
DvdMovie	classes,	shown	in	Code	Listings	10-39	and	10-40,	implement	this	interface.

Code Listing 10-39 (CompactDisc.java)

 1 /**
 2 Compact Disc class
 3 */
 4
 5 public class CompactDisc implements RetailItem
 6 {
 7 private String title; // The CD's title
 8 private String artist; // The CD's artist
 9 private double retailPrice; // The CD's retail price
10
11 /**
12 Constructor
13 @param cdTitle The CD title.
14 @param cdArtist The name of the artist.
15 @param cdPrice The CD's price.
16 */

nOTe: One of the benefits of having default methods is that they allow you to add
new methods to an existing interface without causing errors in the classes that already
implement the interface. Prior to Java 8, when you added a new method header to an
existing interface, all of the classes that already implement that interface had to be
rewritten to override the new method. Now you can add default methods to an inter-
face, and if an existing class (that implements the interface) does not need the new
method, you do not have to rewrite the class.

 10.9 Interfaces 679

17
18 public CompactDisc(String cdTitle, String cdArtist,
19 double cdPrice)
20 {
21 title = cdTitle;
22 artist = cdArtist;
23 retailPrice = cdPrice;
24 }
25
26 /**
27 getTitle method
28 @return The CD's title.
29 */
30
31 public String getTitle()
32 {
33 return title;
34 }
35
36 /**
37 getArtist method
38 @return The name of the artist.
39 */
40
41 public String getArtist()
42 {
43 return artist;
44 }
45
46 /**
47 getRetailPrice method (Required by the RetailItem
48 interface)
49 @return The retail price of the CD.
50 */
51
52 public double getRetailPrice()
53 {
54 return retailPrice;
55 }
56 }

Code Listing 10-40 (DvdMovie.java)

 1 /**
 2 DvdMovie class
 3 */
 4

680 Chapter 10 Inheritance

 5 public class DvdMovie implements RetailItem
 6 {
 7 private String title; // The DVD's title
 8 private int runningTime; // Running time in minutes
 9 private double retailPrice; // The DVD's retail price
10
11 /**
12 Constructor
13 @param dvdTitle The DVD title.
14 @param runTime The running time in minutes.
15 @param dvdPrice The DVD's price.
16 */
17
18 public DvdMovie(String dvdTitle, int runTime,
19 double dvdPrice)
20 {
21 title = dvdTitle;
22 runningTime = runTime;
23 retailPrice = dvdPrice;
24 }
25
26 /**
27 getTitle method
28 @return The DVD's title.
29 */
30
31 public String getTitle()
32 {
33 return title;
34 }
35
36 /**
37 getRunningTime method
38 @return The running time in minutes.
39 */
40
41 public int getRunningTime()
42 {
43 return runningTime;
44 }
45
46 /**
47 getRetailPrice method (Required by the RetailItem
48 interface)
49 @return The retail price of the DVD.
50 */
51
52 public double getRetailPrice()

 10.9 Interfaces 681

53 {
54 return retailPrice;
55 }
56 }

Because they implement the RetailItem interface, objects of these classes may be referenced
by a RetailItem reference variable. The following code demonstrates:

RetailItem item1 = new CompactDisc("Songs From the Heart",
 "Billy Nelson",
 18.95);
RetailItem item2 = new DvdMovie("Planet X",
 102,
 22.95);

In this code, two RetailItem reference variables, item1 and item2, are declared. The item1
variable references a CompactDisc object and the item2 variable references a DvdMovie
object. This is possible because both the CompactDisc and DvdMovie classes implement the
RetailItem interface. When a class implements an interface, an inheritance relationship
known as interface inheritance is established. Because of this inheritance relationship, a
CompactDisc object is a RetailItem, and likewise, a DvdMovie object is a RetailItem.
Therefore, we can create RetailItem reference variables and have them reference
CompactDisc and DvdMovie objects.

The	program	in	Code	Listing	10-41	demonstrates	how	an	interface	reference	variable	can	
be used as a method parameter.

Code Listing 10-41 (PolymorphicInterfaceDemo.java)

 1 /**
 2 This program demonstrates that an interface type may
 3 be used to create a polymorphic reference.
 4 */
 5
 6 public class PolymorphicInterfaceDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a CompactDisc object.
11 CompactDisc cd =
12 new CompactDisc("Greatest Hits",
13 "Joe Looney Band",
14 18.95);
15 // Create a DvdMovie object.
16 DvdMovie movie =
17 new DvdMovie("Wheels of Fury",
18 137, 12.95);
19
20 // Display the CD's title.

682 Chapter 10 Inheritance

21 System.out.println("Item #1: " +
22 cd.getTitle());
23
24 // Display the CD's price.
25 showPrice(cd);
26
27 // Display the DVD's title.
28 System.out.println("Item #2: " +
29 movie.getTitle());
30
31 // Display the DVD's price.
32 showPrice(movie);
33 }
34
35 /**
36 The showPrice method displays the price
37 of a RetailItem object.
38 @param item A reference to a RetailItem object.
39 */
40
41 private static void showPrice(RetailItem item)
42 {
43 System.out.printf("Price: $%,.2f\n", item.getRetailPrice());
44 }
45 }

Program Output

Item #1: Greatest Hits
Price: $18.95
Item #2: Wheels of Fury
Price: $12.95

There	are	some	limitations	to	using	interface	reference	variables.	As	previously	mentioned,	
you cannot create an instance of an interface. In addition, when an interface variable refer-
ences an object, you can use the interface variable to call only the methods that are specified
in the interface. For example, look at the following code:

// Reference a CompactDisc object with a RetailItem variable.
RetailItem item = new CompactDisc("Greatest Hits",
 "Joe Looney Band",
 18.95);

// Call the getRetailPrice method . . .
System.out.println(item.getRetailPrice()); // OK, this works.
// Attempt to call the getTitle method . . .
System.out.println(item.getTitle()); // ERROR! Will not compile!

 10.10 Anonymous Inner Classes 683

Tip: It is possible to cast an interface reference variable to the type of the object it refer-
ences, and then call methods that are members of that type. The syntax is somewhat
awkward, however. The statement that causes the compiler error in the example code
could be rewritten as:

System.out.println(((CompactDisc)item).getTitle());

Checkpoint

www.myprogramminglab.com

10.23 What is the purpose of an interface?

10.24 How is an interface similar to an abstract class?

10.25 How is an interface different from an abstract class, or any class?

10.26 If an interface has fields, how are they treated?

10.27 Write the first line of a class named Customer, which implements an interface
named Relatable.

10.28 Write the first line of a class named Employee, which implements interfaces named
Payable and Listable.

The last line of code will not compile because the RetailItem interface specifies only one
method: getRetailPrice. So, we cannot use a RetailItem reference variable to call any
other method.

10.10 Anonymous inner Classes

ConCepT: An inner class is a class that is defined inside another class. An
anonymous inner class is an inner class that has no name. An anonymous
inner class must implement an interface, or extend another class.

Sometimes you need a class that is simple, and to be instantiated only once in your code. When
this is the case, you can use an anonymous inner class. An anonymous inner class is a class that
has no name. It is called an inner class because it is defined inside another class. You use the
new operator to simultaneously define an anonymous inner class and create an instance of it.
Here is the general syntax for instantiating and defining an anonymous inner class:

new ClassOrInterfaceName() {

 (Fields and methods of the anonymous class…)

}

The new operator is followed by the name of an existing class or interface, followed by a set
of parentheses. Next, you write the body of the class, enclosed in curly braces. The expres-
sion creates an object that is an instance of a class that either extends the specified super-
class, or implements the specified interface. A reference to the object is returned. (Notice
that you do not use the extends or implements key words in the expression.)

http://www.myprogramminglab.com

684 Chapter 10 Inheritance

Before you look at an example, you must understand a few requirements and restrictions:

•	 An	anonymous	inner	class	must	either	implement	an	interface,	or	extend	another	class.	
•	 If	the	anonymous	inner	class	extends	a	superclass,	the	superclass’s	no-arg	constructor	

is called when the object is created.
•	 An	anonymous	inner	class	must	override	all	of	the	abstract	methods	specified	by	the	

interface it is implementing, or the superclass it is extending.
•	 Because	an	anonymous	inner	class’s	definition	is	written	inside	a	method,	it	can	access	

that method’s local variables, but only if they are declared final, or if they are effec-
tively final.	(An	effectively	final variable is a variable whose value is never changed.)
A	compiler	error	will	result	if	an	anonymous	inner	class	tries	to	use	a	variable	that	is	
not final, or not effectively final.

Let’s look at an example of an anonymous inner class that implements an interface. Suppose
we	have	the	interface	shown	in	Code	Listing	10-42.

Code Listing 10-42 (IntCalculator.java)

1 interface IntCalculator
2 {
3 int calculate(int number);
4 }

The name of the interface is IntCalculator, and it specifies a method named calculate.
The calculate method accepts an int argument, and returns an int value. Suppose we
want to define a class that implements the IntCalculator interface, and overrides
the calculate method so that it returns the square of the argument that is passed to it. The
 following code snippet shows how:

IntCalculator square = new IntCalculator() {
 public int calculate(int number)
 {
 return number * number;
 }};

The first line of the code snippet declares a variable named square, that is an
IntCalculator reference variable (meaning that it can refer to any object that implements
IntCalculator). On the right side of the = sign, the expression new IntCalculator()
 creates an instance of an anonymous class that implements the IntCalculator interface.
The body of the anonymous class appears next, enclosed inside curly braces. In the class
body, the calculate method is overridden. Because this is a complete statement, it ends with
a	semicolon.	Figure	10-21	illustrates	the	different	parts	of	the	statement,	and	Code	Listing	
10-43	shows	a	complete	program	that	uses	it.

 10.10 Anonymous Inner Classes 685

Code Listing 10-43 (AnonymousClassDemo.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates an anonymous inner class.
 5 */
 6
 7 public class AnonymousClassDemo
 8 {
 9 public static void main(String[] args)
10 {
11 int num;
12
13 // Create a Scanner object for keyboard input.
14 Scanner keyboard = new Scanner(System.in);
15
16 // Create an object that implements IntCalculator.
17 IntCalculator square = new IntCalculator() {
18 public int calculate(int number)
19 {
20 return number * number;
21 }};
22
23 // Get a number from the user.
24 System.out.print("Enter an integer number: ");
25 num = keyboard.nextInt();

IntCalculator square = new IntCalculator() {
 public int calculate(int number)
 {
 return number * number;
 }};

Interface
reference variable

This creates an instance of
an anonymous class that

implements IntCalculator.

Method in the
anonymous class

Semicolon

Figure 10-21 Creating an instance of an anonymous inner class

686 Chapter 10 Inheritance

26
27 // Display the square of the number.
28 System.out.println("The square is " + square.calculate(num));
29 }
30 }

Program Output with example Input Shown in Bold

Enter an integer number: 5 [Enter]
The square is 25

Let’s take a closer look at the program:

•	 Line	11	declares	an	int variable named num, which will be used to hold user input.
•	 Line	14	creates	a	Scanner object for keyboard input.
•	 Lines	 17	 through	 21	 instantiate	 an	 anonymous	 inner	 class	 that	 implements	 the	

IntCalculator	interface.	A	variable	named	square is used to reference the object. In
the	class	body,	lines	18	through	21	override	the	calculate method to return the square
of the method’s argument.

•	 Line	24	prompts	the	user	to	enter	an	integer	number,	and	line	25	reads	the	number	
from the keyboard. The number is assigned to the num variable.

•	 Line	28	calls	the	square object’s calculate method, and displays the return value in
a message.

10.11 Functional Interfaces and Lambda expressions

COnCePT: A functional interface is an interface that has one abstract method. You
can use a special type of expression, known as a lambda expression, to
create an object that implements a functional interface.

Java 8 introduces two new features that work together to simplify code, particularly in situ-
ations where you might use anonymous inner classes. These new features are functional
interfaces	and	lambda	expressions.	A	functional interface is simply an interface that has one
abstract method. For example, let’s take another look at the IntCalculator interface that
we previously discussed in the section on anonymous classes. Because it has only one
abstract	method,	it	is	considered	a	functional	interface.	For	your	convenience,	Code	Listing	
10-44	shows	the	code	for	the	interface.

Code Listing 10-44 (IntCalculator.java)

1 interface IntCalculator
2 {
3 int calculate(int number);
4 }

 10.11 Functional Interfaces and Lambda Expressions 687

The name of the interface is IntCalculator, and it specifies one method named calculate.
The calculate method accepts an int argument, and returns an int value.

Because IntCalculator is a functional interface, we do not have to go to the trouble of
defining a class that implements the interface. We do not even have to use an anonymous
inner class. Instead, we can use a lambda expression to create an object that implements the
interface, and overrides its abstract method.

You can think of a lambda expression as an anonymous method, or a method with no name.
Like regular methods, lambda expressions can accept arguments and return values. Here is the
general format of a simple lambda expression that accepts one argument, and returns a value:

parameter -> expression

In this general format, the lambda expression begins with a parameter variable, followed by
the lambda operator (->), followed by an expression that has a value. Here is an example:

x -> x * x

The x that appears on the left side of the -> operator is the name of a parameter variable,
and the expression x * x that appears on the right side of the -> operator is the value that
is returned.

This lambda expression works like a method that has a parameter variable named x, and it
returns the value of x * x.

We can use this lambda expression to create an object that implements the IntCalculator
interface. Here is an example:

IntCalculator square = x -> x * x;

On the left side of the = operator we declare an IntCalculator reference variable named
square. On the right side of the = operator we have a lambda expression that creates an
object with the following characteristics:

•	 Because	we	are	assigning	the	object	to	an	IntCalculator reference variable, the object
automatically implements the IntCalculator interface.

•	 Because	the	IntCalculator interface has only one abstract method (named calculate),
the lambda expression will be used to implement that one method.

•	 The	parameter	x that is used in the lambda expression represents the argument that is
passed to the calculate method. We do not have to specify the data type of x because
the compiler will determine it. Because the calculate method (in theIntCalculator
interface) has an int parameter, the x parameter in the lambda expression will auto-
matically become an int.

•	 The	expression	x * x is the value that is returned from the calculate method.

Code	Listing	10-45	shows	a	complete	program	that	uses	the	previously	shown	statement	to	
create an object.

Code Listing 10-45 (LambdDemo.java)

 1 import java.util.Scanner;
 2
 3 /**

688 Chapter 10 Inheritance

 4 This program demonstrates a simple
 5 lambda expression.
 6 */
 7
 8 public class LambdaDemo
 9 {
10 public static void main(String[] args)
11 {
12 int num;
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Create an object that implements IntCalculator.
18 IntCalculator square = x -> x * x;
19
20 // Get a number from the user.
21 System.out.print("Enter an integer number: ");
22 num = keyboard.nextInt();
23
24 // Display the square of the number.
25 System.out.println("The square is " + square.calculate(num));
26 }
27 }

Program Output with example Input Shown in Bold

Enter an integer number: 5 [Enter]
The square is 25

Let’s take a closer look at the program:

•	 Line	12	declares	an	int variable named num, which will be used to hold user input.
•	 Line	15	creates	a	Scanner object for keyboard input.
•	 Line	 18	 uses	 a	 lambda	 expression	 to	 create	 an	 object	 that	 implements	 the	

IntCalculator interface.	A	variable	named	square is used to reference the object. The
object’s calculate method will return the square of the method’s argument.

•	 Line	21	prompts	the	user	to	enter	an	integer	number,	and	line	22	reads	the	number	
from the keyboard. The number is assigned to the num variable.

•	 Line	25	calls	the	square object’s calculate method, and displays the return value in
a message.

Lambda expressions provide a way to easily create and instantiate anonymous inner
classes.	If	you	compare	Code	Listing	10-45	with	the	program	shown	in	Code	Listing	10-43,	
you can see that the lambda expression is much more concise than the anonymous inner
class declaration.

 10.11 Functional Interfaces and Lambda Expressions 689

Lambda expressions That Do not Return a Value

If a functional interface’s abstract method is void (does not return a value), any lambda
expression that you use with the interface should also be void. Here is an example:

x -> System.out.println(x);

This lambda expression has a parameter, x. When the expression is invoked, it displays the
value of x.

Lambda expressions with Multiple Parameters

If a functional interface’s abstract method has multiple parameters, any lambda expression
that you use with the interface must also have multiple parameters. To use more than one
parameter in a lambda expression, simply write a comma-separated list and enclose the list
in parentheses. Here is an example:

(a, b) -> a + b;

This lambda expression has two parameters, a and b. The expression returns the value of
a + b.

Lambda expressions with no Parameters

If a functional interface’s abstract method has no parameters, any lambda expression that
you use with the interface must also have no parameters. Simply write a set of empty paren-
theses as the parameter list, as shown here:

() -> System.out.println();

When this lambda expression is invoked, it simply prints a blank line.

explicitly Declaring a Parameter’s Data Type

You do not have to specify the data type of a lambda expression’s parameter because the
compiler will determine it from the interface’s abstract method header. However, you can
explicitly declare the data type of a parameter, if you wish. Here is an example:

(int x) -> x * x;

Note that the parameter declaration (on the left side of the -> operator) must be enclosed in
parentheses. Here is another example, involving two parameters:

(int a, int b) -> a + b;

Using Multiple Statements in the Body of a Lambda expression

You can write multiple statements in the body of a lambda expression, but if you do, you
must enclose the statements in a set of curly braces, and you must write a return statement
if the expression returns a value. Here is an example:

(int x) -> {
 int a = x * 2;
 return a;
};

690 Chapter 10 Inheritance

Accessing Variables Within a Lambda Expression

A lambda expression can access variables that are declared in the enclosing scope, as long
as those variables are final, or effectively final. An effectively final variable is a variable
whose value is never changed, but it isn’t declared with the final key word.

In Code Listing 10-46, the main method uses a lambda expression that accesses a final
variable named factor that is local to the main method.

Code Listing 10-46 (LambdDemo2.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates a lambda expression
 5 that uses a final local variable.
 6 */
 7
 8 public class LambdaDemo2
 9 {
10 public static void main(String[] args)
11 {
12 final int factor = 10;
13 int num;
14
15 // Create a Scanner object for keyboard input.
16 Scanner keyboard = new Scanner(System.in);
17
18 // Create an object that implements IntCalculator.
19 IntCalculator multiplier = x -> x * factor;
20
21 // Get a number from the user.
22 System.out.print("Enter an integer number: ");
23 num = keyboard.nextInt();
24
25 // Display the number multiplied by 10.
26 System.out.println("Multiplied by 10, that number is " +
27 multiplier.calculate(num));
28 }
29 }

Program Output with Example Input Shown in Bold

Enter an integer number: 10 [Enter]
Multiplied by 10, that number is 100

In Code Listing 10-46 we could remove the final key word from the variable declaration
in line 12, and the program would still compile and execute correctly. This is because the
factor variable is never modified, and therefore is effectively final.

 10.12 Common Errors to Avoid 691

10.12 Common errors to Avoid
The following list describes several errors that are commonly committed when learning this
chapter’s topics:

•	 Attempting to access a private superclass member directly from a subclass. Private
superclass members cannot be directly accessed by a method in a subclass. The sub-
class must call a public or protected superclass method in order to access the super-
class’s private members.

•	 Forgetting to call a superclass constructor explicitly when the superclass does not have
a default constructor or a programmer-defined no-arg constructor. When a superclass
does not have a default constructor or a programmer-defined no-arg constructor, the
subclass’s constructor must explicitly call one of the constructors that the superclass
does have.

•	 Allowing the superclass’s no-arg constructor to be implicitly called when you intend to
call another superclass constructor. If a subclass’s constructor does not explicitly call a
superclass constructor, Java automatically calls the superclass’s no-arg constructor.

•	 Forgetting to precede a call to an overridden superclass method with super. When a
subclass method calls an overridden superclass method, it must precede the method
call with the key word super and a dot (.). Failing to do so results in the subclass’s
version of the method being called.

•	 Forgetting a class member’s access specifier. When you do not give a class member an
access specifier, it is granted package access by default. This means that any method in
the same package may access the member.

•	 Writing a body for an abstract method. An	abstract	method	cannot	have	a	body.	It	
must be overridden in a subclass.

•	 Forgetting to terminate an abstract method’s header with a semicolon. An	abstract	
method header does not have a body, and it must be terminated with a semicolon.

•	 Failing to override an abstract method. An	abstract	method	must	be	overridden	in	
a subclass.

•	 Overloading an abstract method instead of overriding it. Overloading is not the same
as overriding. When a superclass has an abstract method, the subclass must have a
method with the same signature as the abstract method.

•	 Trying to instantiate an abstract class. You cannot create an instance of an abstract class.
•	 Implementing an interface but forgetting to provide all of the methods specified by the

interface. When a class implements an interface, all of the methods specified by the
interface must be provided in the class.

•	 Writing a method specified by an interface but failing to use the exact signature and
return type. When a class implements an interface, the class must have methods with
the same signature and return type as the methods specified in the interface.

692 Chapter 10 Inheritance

Review Questions and exercises
Multiple Choice and True/False

 1. In an inheritance relationship, this is the general class.
a. subclass
b. superclass
c. slave class
d. child class

	 2.	 In	an	inheritance	relationship,	this	is	the	specialized	class.
a. superclass
b. master class
c. subclass
d. parent class

	 3.	 This	key	word	indicates	that	a	class	inherits	from	another	class.
a. derived
b. specialized
c. based
d. extends

	 4.	 A	subclass	does	not	have	access	to	these	superclass	members.
a. public
b. private
c. protected
d. all of these

 5. This key word refers to an object’s superclass.
a. super
b. base
c. superclass
d. this

 6. In a subclass constructor, a call to the superclass constructor must __________.
a. appear as the very first statement
b. appear as the very last statement
c. appear between the constructor’s header and the opening brace
d. not appear

 7. The following is an explicit call to the superclass’s default constructor.
a. default();
b. class();
c. super();
d. base();

	 8.	 A	method	in	a	subclass	that	has	the	same	signature	as	a	method	in	the	superclass	is	an	
example of __________.
a. overloading
b. overriding

 Review Questions and Exercises 693

c. composition
d. an error

	 9.	 A	method	in	a	subclass	having	the	same	name	as	a	method	in	the	superclass	but	a	dif-
ferent signature is an example of __________.
a. overloading
b. overriding
c. composition
d. an error

 10. These superclass members are accessible to subclasses and classes in the same package.
a. private
b. public
c. protected
d. all of these

	11.	 All	classes	directly	or	indirectly	inherit	from	this	class.
a. Object
b. Super
c. Root
d. Java

	12.	 With	this	 type	of	binding,	 the	Java	Virtual	Machine	determines	at	runtime	which	
method to call, depending on the type of the object that a variable references.
a. static
b. early
c. flexible
d. dynamic

	13.	 This	operator	can	be	used	to	determine	whether	a	reference	variable	references	an	
object of a particular class.
a. isclass
b. typeof
c. instanceof
d. isinstance

	14.	 When	a	class	implements	an	interface,	it	must	__________.
a. overload all of the methods listed in the interface
b. provide all of the nondefault methods that are listed in the interface, with the exact

signatures and return types specified
c. not have a constructor
d. be an abstract class

 15. Fields in an interface are __________.
a. final
b. static
c. both final and static
d. not allowed

694 Chapter 10 Inheritance

	16.	 Abstract	methods	must	be	__________.
a. overridden
b. overloaded
c. deleted and replaced with real methods
d. declared as private

	17.	 Abstract	classes	cannot	__________.
a. be used as superclasses
b. have abstract methods
c. be instantiated
d. have fields

18. You use the __________ operator to define an anonymous inner class.
a. class
b. inner
c. new
d. anonymous

19.	 An	anonymous	inner	class	must	__________.
a. be a superclass
b. implement an interface
c. extend a superclass
d. either b or c.

20.	 A	functional	interface	is	an	interface	with	__________.
a. only one abstract method.
b. no abstract methods.
c. only private methods.
d. no name.

21.	 You	can	use	a	lambda	expression	to	instantiate	an	object	that	__________.
a. that has no constructor.
b. extends any superclass.
c. implements a functional interface
d. does not implement an interface.

	22.	 True or False:	Constructors	are	not	inherited.

	23.	 True or False: In a subclass, a call to the superclass constructor can only be written in
the subclass constructor.

	24.	 True or False: If a subclass constructor does not explicitly call a superclass construc-
tor, Java will not call any of the superclass’s constructors.

	25.	 True or False:	An	object	of	a	superclass	can	access	members	declared	in	a	subclass.

	26.	 True or False: The superclass constructor always executes before the subclass con-
structor.

	27.	 True or False: When a method is declared with the final modifier, it must be overrid-
den in a subclass.

	28.	 True or False:	A	superclass	has	a	member	with	package	access.	A	class	that	is	outside	
the superclass’s package but inherits from the superclass can access the member.

	29.	 True or False:	A	superclass	reference	variable	can	reference	an	object	of	a	subclass	that	
extends the superclass.

 Review Questions and Exercises 695

	30.	 True or False:	A	subclass	reference	variable	can	reference	an	object	of	the	superclass.

	31.	 True or False: When a class contains an abstract method, the class cannot be instantiated.

	32.	 True or False:	A	class	may	only	implement	one	interface.

	33.	 True or False: By default all members of an interface are public.

Find the error

Find the error in each of the following code segments:

 1. // Superclass
public class Vehicle
{
 (Member declarations . . .)
}
// Subclass
public class Car expands Vehicle
{
 (Member declarations . . .)
}

	 2.	 // Superclass
public class Vehicle
{
 private double cost;
 (Other methods . . .)
}
// Subclass
public class Car extends Vehicle
{
 public Car(double c)
 {
 cost = c;
 }
}

	 3.	 // Superclass
public class Vehicle
{
 private double cost;
 public Vehicle(double c)
 {
 cost = c;
 }
 (Other methods . . .)
}
// Subclass
public class Car extends Vehicle

696 Chapter 10 Inheritance

{
 private int passengers;
 public Car(int p)
 {
 passengers = c;
 }
 (Other methods . . .)
}

	 4.	 // Superclass
public class Vehicle
{
 public abstract double getMilesPerGallon();
 (Other methods . . .)
}
// Subclass
public class Car extends Vehicle
{
 private int mpg;
 public int getMilesPerGallon();
 {
 return mpg;
 }
 (Other methods . . .)
}

Algorithm Workbench

 1. Write the first line of the definition for a Poodle class. The class should extend the Dog class.

	 2.	 Look	at	the	following	code,	which	is	the	first	line	of	a	class	definition:

public class Tiger extends Felis

 In what order will the class constructors execute?

	 3.	 Write	the	declaration	for	class	B. The class’s members should be as follows:

•	 m, an integer. This variable should not be accessible to code outside the class or to
any class that extends class B.

•	 n, an integer. This variable should be accessible only to classes that extend class B or
are in the same package as class B.

•	 setM, getM, setN, and getN. These are the mutator and accessor methods for the mem-
ber variables m and n. These methods should be accessible to code outside the class.

•	 calc. This is a public abstract method.

 Next, write the declaration for class D, which extends class B. The class’s members
should be as follows:

•	 q, a double. This variable should not be accessible to code outside the class.
•	 r, a double. This variable should be accessible to any class that extends class D or is

in the same package.

 Review Questions and Exercises 697

•	 setQ, getQ, setR, and getR. These are the mutator and accessor methods for the mem-
ber variables q and r. These methods should be accessible to code outside the class.

•	 calc, a public method that overrides the superclass’s abstract calc method. This
method should return the value of q times r.

 4. Write the statement that calls a superclass constructor and passes the arguments x, y,
and z.

 5. A superclass has the following method:

public void setValue(int v)
{
 value = v;
}

 Write a statement that may appear in a subclass that calls this method, passing 10 as
an argument.

 6. A superclass has the following abstract method:

public abstract int getValue();

 Write an example of a getValue method that can appear in a subclass.

 7. Write the first line of the definition for a Stereo class. The class should extend the
SoundSystem class, and it should implement the CDplayable, TunerPlayable, and
CassettePlayable interfaces.

 8. Write an interface named Nameable that specifies the following methods:

public void setName(String n)
public String getName()

 9. Look at the following interface:

public interface Computable
{
 double compute(double x);
}

 Write a statement that uses a lambda expression to create an object that implements
the Computable interface. The object’s name should be half. The half object’s compute
method should return the value of the x parameter divided by 2.

Short Answer

 1. What is an “is-a” relationship?

 2. A program uses two classes: Animal and Dog. Which class is the superclass and which
is the subclass?

 3. What is the superclass and what is the subclass in the following line?

public class Pet extends Dog

 4. What is the difference between a protected class member and a private class member?

 5. Can a subclass ever directly access the private members of its superclass?

 6. Which constructor is called first, that of the subclass or the superclass?

 7. What is the difference between overriding a superclass method and overloading a
superclass method?

 8. Reference variables can be polymorphic. What does this mean?

698 Chapter 10 Inheritance

 9. When does dynamic binding take place?

 10. What is an abstract method?

 11. What is an abstract class?

	12.	 What	are	the	differences	between	an	abstract	class	and	an	interface?

13.	 When	you	instantiate	an	anonymous	inner	class,	the	class	must	do	one	of	two	things.	
What are they?

14.	 What	is	a	functional	interface?

15. What is a lambda expression?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Employee and ProductionWorker Classes

Design	a	class	named	Employee. The class should keep the following information in fields:

•	 Employee	name
•	 Employee	number	in	the	format	XXX–L,	where	each	X	is	a	digit	within	the	range	0–9	

and	the	L	is	a	letter	within	the	range	A–M.
•	 Hire	date

Write one or more constructors and the appropriate accessor and mutator methods for the class.

Next, write a class named ProductionWorker that extends the Employee class. The
ProductionWorker class should have fields to hold the following information:

•	 Shift	(an	integer)
•	 Hourly	pay	rate	(a	double)

The workday is divided into two shifts: day and night. The shift field will be an integer value
representing the shift that the employee works. The day shift is shift 1 and the night shift is
shift	2.	Write	one	or	more	constructors	and	the	appropriate	accessor	and	mutator	methods	for	
the	class.	Demonstrate	the	classes	by	writing	a	program	that	uses	a	ProductionWorker object.

2. ShiftSupervisor Class

In a particular factory, a shift supervisor is a salaried employee who supervises a shift. In addi-
tion to a salary, the shift supervisor earns a yearly bonus when his or her shift meets produc-
tion	goals.	Design	a	ShiftSupervisor class that extends the Employee class you created in
Programming	Challenge	1.	The	ShiftSupervisor class should have a field that holds the
annual salary and a field that holds the annual production bonus that a shift supervisor has
earned. Write one or more constructors and the appropriate accessor and mutator methods
for	the	class.	Demonstrate	the	class	by	writing	a	program	that	uses	a	ShiftSupervisor object.

3. TeamLeader Class

In a particular factory, a team leader is an hourly paid production worker that leads a small
team. In addition to hourly pay, team leaders earn a fixed monthly bonus. Team leaders are
required	to	attend	a	minimum	number	of	hours	of	training	per	year.	Design	a	TeamLeader

The Employee and
Productionworker

Classes Problem

VideoNote

http://www.myprogramminglab.com

 Programming Challenges 699

class that extends the ProductionWorker	class	you	designed	in	Programming	Challenge	1.	
The TeamLeader class should have fields for the monthly bonus amount, the required num-
ber of training hours, and the number of training hours that the team leader has attended.
Write one or more constructors and the appropriate accessor and mutator methods for the
class.	Demonstrate	the	class	by	writing	a	program	that	uses	a	TeamLeader object.

4. Essay Class

Design	an	Essay class that extends the GradedActivity class presented in this chapter. The
Essay class should determine the grade a student receives for an essay. The student’s essay
score can be up to 100 and is determined in the following manner:

Grammar:	30	points
Spelling:	20	points
Correct	length:	20	points
Content:	30	points

Demonstrate	the	class	in	a	simple	program.

5. Course Grades

In a course, a teacher gives the following tests and assignments:

•	 A	lab activity that is observed by the teacher and assigned a numeric score.
•	 A	pass/fail exam that has 10 questions. The minimum passing score is 70.
•	 An	essay that is assigned a numeric score.
•	 A	final exam that has 50 questions.

Write a class named CourseGrades. The class should have a GradedActivity array named
grades as a field. The array should have four elements, one for each of the assignments
previously described. The class should have the following methods:

setLab: This method should accept a GradedActivity object as its argu-
ment. This object should already hold the student’s score for the lab
activity. Element 0 of the grades field should reference this object.

setPassFailExam: This method should accept a PassFailExam object as its argument.
This object should already hold the student’s score for the pass/fail
exam. Element 1 of the grades field should reference this object.

setEssay: This method should accept an Essay object as its argument. (See
Programming	Challenge	4	 for	 the	Essay class. If you have not
completed	Programming	Challenge	4,	use	a	GradedActivity object
instead.) This object should already hold the student’s score for
the	 essay.	 Element	 2	 of	 the	 grades field should reference this
object.

setFinalExam: This method should accept a FinalExam object as its argument.
This object should already hold the student’s score for the final
exam.	Element	3	of	the	grades field should reference this object.

toString: This method should return a string that contains the numeric
scores and grades for each element in the grades array.

Demonstrate	the	class	in	a	program.

700 Chapter 10 Inheritance

6. Analyzable Interface

Modify the CourseGrades	class	you	created	in	Programming	Challenge	5	so	it	implements	
the following interface:

public interface Analyzable
{
 double getAverage();
 GradedActivity getHighest();
 GradedActivity getLowest();
}

The getAverage method should return the average of the numeric scores stored in the
grades array. The getHighest method should return a reference to the element of the grades
array that has the highest numeric score. The getLowest method should return a reference
to	the	element	of	the	grades	array	that	has	the	lowest	numeric	score.	Demonstrate	the	new	
methods in a complete program.

7. Person and Customer Classes

Design	a	class	named	Person with fields for holding a person’s name, address, and telephone
number. Write one or more constructors and the appropriate mutator and accessor methods
for the class’s fields.

Next, design a class named Customer, which extends the Person class. The Customer class should
have a field for a customer number and a boolean field indicating whether the customer wishes
to be on a mailing list. Write one or more constructors and the appropriate mutator and accessor
methods	for	the	class’s	fields.	Demonstrate	an	object	of	the	Customer class in a simple program.

8. PreferredCustomer Class

A	retail	store	has	a	preferred	customer	plan	where	customers	can	earn	discounts	on	all	their	
purchases. The amount of a customer’s discount is determined by the amount of the cus-
tomer’s cumulative purchases in the store as follows:

•	 When	a	preferred	customer	spends	$500,	he	or	she	gets	a	5	percent	discount	on	all	
future purchases.

•	 When	a	preferred	customer	spends	$1,000,	he	or	she	gets	a	6	percent	discount	on	all	
future purchases.

•	 When	a	preferred	customer	spends	$1,500,	he	or	she	gets	a	7	percent	discount	on	all	
future purchases.

•	 When	a	preferred	customer	spends	$2,000	or	more,	he	or	she	gets	a	10	percent	dis-
count on all future purchases.

Design	a	class	named	PreferredCustomer, which extends the Customer class you created in
Programming	Challenge	7.	The	PreferredCustomer class should have fields for the amount
of the customer’s purchases and the customer’s discount level. Write one or more construc-
tors	and	the	appropriate	mutator	and	accessor	methods	for	the	class’s	fields.	Demonstrate	
the class in a simple program.

9. BankAccount and SavingsAccount Classes

Design	an	abstract	class	named	BankAccount to hold the following data for a bank account:

•	 Balance
•	 Number	of	deposits	this	month

 Programming Challenges 701

•	 Number	of	withdrawals
•	 Annual	interest	rate
•	 Monthly	service	charges

The class should have the following methods:

Constructor: The constructor should accept arguments for the balance and annual
interest rate.

deposit: A	method	that	accepts	an	argument	for	the	amount	of	the	deposit.	
The method should add the argument to the account balance. It
should also increment the variable holding the number of deposits.

withdraw: A	method	that	accepts	an	argument	for	the	amount	of	the	withdrawal.	
The method should subtract the argument from the balance. It should
also increment the variable holding the number of withdrawals.

calcInterest: A	method	that	updates	the	balance	by	calculating	the	monthly	inter-
est earned by the account, and adding this interest to the balance.
This is performed by the following formulas:

 Monthly Interest Rate 5 (Annual Interest Rate	/	12)
 Monthly Interest 5 Balance * Monthly Interest Rate
 Balance 5 Balance 1 Monthly Interest

monthlyProcess: A	method	that	subtracts	the	monthly	service	charges	from	the	bal-
ance, calls the calcInterest method, and then sets the variables that
hold the number of withdrawals, number of deposits, and monthly
service charges to zero.

withdraw: A	method	that	determines	whether	the	account	is	inactive	before	a	
withdrawal is made. (No withdrawal will be allowed if the account
is	not	active.)	A	withdrawal	is	then	made	by	calling	the	superclass	
version of the method.

deposit: A	method	that	determines	whether	the	account	is	inactive	before	a	
deposit is made. If the account is inactive and the deposit brings the
balance	above	$25,	the	account	becomes	active	again.	A	deposit	is	
then made by calling the superclass version of the method.

monthlyProcess: Before the superclass method is called, this method checks the num-
ber of withdrawals. If the number of withdrawals for the month is
more	than	4,	a	service	charge	of	$1	for	each	withdrawal	above	4	
is added to the superclass field that holds the monthly service charges.
(Don’t	forget	to	check	the	account	balance	after	the	service	charge	is	
taken.	If	the	balance	falls	below	$25,	the	account	becomes	inactive.)

Next, design a SavingsAccount class that extends the BankAccount class. The SavingsAccount
class should have a status field to represent an active or inactive account. If the balance of a
savings	account	falls	below	$25,	it	becomes	inactive.	(The	status field could be a boolean
variable.)	No	more	withdrawals	may	be	made	until	 the	 balance	 is	 raised	 above	$25,	 at	
which time the account becomes active again. The savings account class should have the
following methods:

702 Chapter 10 Inheritance

10. Ship, CruiseShip, and CargoShip Classes

Design	a	Ship class that the following members:

•	 A	field	for	the	name	of	the	ship	(a	string).
•	 A	field	for	the	year	that	the	ship	was	built	(a	string).
•	 A	constructor	and	appropriate	accessors	and	mutators.
•	 A	toString method that displays the ship’s name and the year it was built.

Design	a	CruiseShip class that extends the Ship class. The CruiseShip class should have
the following members:

•	 A	field	for	the	maximum	number	of	passengers	(an	int).
•	 A	constructor	and	appropriate	accessors	and	mutators.
•	 A	 toString method that overrides the toString method in the base class. The

CruiseShip class’s toString method should display only the ship’s name and the maxi-
mum number of passengers.

Design	a	CargoShip class that extends the Ship class. The CargoShip class should have the
following members:

•	 A	field	for	the	cargo	capacity	in	tonnage	(an	int).
•	 A	constructor	and	appropriate	accessors	and	mutators.
•	 A	 toString method that overrides the toString method in the base class. The

CargoShip class’s toString method should display only the ship’s name and the ship’s
cargo capacity.

Demonstrate	the	classes	in	a	program	that	has	a	Ship	array.	Assign	various	Ship, CruiseShip,
and CargoShip objects to the array elements. The program should then step through the
array, calling each object’s toString	method.	(See	Code	Listing	10-25	as	an	example.)

703

Exceptions and
Advanced File I/OC

H
A

P
T

E
R

11
Topics

 11.1 Handling Exceptions
 11.2 Throwing Exceptions
 11.3 Advanced Topics: Binary Files, Random

Access Files, and Object Serialization
 11.4 Common Errors to Avoid

11.1 Handling Exceptions

concEpT: An exception is an object that is generated as the result of an error or an
unexpected event. To prevent exceptions from crashing your program, you
must write code that detects and handles them.

There are many error conditions that can occur while a Java application is running that will
cause it to halt execution. By now you have probably experienced this many times. For
example, look at the program in Code Listing 11-1. This program attempts to read beyond
the bounds of an array.

code Listing 11-1 (BadArray.java)

 1 /**
 2 This program causes an error and crashes.
 3 */
 4
 5 public class BadArray
 6 {
 7 public static void main(String[] args)
 8 {

VideoNote

Handling
Exceptions

704 Chapter 11 Exceptions and Advanced File I/O

 9 // Create an array with 3 elements.
10 int[] numbers = { 1, 2, 3 };
11
12 // Attempt to read beyond the bounds
13 // of the array.
14 for (int i = 0; i <= 3; i++)
15 System.out.println(numbers[i]);
16 }
17 }

program output

1
2
3
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
 at BadArray.main(BadArray.java:15)

The numbers array in this program has only three elements, with the subscripts 0 though 2.
The program crashes when it tries to read the element at numbers[3], and displays an error
message similar to that shown at the end of the program output. This message indicates that
an exception occurred, and it gives some information about it. An exception is an object
that is generated in memory as the result of an error or an unexpected event. When an
exception is generated, it is said to have been “thrown.” Unless an exception is detected by
the application and dealt with, it causes the application to halt.

To detect that an exception has been thrown and prevent it from halting your application,
Java allows you to create exception handlers. An exception handler is a section of code that
gracefully responds to exceptions when they are thrown. The process of intercepting and
responding to exceptions is called exception handling. If your code does not handle an
exception when it is thrown, the default exception handler deals with it, as shown in
Code Listing 11-1. The default exception handler prints an error message and crashes
the program.

The error that caused the exception to be thrown in Code Listing 11-1 is easy to avoid. If
the loop were written properly, it would not have tried to read outside the bounds of the
array. Some errors, however, are caused by conditions that are outside the application and
cannot be avoided. For example, suppose an application creates a file on the disk and the
user deletes it. Later the application attempts to open the file to read from it, and because it
does not exist, an error occurs. As a result, an exception is thrown.

Exception classes
As previously mentioned, an exception is an object. Exception objects are created from
classes in the Java API. The API has an extensive hierarchy of exception classes. A small part
of the hierarchy is shown in Figure 11-1.

As you can see, all of the classes in the hierarchy inherit from the Throwable class. Just
below the Throwable class are the classes Error and Exception. Classes that inherit from

 11.1 Handling Exceptions 705

Error are for exceptions that are thrown when a critical error occurs, such as an internal
error in the Java Virtual Machine or running out of memory. Your applications should not
try to handle these errors because they are the result of a serious condition.

All of the exceptions that you will handle are instances of classes that inherit from Exception.
Figure 11-1 shows two of these classes: IOException and RuntimeException. These classes
also serve as superclasses. IOException serves as a superclass for exceptions that are related
to input and output operations. RuntimeException serves as a superclass for exceptions that
result from programming errors, such as an out-of-bounds array subscript.

The chart in Figure 11-1 shows two of the classes that inherit from the IOException class:
EOFException and FileNotFoundException. These are examples of classes that exception
objects are created from. An EOFException object is thrown when an application attempts
to read beyond the end of a file, and a FileNotFoundException object is thrown when an
application tries to open a file that does not exist.

noTE: The exception classes are in packages in the Java API. For example,
FileNotFoundException is in the java.io package. When you handle an exception that is
not in the java.lang package, you will need the appropriate import statement.

Figure 11-1 Part of the exception class hierarchy

Handling an Exception
To handle an exception, you use a try statement. We will look at several variations of the
try statement, beginning with the following general format:

706 Chapter 11 Exceptions and Advanced File I/O

try
{
 (try block statements . . .)
}
catch (ExceptionType parameterName)
{
 (catch block statements . . .)
}

First the key word try appears. Next, a block of code appears inside braces, which are
required. This block of code is known as a try block. A try block is one or more statements
that are executed and can potentially throw an exception. You can think of the code in the
try block as being “protected” because the application will not halt if the try block throws
an exception.

After the try block, a catch clause appears. A catch clause begins with the key word catch,
followed by the code (ExceptionType parameterName). This is a parameter variable
declaration, where ExceptionType is the name of an exception class and parameterName
is a variable name. If code in the try block throws an exception of the ExceptionType class,
then the parameter variable will reference the exception object. In addition, the code that
immediately follows the catch clause is executed. The code that immediately follows the
catch clause is known as a catch block. Once again, the braces are required.

Let’s look at an example of code that uses a try statement. The statement inside the follow-
ing try block attempts to open the file MyFile.txt. If the file does not exist, the Scanner
object throws an exception of the FileNotFoundException class. This code is designed to
handle that exception if it is thrown.

try
{
 File file = new File("MyFile.txt");
 Scanner inputFile = new Scanner(file);
}
catch (FileNotFoundException e)
{
 System.out.println("File not found.");
}

Let’s look closer. First, the code in the try block is executed. If this code throws an excep-
tion, the Java Virtual Machine searches for a catch clause that can deal with the exception.
In order for a catch clause to be able to deal with an exception, its parameter must be of a
type that is compatible with the exception’s type. Here is this code’s catch clause:

catch (FileNotFoundException e)

This catch clause declares a reference variable named e as its parameter. The e variable can
reference an object of the FileNotFoundException class. So, this catch clause can deal with
an exception of the FileNotFoundException class. If the code in the try block throws an
exception of the FileNotFoundException class, the e variable will reference the exception
object and the code in the catch block will execute. In this case, the message “File not
found.” will be printed. After the catch block is executed, the program will resume with the
code that appears after the entire try/catch construct.

 11.1 Handling Exceptions 707

Code Listing 11-2 shows a program that asks the user to enter a file name, then attempts
to open the file. If the file does not exist, an error message is printed. Figures 11-2 and
11-3 show examples of interaction with the program.

code Listing 11-2 (OpenFile.java)

 1 import java.io.*; // For File class and FileNotFoundException
 2 import java.util.Scanner; // For the Scanner class
 3 import javax.swing.JOptionPane; // For the JOptionPane class
 4
 5 /**
 6 This program demonstrates how a FileNotFoundException
 7 exception can be handled.
 8 */
 9
10 public class OpenFile
11 {
12 public static void main(String[] args)
13 {
14 File file; // For file input
15 Scanner inputFile; // For file input
16 String fileName; // To hold a file name
17
18 // Get a file name from the user.
19 fileName = JOptionPane.showInputDialog("Enter " +
20 "the name of a file:");
21
22 // Attempt to open the file.
23 try
24 {
25 file = new File(fileName);
26 inputFile = new Scanner(file);
27 JOptionPane.showMessageDialog(null,
28 "The file was found.");
29 }
30 catch (FileNotFoundException e)
31 {
32 JOptionPane.showMessageDialog(null,
33 "File not found.");
34 }
35
36 JOptionPane.showMessageDialog(null, "Done.");
37 System.exit(0);
38 }
39 }

noTE: The Java API documentation lists all of the exceptions that can be thrown from
each method.

708 Chapter 11 Exceptions and Advanced File I/O

Look at the example run of the program in Figure 11-2. The user entered BadFile.txt as the
file name. In line 25, the first statement inside the try block, a File object is created and this
name is passed to the File constructor. In line 26 a reference to the File object is passed to
the Scanner constructor. Because BadFile.txt does not exist, an exception of the
FileNotFoundException class is thrown by the Scanner class constructor. When the excep-
tion is thrown, the program immediately exits the try block, skipping the remaining state-
ment in the block (lines 27 through 28). The program jumps to the catch clause in line 30,
which has a FileNotFoundException parameter, and executes the catch block that follows it.
Figure 11-4 illustrates this sequence of events.

1

2

3

Figure 11-2 Interaction with the OpenFile.java program
(assume that BadFile.txt does not exist)

1

2

3

Figure 11-3 Interaction with the OpenFile.java program
(assume that GoodFile.txt does exist)

 11.1 Handling Exceptions 709

Notice that after the catch block executes, the program resumes at the statement that imme-
diately follows the try/catch construct. This statement, which is in line 36, displays the
message “Done.”

try
{
 file = new File(fileName);
 inputFile = new Scanner(file);
 JOptionPane.showMessageDialog(null,
 "The file was found.");
}
catch (FileNotFoundException e)
{
 JOptionPane.showMessageDialog(null,
 "File not found.");
}

If this statement
throws an exception...

... then this statement
 is skipped.

{
If the exception is an object of
the FileNotFoundException
class, the program jumps to
this catch clause.

Figure 11-4 Sequence of events with an exception

Now look at the example run of the program in Figure 11-3. In this case, the user entered
GoodFile.txt, which is the name of a file that exists. No exception was thrown in the try
block, so the program skips the catch clause and its catch block and jumps directly to the
statement in line 36, which follows the try/catch construct. This statement displays the
message “Done.” Figure 11-5 illustrates this sequence of events.

try
{
 file = new File(fileName);
 inputFile = new Scanner(file);
 JOptionPane.showMessageDialog(null,
 "The file was found.");
}
catch (FileNotFoundException e)
{
 JOptionPane.showMessageDialog(null,
 "File not found.");
}

If no exception is thrown in
the try block, the program
jumps to the statement that
immediately follows the
try/catch construct.

JOptionPane.showMessageDialog(null, "Done.");

Figure 11-5 Sequence of events with no exception

Retrieving the Default Error Message
Each exception object has a method named getMessage that can be used to retrieve the
default error message for the exception. This is the same message that is displayed when the
exception is not handled and the application halts. The program in Code Listing 11-3 dem-
onstrates the getMessage method. This is a modified version of the program in Code Listing
11-2. Figure 11-6 shows the program running. In the figure, the user entered the name of a
file that does not exist.

710 Chapter 11 Exceptions and Advanced File I/O

code Listing 11-3 (ExceptionMessage.java)

 1 import java.io.*; // For file I/O classes
 2 import java.util.Scanner; // For the Scanner class
 3 import javax.swing.JOptionPane; // For the JOptionPane class
 4
 5 /**
 6 This program demonstrates how a FileNotFoundException
 7 exception can be handled.
 8 */
 9
10 public class ExceptionMessage
11 {
12 public static void main(String[] args)
13 {
14 File file; // For file input
15 Scanner inputFile; // For file input
16 String fileName; // To hold a file name
17
18 // Get a file name from the user.
19 fileName = JOptionPane.showInputDialog("Enter " +
20 "the name of a file:");
21
22 // Attempt to open the file.
23 try
24 {
25 file = new File(fileName);
26 inputFile = new Scanner(file);
27 JOptionPane.showMessageDialog(null,
28 "The file was found.");
29 }
30 catch (FileNotFoundException e)
31 {
32 JOptionPane.showMessageDialog(null, e.getMessage());
33 }
34
35 JOptionPane.showMessageDialog(null, "Done.");
36 System.exit(0);
37 }
38 }

Code Listing 11-4 shows another example. This program forces the parseInt method of the
Integer wrapper class to throw an exception.

 11.1 Handling Exceptions 711

code Listing 11-4 (ParseIntError.java)

 1 /**
 2 This program demonstrates how the Integer.parseInt
 3 method throws an exception.
 4 */
 5
 6 public class ParseIntError
 7 {
 8 public static void main(String[] args)
 9 {
10 String str = "abcde";
11 int number;
12
13 try
14 {
15 number = Integer.parseInt(str);
16 }
17 catch (NumberFormatException e)
18 {
19 System.out.println("Conversion error: " +
20 e.getMessage());
21 }
22 }
23 }

program output

Conversion error: For input string: "abcde"

3

1

2

Figure 11-6 Interaction with the ExceptionMessage.java program
(assume that BadFile.txt does not exist)

712 Chapter 11 Exceptions and Advanced File I/O

The numeric wrapper classes’ “parse” methods all throw an exception of the
NumberFormatException type if the string being converted does not contain a convertible
numeric value.

polymorphic References to Exceptions
Recall from Chapter 10 that a reference variable of a superclass type can reference subclass
objects. This is called polymorphism. When handling exceptions, you can use a polymor-
phic reference as a parameter in the catch clause. For example, all of the exceptions that
we have dealt with inherit from the Exception class. So, a catch clause that uses a param-
eter variable of the Exception type is capable of catching any exception that inherits from
the Exception class. For example, the try statement in Code Listing 11-4 could be written
as follows:

try
{
 number = Integer.parseInt(str);
}
catch (Exception e)
{
 System.out.println("Conversion error: " +
 e.getMessage());
}

Although the Integer class’s parseInt method throws a NumberFormatException object,
this code still works because the NumberFormatException class inherits from the
Exception class.

Using Multiple catch clauses to Handle
Multiple Exceptions
The programs we have studied so far test only for a single type of exception. In many cases,
however, the code in the try block will be capable of throwing more than one type of excep-
tion. In such a case, you need to write a catch clause for each type of exception that could
potentially be thrown.

For example, the program in Code Listing 11-5 reads the contents of a file named SalesData.txt.
Each line in the file contains the sales amount for one month, and the file has several lines.
Here are the contents of the file:

24987.62
26978.97
32589.45
31978.47
22781.76
29871.44

The program in Code Listing 11-5 reads each number from the file and adds it to an
accumulator variable. The try block contains code that can throw different types of

 11.1 Handling Exceptions 713

exceptions. For example, the Scanner class’s constructor can throw a FileNotFoundException
if the file is not found, and the Scanner class’s nextDouble method can throw an
InputMismatchException (which is in the java.util package) if it reads a non-numeric
value from the file. To handle these exceptions, the try statement has two catch clauses.
Figure 11-7 shows the dialog box displayed by the program when no errors occur. This
dialog box is displayed by the statement in lines 51 through 56. Figure 11-8 shows the
dialog box displayed by the statement in lines 62 through 64 when the file cannot
be found.

Figure 11-7 Dialog box displayed by the SalesReport.java program
when no error occurs

Figure 11-8 Dialog box displayed by the SalesReport.java program
when the file cannot be found

code Listing 11-5 (SalesReport.java)

 1 import java.io.*; // For File class and FileNotFoundException
 2 import java.util.*; // For Scanner and InputMismatchException
 3 import javax.swing.JOptionPane; // For the JOptionPane class
 4
 5 /**
 6 This program demonstrates how multiple exceptions can
 7 be caught with one try statement.
 8 */
 9
10 public class SalesReport
11 {
12 public static void main(String[] args)
13 {
14 String filename = "SalesData.txt"; // File name
15 int months = 0; // Month counter

714 Chapter 11 Exceptions and Advanced File I/O

16 double oneMonth; // One month's sales
17 double totalSales = 0.0; // Total sales
18 double averageSales; // Average sales
19
20 try
21 {
22 // Open the file.
23 File file = new File(filename);
24 Scanner inputFile = new Scanner(file);
25
26 // Process the contents of the file.
27 while (inputFile.hasNext())
28 {
29 // Get a month's sales amount.
30 oneMonth = inputFile.nextDouble();
31
32 // Accumulate the amount.
33 totalSales += oneMonth;
34
35 // Increment the month counter
36 months++;
37 }
38
39 // Close the file.
40 inputFile.close();
41
42 // Calculate the average.
43 averageSales = totalSales / months;
44
45 // Display the results.
46 JOptionPane.showMessageDialog(null,
47 String.format("Number of months: %d\n" +
48 "Total Sales: $%,.2f\n" +
49 "Average Sales: $%,.2f",
50 months, totalSales, averageSales));
51 }
52 catch(FileNotFoundException e)
53 {
54 // Thrown by the Scanner constructor when
55 // the file is not found.
56 JOptionPane.showMessageDialog(null,
57 "The file " + filename + " does not exist.");
58 }
59 catch(InputMismatchException e)
60 {
61 // Thrown by the Scanner class's nextDouble
62 // method when a non-numeric value is found.

 11.1 Handling Exceptions 715

63 JOptionPane.showMessageDialog(null,
64 "Non-numeric data found in the file.");
65 }
66
67 System.exit(0);
68 }
69 }

When an exception is thrown by code in the try block, the JVM begins searching the try
statement for a catch clause that can handle it. It searches the catch clauses from top to
bottom and passes control of the program to the first catch clause with a parameter that is
compatible with the exception.

Using Exception Handlers to Recover from Errors

The program in Code Listing 11-5 demonstrates how a try statement can have several
catch clauses in order to handle different types of exceptions. However, the program does
not use the exception handlers to recover from any of the errors. Regardless of whether the
file is not found or a non-numeric item is encountered in the file, this program still halts.
The program in Code Listing 11-6 is a better example of effective exception handling. It
attempts to recover from as many of the exceptions as possible.

code Listing 11-6 (SalesReport2.java)

 1 import java.io.*; // For File class and FileNotFoundException
 2 import java.util.*; // For Scanner and InputMismatchException
 3 import javax.swing.JOptionPane; // For the JOptionPane class
 4
 5 /**
 6 This program demonstrates how exception handlers can
 7 be used to recover from errors.
 8 */
 9
 10 public class SalesReport2
 11 {
 12 public static void main(String[] args)
 13 {
 14 String filename = "SalesData.txt"; // File name
 15 int months = 0; // Month counter
 16 double oneMonth; // One month's sales
 17 double totalSales = 0.0; // Total sales
 18 double averageSales; // Average sales
 19
 20 // Attempt to open the file by calling the
 21 // openfile method.
 22 Scanner inputFile = openFile(filename);

716 Chapter 11 Exceptions and Advanced File I/O

 23
 24 // If the openFile method returned null, then
 25 // the file was not found. Get a new file name.
 26 while (inputFile == null)
 27 {
 28 filename = JOptionPane.showInputDialog(
 29 "ERROR: " + filename +
 30 " does not exist.\n" +
 31 "Enter another file name: ");
 32 inputFile = openFile(filename);
 33 }
 34
 35 // Process the contents of the file.
 36 while (inputFile.hasNext())
 37 {
 38 try
 39 {
 40 // Get a month's sales amount.
 41 oneMonth = inputFile.nextDouble();
 42
 43 // Accumulate the amount.
 44 totalSales += oneMonth;
 45
 46 // Increment the month counter.
 47 months++;
 48 }
 49 catch(InputMismatchException e)
 50 {
 51 // Display an error message.
 52 JOptionPane.showMessageDialog(null,
 53 "Non-numeric data found in the file.\n" +
 54 "The invalid record will be skipped.");
 55
 56 // Skip past the invalid data.
 57 inputFile.nextLine();
 58 }
 59 }
 60
 61 // Close the file.
 62 inputFile.close();
 63
 64 // Calculate the average.
 65 averageSales = totalSales / months;
 66
 67 // Display the results.
 68 JOptionPane.showMessageDialog(null,
 69 String.format("Number of months: %d\n" +

 11.1 Handling Exceptions 717

 70 "Total Sales: $%,.2f\n" +
 71 "Average Sales: $%,.2f",
 72 months, totalSales, averageSales));
 73
 74 System.exit(0);
 75 }
 76
 77 /**
 78 The opeFile method opens the specified file and
 79 returns a reference to a Scanner object.
 80 @param filename The name of the file to open.
 81 @return A Scanner reference, if the file exists
 82 Otherwise, null is returned.
 83 */
 84
 85 public static Scanner openFile(String filename)
 86 {
 87 Scanner scan;
 88
 89 // Attempt to open the file.
 90 try
 91 {
 92 File file = new File(filename);
 93 scan = new Scanner(file);
 94 }
 95 catch(FileNotFoundException e)
 96 {
 97 scan = null;
 98 }
 99
100 return scan;
101 }
102 }

Let’s look at how this program recovers from a FileNotFoundException. The openFile
method, in lines 85 through 101, accepts a file name as its argument. The method creates a
File object (passing the file name to the constructor) and a Scanner object. If the Scanner
class constructor throws a FileNotFoundException, the method returns null. Otherwise, it
returns a reference to the Scanner object. In the main method, a loop is used in lines 26
through 33 to ask the user for a different file name in the event that the openFile method
returns null.

Now let’s look at how the program recovers from unexpectedly encountering a non-numeric
item in the file. The statement in line 41, which calls the Scanner class’s nextDouble method,
is wrapped in a try statement that catches the InputMismatchException. If this exception
is thrown by the nextDouble method, the catch block in lines 49 through 58 displays a

718 Chapter 11 Exceptions and Advanced File I/O

 message indicating that a non-numeric item was encountered and that the invalid record
will be skipped. The invalid data is then read from the file with the nextLine method in line
57. Because the statement months++ in line 47 is in the try block, it will not be executed
when the exception occurs, so the number of months will still be correct. The loop contin-
ues processing with the next line in the file.

Let’s look at some examples of how the program recovers from these errors. Suppose we rename
SalesData.txt file as SalesInfo.txt. Figure 11-9 shows an example running of the program.

1

2

Figure 11-9 Interaction with the SalesReport2.java program

1

2

Figure 11-10 Dialog boxes displayed by the SalesReport2.java program

Now, suppose we change the name of the file back to SalesData.txt and edit its contents
as follows:

24987.62
26978.97
abc
31978.47
22781.76
29871.44

Notice that the third item is no longer a number. Figure 11-10 shows an example running
of the program.

 11.1 Handling Exceptions 719

Handle Each Exception only once in a try statement

Not including polymorphic references, a try statement may have only one catch clause for
each specific type of exception. For example, the following try statement will cause the
compiler to issue an error message because it handles a NumberFormatException object with
two catch clauses:

try
{
 number = Integer.parseInt(str);
}
catch (NumberFormatException e)
{
 System.out.println("Bad number format.");
}
// ERROR!!! NumberFormatException has already been caught!
catch (NumberFormatException e)
{
 System.out.println(str + " is not a number.");
}

Sometimes you can cause this error by using polymorphic references. For example, look at
Figure 11-11, which shows an inheritance hierarchy for the NumberFormatException class.

Figure 11-11 Inheritance hierarchy for the NumberFormatException class

720 Chapter 11 Exceptions and Advanced File I/O

As you can see from the figure, the NumberFormatException class inherits from the
IllegalArgumentException class. Now look at the following code:

try
{
 number = Integer.parseInt(str);
}
catch (IllegalArgumentException e)
{
 System.out.println("Bad number format.");
}
// This will also cause an error.
catch (NumberFormatException e)
{
 System.out.println(str + " is not a number.");
}

The compiler issues an error message regarding the second catch clause, reporting that
NumberFormatException has already been caught. This is because the first catch clause,
which catches IllegalArgumentException objects, will polymorphically catch
NumberFormatException objects.

If you are handling multiple exceptions in the same try statement and some of the excep-
tions are related to each other through inheritance, then you should handle the more spe-
cialized exception classes before the more general exception classes. We can rewrite the
previous code as follows, with no errors:

try
{
 number = Integer.parseInt(str);
}
catch (NumberFormatException e)
{
 System.out.println(str + " is not a number.");
}
catch (IllegalArgumentException e)
{
 System.out.println("Bad number format.");
}

The finally clause
The try statement may have an optional finally clause, which must appear after all of the
catch clauses. Here is the general format of a try statement with a finally clause:

try
{
 (try block statements . . .)
}

 11.1 Handling Exceptions 721

catch (ExceptionType ParameterName)
{
 (catch block statements . . .)
}
finally
{
 (finally block statements . . .)
}

The finally block is one or more statements that are always executed after the try block has
executed and after any catch blocks have executed if an exception was thrown. The state-
ments in the finally block execute whether an exception occurs or not. For example, the
following code opens a file of doubles and reads its contents. The outer try statement
opens the file and has a catch clause that catches the FileNotFoundException. The inner
try statement reads values from the file and has a catch clause that catches the
InputMismatchException. The finally block closes the file regardless of whether an
InputMismatchException occurs.

try
{
 // Open the file.
 File file = new File(filename);
 Scanner inputFile = new Scanner(file);

 try
 {
 // Read and display the file's contents.
 while (inputFile.hasNext())
 {
 System.out.println(inputFile.nextDouble());
 }
 }
 catch (InputMismatchException e)
 {
 System.out.println("Invalid data found.");
 }
 finally
 {
 // Close the file.
 inputFile.close();
 }
}
catch (FileNotFoundException e)
{
 System.out.println("File not found.");
}

722 Chapter 11 Exceptions and Advanced File I/O

The stack Trace
Quite often, a method will call another method, which will call yet another method. For
example, method A calls method B, which calls method C. The call stack is an internal list
of all the methods that are currently executing.

When an exception is thrown by a method that is executing under several layers of method
calls, it is sometimes helpful to know which methods were responsible for the method being
called. A stack trace is a list of all the methods in the call stack. It indicates the method that
was executing when an exception occurred and all of the methods that were called in order
to execute that method. For example, look at the program in Code Listing 11-7. It has three
methods: main, myMethod, and produceError. The main method calls myMethod, which calls
produceError. The produceError method causes an exception by passing an invalid position
number to the String class’s charAt method. The exception is not handled by the program,
but is dealt with by the default exception handler.

code Listing 11-7 (StackTrace.java)

 1 /**
 2 This program demonstrates the stack trace that is
 3 produced when an exception is thrown.
 4 */
 5
 6 public class StackTrace
 7 {
 8 public static void main(String[] args)
 9 {
10 System.out.println("Calling myMethod...");
11 myMethod();
12 System.out.println("Method main is done.");
13 }
14
15 /**
16 MyMethod
17 */
18
19 public static void myMethod()
20 {
21 System.out.println("Calling produceError...");
22 produceError();
23 System.out.println("myMethod is done.");
24 }
25
26 /**
27 produceError
28 */
29

 11.1 Handling Exceptions 723

30 public static void produceError()
31 {
32 String str = "abc";
33
34 // The following statement will cause an error.
35 System.out.println(str.charAt(3));
36 System.out.println("produceError is done.");
37 }
38 }

program output

Calling myMethod...
Calling produceError...
Exception in thread "main" java.lang.StringIndexOutOfBoundsException:
 String index out of range: 3
 at java.lang.String.charAt(Unknown Source)
 at StackTrace.produceError(StackTrace.java:35)
 at StackTrace.myMethod(StackTrace.java:22)
 at StackTrace.main(StackTrace.java:11)

When the exception occurs, the error message shows a stack trace listing the methods that
were called in order to produce the exception. The first method that is listed in the stack
trace, charAt, is the method that is responsible for the exception. The next method,
produceError, is the method that called charAt. The next method, myMethod, is the method
that called produceError. The last method, main, is the method that called myMethod. The
stack trace shows the chain of methods that were called when the exception was thrown.

noTE: All exception objects have a printStackTrace method, inherited from the
Throwable class, which can be used to print a stack trace.

Handling Multiple Exceptions with one
catch clause (Java 7)
In versions of Java prior to Java 7, each catch clause can handle only one type of exception.
Beginning with Java 7, however, a catch clause can handle more than one type of exception.
This can reduce a lot of duplicated code in a try statement that needs to catch multiple
exceptions, but perform the same operation for each one. For example, suppose we have the
following try statement in a program:

try
{
 (try block statements . . .)
}
catch(NumberFormatException ex)
{
 respondToError();
}

724 Chapter 11 Exceptions and Advanced File I/O

catch(IOException ex)
{
 respondToError();
}

This try statement has two catch clauses: one that handles a NumberFormatException, and
another that handles an IOException. Notice that both catch blocks do the same thing: they
call a method named respondToError. Because both catch blocks perform the same opera-
tion, the catch clauses can be combined into a single catch clause that handles both types
of exception, as shown here:

try
{
 (try block statements . . .)
}
catch(NumberFormatException | IOException ex)
{
 respondToError();
}

Notice in the catch clause that the exception types are separated by a | symbol, which is the
same symbol as that used for the logical OR operator. You can think of this as meaning that
the clause will catch a NumberFormatException or an IOException. The following code
shows a catch clause that handles three types of exceptions:

try
{
 (try block statements . . .)
}
catch(NumberFormatException | IOException | InputMismatchException ex)
{
 respondToError();
}

In this code, the catch clause will handle a NumberFormatException or an IOException or an
InputMismatchException.

The ability to catch multiple types of exceptions with a single catch clause is known as
multi-catch, and was introduced in Java 7. Code Listing 11-8 shows a complete program
that uses multi-catch. The catch clause in line 34 can handle a FileNotFoundException or
an InputMismatchException.

code Listing 11-8 (MultiCatch.java)

 1 import java.io.*; // For File class and FileNotFoundException
 2 import java.util.*; // For Scanner and InputMismatchException
 3
 4 /**
 5 This program demonstrates how multiple exceptions can
 6 be caught with a single catch clause.
 7 */
 8

 11.1 Handling Exceptions 725

 9 public class MultiCatch
10 {
11 public static void main(String[] args)
12 {
13 int number; // To hold a number from the file
14
15 try
16 {
17 // Open the file.
18 File file = new File("Numbers.txt");
19 Scanner inputFile = new Scanner(file);
20
21 // Process the contents of the file.
22 while (inputFile.hasNext())
23 {
24 // Get a number from the file.
25 number = inputFile.nextInt();
26
27 // Display the number.
28 System.out.println(number);
29 }
30
31 // Close the file.
32 inputFile.close();
33 }
34 catch(FileNotFoundException | InputMismatchException ex)
35 {
36 // Display an error message.
37 System.out.println("Error processing the file.");
38 }
39 }
40 }

noTE: If you are using a version of Java prior to Java 7, you cannot use multi-catch.

When an Exception is not caught
When an exception is thrown, it cannot be ignored. It must be handled by the program, or
by the default exception handler. When the code in a method throws an exception, the nor-
mal execution of that method stops and the JVM searches for a compatible exception han-
dler inside the method. If there is no code inside the method to handle the exception, then
control of the program is passed to the previous method in the call stack (that is, the method
that called the offending method). If that method cannot handle the exception, then control
is passed again, up the call stack, to the previous method. This continues until control
reaches the main method. If the main method does not handle the exception, then the pro-
gram is halted and the default exception handler handles the exception.

This was the case for the program in Code Listing 11-7. Because the produceError method
did not handle the exception, control was passed back to myMethod. It didn’t handle the

726 Chapter 11 Exceptions and Advanced File I/O

exception either, so control was passed back to main. Because main didn’t handle the excep-
tion, the program halted and the default exception handler displayed the error messages.

checked and Unchecked Exceptions
In Java, there are two categories of exceptions: unchecked and checked. Unchecked excep-
tions are those that inherit from the Error class or the RuntimeException class. Recall that
the exceptions that inherit from Error are thrown when a critical error occurs, such as run-
ning out of memory. You should not handle these exceptions because the conditions that
cause them can rarely be dealt with in the program. Also recall that RuntimeException
serves as a superclass for exceptions that result from programming errors, such as an out-
of-bounds array subscript. It is best not to handle these exceptions either, because they can
be avoided with properly written code. So, you should not handle unchecked exceptions.

All of the remaining exceptions (that is, those that do not inherit from Error or
RuntimeException) are checked exceptions. These are the exceptions that you should handle
in your program. If the code in a method can potentially throw a checked exception, then
that method must meet one of the following requirements:

•	 It	must	handle	the	exception,	or
•	 It	must	have	a	throws clause listed in the method header.

The throws clause informs the compiler of the exceptions that could get thrown from a
method. For example, look at the following method:

// This method will not compile!
public void displayFile(String name)
{
 // Open the file.
 File file = new File(name);
 Scanner inputFile = new Scanner(file);

 // Read and display the file's contents.
 while (inputFile.hasNext())
 {
 System.out.println(inputFile.nextLine());
 }

 // Close the file.
 inputFile.close();
}

The code in this method is capable of throwing a FileNotFoundException, which is a
checked exception. Because the method does not handle this exception, it must have a
throws clause in its header or it will not compile.

The key word throws is written at the end of the method header, followed by a list of the
types of exceptions that the method can throw. Here is the revised method header:

public void displayFile(String name) throws FileNotFoundException

The throws clause tells the compiler that this method can throw a FileNotFoundException.
(If there is more than one type of exception, you separate them with commas.)

 11.2 Throwing Exceptions 727

Now you know why you wrote a throws clause on methods that perform file operations in
the previous chapters. We did not handle any of the checked exceptions that might occur, so
we had to inform the compiler that our methods might pass them up the call stack.

checkpoint

www.myprogramminglab.com

11.1 Briefly describe what an exception is.

11.2 What does it mean to “throw” an exception?

11.3 If an exception is thrown and the program does not handle it, what happens?

11.4 Other than the Object class, what is the superclass for all exceptions?

11.5 What is the difference between exceptions that inherit from the Error class and
exceptions that inherit from the Exception class?

11.6 What is the difference between a try block and a catch block?

11.7 After the catch block has handled the exception, where does program
execution resume?

11.8 How do you retrieve an error message from an exception?

11.9 If multiple exceptions can be thrown by code in a try block, how does the JVM
know which catch clause it should pass the control of the program to?

11.10 When does the code in a finally block execute?

11.11 What is the call stack? What is a stack trace?

11.12 A program’s main method calls method A, which calls method B. None of these
methods performs any exception handling. The code in method B throws an
exception. Describe what happens.

11.13 What are the differences between a checked and an unchecked exception?

11.14 When are you required to have a throws clause in a method header?

11.2 Throwing Exceptions

concEpT: You can write code that throws one of the standard Java exceptions, or an
instance of a custom exception class that you have designed.

You can use the throw statement to throw an exception manually. The general format of the
throw statement is as follows:

throw new ExceptionType(MessageString);

The throw statement causes an exception object to be created and thrown. In this general
format, ExceptionType is an exception class name and MessageString is an optional String
argument passed to the exception object’s constructor. The MessageString argument con-
tains a custom error message that can be retrieved from the exception object’s getMessage
method. If you do not pass a message to the constructor, the exception will have a null
 message. Here is an example of a throw statement:

throw new Exception("Out of fuel");

http://www.myprogramminglab.com

728 Chapter 11 Exceptions and Advanced File I/O

This statement creates an object of the Exception class and passes the string “Out of fuel”
to the object’s constructor. The object is then thrown, which causes the exception-handling
process to begin.

Note: Don’t confuse the throw statement with the throws clause. The throw statement
causes an exception to be thrown. The throws clause informs the compiler that a method
throws one or more exceptions.

Recall the Die class from Chapter 6. The class simulates a gaming die, and its constructor
accepts an argument specifying the number of sides for the die. Suppose we want to make sure
that the number of sides is not less than a minimum value (after all, it wouldn’t make sense to
have a one-sided die, or a zero-sided die.)

One way to accomplish this is to have the constructor throw an exception when an invalid
argument is passed. Code Listing 11-9 shows the modified code for the Die class:

Code Listing 11-9 (Die.java)

 1 import java.util.Random;
 2
 3 /**
 4 The Die class simulates a six-sided die.
 5 */
 6
 7 public class Die
 8 {
 9 private final int MIN_SIDES = 4;
10 private int sides; // Number of sides
11 private int value; // The die's value
12
13 /**
14 The constructor performs an initial
15 roll of the die.
16 @param numSides The number of sides for this die.
17 */
18
19 public Die(int numSides)
20 {
21 // Validate the number of sides.
22 if (numSides < MIN_SIDES)
23 {
24 throw new IllegalArgumentException(
25 "The die must have at least " +
26 MIN_SIDES + " sides.");
27 }

 11.2 Throwing Exceptions 729

28
29 // Store the number of sides and roll.
30 sides = numSides;
31 roll();
32 }
33
34 /**
35 The roll method simulates the rolling of
36 the die.
37 */
38
39 public void roll()
40 {
41 // Create a Random object.
42 Random rand = new Random();
43
44 // Get a random value for the die.
45 value = rand.nextInt(sides) + 1;
46 }
47
48 /**
49 getSides method
50 @return The number of sides for this die.
51 */
52
53 public int getSides()
54 {
55 return sides;
56 }
57
58 /**
59 getValue method
60 @return The value of the die.
61 */
62
63 public int getValue()
64 {
65 return value;
66 }
67 }

Line 9 declares a final field named MIN_SIDES, initialized with the value 4. This is the
minimum value that the class will accept for the number of sides. In the constructor, in line 22
we test the value of the numSides parameter, to determine whether it is less than MIN_SIDES.
If so, lines 24 through 26 throw an IllegalArgumentException. The message The die must

730 Chapter 11 Exceptions and Advanced File I/O

have at least 4 sides is passed to the exception object’s constructor. When we catch this
exception, we can retrieve the message by calling the object’s getMessage method. The
IllegalArgumentException class was chosen for this error condition because it seems like
the most appropriate exception to throw in response to an illegal argument being passed to
the constructor. (Note that IllegalArgumentException inherits from RuntimeException,
which inherits from Exception.)

noTE: Because the IllegalArgumentException class inherits from the RuntimeException
class, it is unchecked. If we had chosen a checked exception class, we would have to put
a throws clause in the constructor’s header.

The program in Code Listing 11-10 demonstrates how the modified constructor works.

code Listing 11-10 (DieExceptionDemo.java)

 1 /**
 2 This program demonstrates how the Die class throws
 3 an exception when an invalid value is passed to the
 4 constructor.
 5 */
 6
 7 public class DiceExceptionDemo
 8 {
 9 public static void main(String[] args)
10 {
11 final int DIE_SIDES = 1; // Number of sides
12
13 // Create an instance of the Die class.
14 Die die = new Die(DIE_SIDES);
15
16 System.out.println("Initial value of the die:");
17 System.out.println(die.getValue());
18 }
19 }

program output

Exception in thread "main" java.lang.IllegalArgumentException: The die must
have at least 4 sides.
 at Die.<init>(Die.java:24)
 at DiceExceptionDemo.main(DiceExceptionDemo.java:14)

creating Your own Exception classes
To meet the needs of a specific class or application, you can create your own exception
classes by extending the Exception class or one of its subclasses.

 11.2 Throwing Exceptions 731

Let’s look at an example that uses programmer-defined exceptions. Recall the BankAccount
class from Chapter 6. This class holds the data for a bank account. A UML diagram for the
class is shown in Figure 11-12.

There are a number of errors that could cause a BankAccount object to perform its duties
incorrectly. Here are some specific examples:

•	 A	negative	starting	balance	is	passed	to	the	constructor.
•	 A	negative	number	is	passed	to	the	deposit method.
•	 A	negative	number	is	passed	to	the	withdraw method.
•	 The	amount	passed	to	the	withdraw method exceeds the account’s balance.

Figure 11-12 UML diagram for the BankAccount class

We can create our own exceptions that represent each of these error conditions. Then we
can rewrite the class so it throws one of our custom exceptions when any of these errors
occur. Let’s start by creating an exception class for a negative starting balance. Code Listing
11-11 shows an exception class named NegativeStartingBalance.

code Listing 11-11 (NegativeStartingBalance.java)

 1 /**
 2 NegativeStartingBalance exceptions are thrown by the
 3 BankAccount class when a negative starting balance is
 4 passed to the constructor.
 5 */
 6
 7 public class NegativeStartingBalance
 8 extends Exception
 9 {
10 /**
11 This constructor uses a generic
12 error message.
13 */

732 Chapter 11 Exceptions and Advanced File I/O

14
15 public NegativeStartingBalance()
16 {
17 super("Error: Negative starting balance");
18 }
19
20 /**
21 This constructor specifies the bad starting
22 balance in the error message.
23 @param The bad starting balance.
24 */
25
26 public NegativeStartingBalance(double amount)
27 {
28 super("Error: Negative starting balance: " +
29 amount);
30 }
31 }

Notice that this class extends the Exception class. It has two constructors. The no-arg con-
structor passes the string "Error: Negative starting balance" to the superclass construc-
tor. This is the error message that is retrievable from an object’s getMessage method. The
second constructor accepts the starting balance as a double argument. This amount is used
to pass a more detailed error message containing the starting balance amount to the super-
class constructor.

The following code shows one of the BankAccount constructors rewritten to throw a
NegativeStartingBalance exception when a negative value is passed as the starting balance.

public BankAccount(double startBalance)
 throws NegativeStartingBalance
{
 if (startBalance < 0)
 throw new NegativeStartingBalance(startBalance);

 balance = startBalance;
}

Note that NegativeStartingBalance extends the Exception class. This means that it is a
checked exception class. Because of this, the constructor header must have a throws clause
listing the exception type.

You will find the modified BankAccount.java file in this chapter’s source code, available on
the book’s companion Web site at www.pearsonhighered.com/gaddis. The program in Code
Listing 11-12 demonstrates the new constructor by forcing it to throw the
NegativeStartingBalance exception.

http://www.pearsonhighered.com/gaddis

 11.2 Throwing Exceptions 733

code Listing 11-12 (AccountTest.java)

 1 /**
 2 This program demonstrates how the BankAccount
 3 class constructor throws custom exceptions.
 4 */
 5
 6 public class AccountTest
 7 {
 8 public static void main(String [] args)
 9 {
10 // Force a NegativeStartingBalance exception.
11 try
12 {
13 BankAccount account =
14 new BankAccount(-100.0);
15 }
16 catch(NegativeStartingBalance e)
17 {
18 System.out.println(e.getMessage());
19 }
20 }
21 }

program output

Error: Negative starting balance: -100.0

Using the @exception Tag in Documentation comments
When writing the documentation comments for a method, you can document the excep-
tions thrown by the method by using an @exception tag. When the javadoc utility sees an
@exception tag inside a method’s documentation comments, it knows that the name of an
exception appears next, followed by a description of the events that cause the exception.
The general format of an @exception tag comment is as follows:

@exception ExceptionName Description

ExceptionName is the name of an exception and Description is a description of the cir-
cumstances that cause the exception. Remember the following points about @exception tag
comments:

•	 The	@exception tag in a method’s documentation comment must appear after the gen-
eral description of the method.

•	 The	description	can	span	several	lines.	It	ends	at	the	end	of	the	documentation	com-
ment (the */ symbol), or at the beginning of another tag.

When a method’s documentation comments contain an @exception tag, the javadoc utility
will create a Throws section in the method’s documentation. This is where the descriptions

734 Chapter 11 Exceptions and Advanced File I/O

of the exceptions thrown by the method will be listed. As an example, here are the docu-
mentation comments for the BankAccount class’s constructor presented earlier:

/**
 This constructor sets the starting balance
 to the value passed as an argument.
 @param startBalance The starting balance.
 @exception NegativeStartingBalance When
 startBalance is negative.
*/

checkpoint

www.myprogramminglab.com

11.15 What does the throw statement do?

11.16 What is the purpose of the argument that is passed to an exception object’s con-
structor? What happens if you do not pass an argument to the constructor?

11.17 What is the difference between the throw statement and the throws clause?

11.18 If a method has a throw statement, does it always have to have a throws clause in
its header? Why or why not?

11.19 If you are writing a custom exception class, how can you make sure it is checked?
How can you make sure it is unchecked?

11.3 Advanced Topics: Binary Files, Random Access Files,
and object serialization

concEpT: A file that contains raw binary data is known as a binary file. The content
of a binary file is not formatted as text, and not meant to be opened in a
text editor. A random access file is a file that allows a program to read
data from any location within the file, or write data to any location
within the file. Object serialization is the process of converting an object
to a series of bytes and saving them to a file. Deserialization is the process
of reconstructing a serialized object.

Binary Files
All the files you’ve been working with so far have been text files. This means that the data
stored in the files has been formatted as text. Even a number, when stored in a text file with
the print or println method, is converted to text. For example, consider the following pro-
gram segment:

PrintWriter outputFile = new PrintWriter("Number.txt");
int x = 1297;
outputFile.print(x);

http://www.myprogramminglab.com

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 735

The last statement writes the contents of the variable x to the Number.txt file. When the
number is written, however, it is stored as the characters '1', '2', '9', and '7'. This is
 illustrated in Figure 11-13.

Figure 11-14 The number 1297 as a binary number, as it is stored in memory

When a number such as 1297 is stored in the computer’s memory, it isn’t stored as text, how-
ever. It is formatted as a binary number. Figure 11-14 shows how the number 1297 is stored
in memory, in an int variable, using binary. Recall that int variables occupy four bytes.

Figure 11-13 The number 1297 expressed as characters

The binary representation of the number shown in Figure 11-14 is the way the raw data is
stored in memory. In fact, this is sometimes called the raw binary format. Data can be stored
in a file in its raw binary format. A file that contains binary data is often called a binary file.

Storing data in its binary format is more efficient than storing it as text because there are
fewer conversions to take place. In addition, there are some types of data that should only
be stored in their raw binary format. Images are an example. However, when data is stored
in a binary file, you cannot open the file in a text editor such as Notepad. When a text edi-
tor opens a file, it assumes the file contains text.

Writing Data to a Binary File

To write data to a binary file you must create objects from the following classes:

FileOutputStream This class, which is in the java.io package, allows you to open a
file for writing binary data and establish a connection with it;
however, it provides only basic functionality for writing bytes to
the file.

DataOutputStream This class which is in the java.io package, allows you to write
data of any primitive type or String objects to a binary file. The
DataOutputStream class by itself cannot directly access a file,
however. It is used in conjunction with a FileOutputStream object
that has a connection to a file.

736 Chapter 11 Exceptions and Advanced File I/O

You wrap a DataOutputStream object around a FileOutputStream object to write data to a binary
file. The following code shows how a file named MyInfo.dat can be opened for binary output:

FileOutputStream fstream = new FileOutputStream("MyInfo.dat");
DataOutputStream outputFile = new DataOutputStream(fstream);

The first line creates an instance of the FileOutputStream class, which has the ability to
open a file for binary output and establish a connection with it. You pass the name of the
file that you wish open, as a string, to the constructor. The second line creates an instance of
the DataOutputStream object that is connected to the FileOutputStream referenced by
fstream. The result of this statement is that the outputFile variable will reference an object
that is able to write binary data to the MyInfo.dat file.

WARning! If the file that you are opening with the FileOutputStream object already
exists, it will be erased and an empty file by the same name will be created.

noTE: The FileOutputStream constructor throws an IOException if an error occurs
when it attempts to open the file.

If there is no reason to reference the FileOutputStream object, then these statements can be
combined into one, as follows:

DataOutputStream outputFile =
 new DataOutputStream(new FileOutputStream("MyInfo.dat"));

Once the DataOutputStream object has been created, you can use it to write binary data to
the file. Table 11-1 lists some of the DataOutputStream methods. Note that each of the meth-
ods listed in the table throws an IOException if an error occurs.

Table 11-1 Some of the DataOutputStream methods

Method Description

void close() Closes the file.

void writeBoolean(boolean b) Writes the boolean value passed to b to the file.

void writeByte(byte b) Writes the byte value passed to b to the file.

void writeChar(int c) This method accepts an int, which is assumed to be a
character code. The character it represents is written to
the file as a two-byte Unicode character.

void writeDouble(double d) Writes the double value passed to d to the file.

void writeFloat(float f) Writes the float value passed to f to the file.

void writeInt(int i) Writes the int value passed to i to the file.

void writeLong(long num) Writes the long value passed to num to the file.

void writeShort(short s) Writes the short value passed to s to the file.

void writeUTF(String str) Writes the String object passed to str to the file using
the Unicode Text Format.

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 737

The program in Code Listing 11-13 shows a simple demonstration. An array of int values
is written to the file Numbers.dat.

code Listing 11-13 (WriteBinaryFile.java)

 1 import java.io.*;
 2
 3 /**
 4 This program opens a binary file and writes the contents
 5 of an int array to the file.
 6 */
 7
 8 public class WriteBinaryFile
 9 {
10 public static void main(String[] args)
11 throws IOException
12 {
13 // An array to write to the file
14 int[] numbers = { 2, 4, 6, 8, 10, 12, 14 };
15
16 // Create the binary output objects.
17 FileOutputStream fstream =
18 new FileOutputStream("Numbers.dat");
19 DataOutputStream outputFile =
20 new DataOutputStream(fstream);
21
22 System.out.println("Writing the numbers to the file...");
23
24 // Write the array elements to the file.
25 for (int i = 0; i < numbers.length; i++)
26 outputFile.writeInt(numbers[i]);
27
28 System.out.println("Done.");
29
30 // Close the file.
31 outputFile.close();
32 }
33 }

program output

Writing the numbers to the file...
Done.

738 Chapter 11 Exceptions and Advanced File I/O

Reading Data from a Binary File

To open a binary file for input, you use the following classes:

FileInputStream This class, which is in the java.io package, allows you to open a
file for reading binary data and establish a connection with it. It
provides only the basic functionality for reading bytes from the file,
however.

DataInputStream This class, which is in the java.io package, allows you to read
data of any primitive type, or String objects, from a binary file.
The DataInputStream class by itself cannot directly access a file,
however. It is used in conjunction with a FileInputStream object
that has a connection to a file.

To open a binary file for input, you wrap a DataInputStream object around a FileInputStream
object. The following code shows the file MyInfo.dat can be opened for binary input:

FileInputStream fstream = new FileInputStream("MyInfo.dat");
DataInputStream inputFile = new DataInputStream(fstream);

The following code, which combines these two statements into one, can also be used:

DataInputStream inputFile =
 new DataInputStream(new FileInputStream("MyInfo.dat"));

The FileInputStream constructor will throw a FileNotFoundException if the file named by
the string argument cannot be found. Once the DataInputStream object has been created,
you can use it to read binary data from the file. Table 11-2 lists some of the DataInputStream
methods. Note that each of the methods listed in the table throws an EOFException if the
end of the file has already been reached.

Table 11-2 Some of the DataInputStream methods

Method Description

void close() Closes the file.

boolean readBoolean() Reads a boolean value from the file and returns it.

byte readByte() Reads a byte value from the file and returns it.

char readChar() Reads a char value from the file and returns it. The character
is expected to be stored as a two-byte Unicode character, as
written by the DataOutputStream class’s writeChar method.

double readDouble() Reads a double value from the file and returns it.

float readFloat() Reads a float value from the file and returns it.

int readInt() Reads an int value from the file and returns it.

long readLong() Reads a long value from the file and returns it.

short readShort() Reads a short value from the file and returns it.

String readUTF() Reads a string from the file and returns it as a String object.
The string must have been written with the DataOutputStream
class’s writeUTF method.

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 739

The program in Code Listing 11-14 opens the Numbers.dat file that was created by the pro-
gram in Code Listing 11-13. The numbers are read from the file and displayed on the
screen. Notice that the program must catch the EOFException in order to determine when
the file’s end has been reached.

code Listing 11-14 (ReadBinaryFile.java)

 1 import java.io.*;
 2
 3 /**
 4 This program opens a binary file, reads
 5 and displays the contents.
 6 */
 7
 8 public class ReadBinaryFile
 9 {
10 public static void main(String[] args)
11 throws IOException
12 {
13 int number; // A number read from the file
14 boolean endOfFile = false; // EOF flag
15
16 // Create the binary file input objects.
17 FileInputStream fstream =
18 new FileInputStream("Numbers.dat");
19 DataInputStream inputFile =
20 new DataInputStream(fstream);
21
22 System.out.println("Reading numbers from the file:");
23
24 // Read the contents of the file.
25 while (!endOfFile)
26 {
27 try
28 {
29 number = inputFile.readInt();
30 System.out.print(number + " ");
31 }
32 catch (EOFException e)
33 {
34 endOfFile = true;
35 }
36 }
37
38 System.out.println("\nDone.");
39
40 // Close the file.

740 Chapter 11 Exceptions and Advanced File I/O

41 inputFile.close();
42 }
43 }

program output

Reading numbers from the file:
2 4 6 8 10 12 14
Done.

Writing and Reading strings

To write a string to a binary file you should use the DataOutputStream class’s writeUTF
method. This method writes its String argument in a format known as UTF-8 encoding.
Here’s how the encoding works: Just before writing the string, this method writes a two-
byte integer indicating the number of bytes that the string occupies. Then it writes the
string’s characters in Unicode. (UTF stands for Unicode Text Format.)

When the DataInputStream class’s readUTF method reads from the file, it expects the first
two bytes to contain the number of bytes that the string occupies. Then it reads that many
bytes and returns them as a String.

For example, assuming that outputFile references a DataOutputStream object, the follow-
ing code uses the writeUTF method to write a string:

String name = "Chloe";
outputFile.writeUTF(name);

Assuming that inputFile references a DataInputStream object, the following statement uses
the readUTF method to read a UTF-8 encoded string from the file:

String name = inputFile.readUTF();

Remember that the readUTF method will correctly read a string only when the string is writ-
ten with the writeUTF method.

This chapter’s source code folder contains the example programs WriteUTF.java and
ReadUTF.java, which demonstrate writing and reading strings using these methods.

Appending Data to an Existing Binary File

If you pass the name of an existing file to the FileOutputStream constructor, it will be erased
and a new empty file with the same name will be created. Sometimes, however, you want to
preserve an existing file and append new data to its current contents. The FileOutputStream
constructor takes an optional second argument, which must be a boolean value. If the argu-
ment is true, the file will not be erased if it already exists and new data will be written to
the end of the file. If the argument is false, the file will be erased if it already exists. For
example, the following code opens the file MyInfo.dat for output. If the file exists, it will
not be deleted, and any data written to the file will be appended to the existing data.

FileOutputStream fstream = new FileOutputStream("MyInfo.dat", true);
DataOutputStream outputFile = new DataOutputStream(fstream);

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 741

Random Access Files
All of the programs that you have created to access files so far have performed sequential
file access. With sequential access, when a file is opened for input, its read position is at the
very beginning of the file. This means that the first time data is read from the file, the data
will be read from its beginning. As the reading continues, the file’s read position advances
sequentially through the file’s contents.

The problem with sequential file access is that in order to read a specific byte from the file,
all the bytes that precede it must be read first. For instance, if a program needs data stored
at the hundredth byte of a file, it will have to read the first 99 bytes to reach it. If you’ve
ever listened to a cassette tape player, you understand sequential access. To listen to a song
at the end of the tape, you have to listen to all the songs that are before it, or fast-forward
over them. There is no way to jump immediately to that particular song.

Although sequential file access is useful in many circumstances, it can slow down a program
tremendously. If the file is very large, locating data buried deep inside it can take a long
time. Alternatively, Java allows a program to perform random file access. In random file
access, a program may immediately jump to any location in the file without first reading the
preceding bytes. The difference between sequential and random file access is like the differ-
ence between a cassette tape and a compact disc. When listening to a CD, there is no need
to listen to or fast-forward over unwanted songs. You simply jump to the track that you
want to listen to. This is illustrated in Figure 11-15.

Figure 11-15 Sequential access versus random access

To create and work with random access files in Java, you use the RandomAccessFile class,
which is in the java.io package. The general format of the class constructor is as follows:

RandomAccessFile(String filename, String mode)

The first argument is the name of the file. The second argument is a string indicating the
mode in which you wish to use the file. The two modes are "r" for reading, and "rw" for
reading and writing. When a file is opened with "r" as the mode, the program can only read
from the file. When a file is opened with "rw" as the mode, the program can read from the
file and write to it. Here are some examples of statements that open files using the
RandomAccessFile class:

742 Chapter 11 Exceptions and Advanced File I/O

// Open a file for random reading.
RandomAccessFile randomFile =
 new RandomAccessFile("MyData.dat", "r");
// Open a file for random reading and writing.
RandomAccessFile randomFile =
 new RandomAccessFile("MyData.dat", "rw");

Here are some important points to remember about the two modes:

•	 If	you	open	a	file	in	"r" mode and the file does not exist, a FileNotFoundException
will be thrown.

•	 If	you	open	a	file	in	"r" mode and try to write to it, an IOException will be thrown.
•	 If	you	open	an	existing	file	in	"rw" mode, it will not be deleted. The file’s existing con-

tents will be preserved.
•	 If	you	open	a	file	in	"rw" mode and the file does not exist, it will be created.

Reading and Writing with the RandomAccessFile class

A file that is opened or created with the RandomAccessFile class is treated as a binary file. In
fact, the RandomAccessFile class has the same methods as the DataOutputStream class for
writing data, and the same methods as the DataInputStream class for reading data. In fact,
you can use the RandomAccessFile class to process a binary file sequentially. For example,
the program in Code Listing 11-15 opens a file named Letters.dat and writes all of the let-
ters of the alphabet to the file.

code Listing 11-15 (WriteLetters.java)

 1 import java.io.*;
 2
 3 /**
 4 This program uses a RandomAccessFile object to
 5 create the file Letters.dat. The letters of the
 6 alphabet are written to the file.
 7 */
 8
 9 public class WriteLetters
10 {
11 public static void main(String[] args)
12 throws IOException
13 {
14 // The letters array has all 26 letters.
15 char[] letters = {
16 'a', 'b', 'c', 'd', 'e', 'f', 'g',
17 'h', 'i', 'j', 'k', 'l', 'm', 'n',
18 'o', 'p', 'q', 'r', 's', 't', 'u',
19 'v', 'w', 'x', 'y', 'z' };
20
21 System.out.println("Opening the file.");
22
23 // Open a file for reading and writing.

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 743

24 RandomAccessFile randomFile =
25 new RandomAccessFile("Letters.dat", "rw");
26
27 System.out.println("Writing data to the file...");
28
29 // Sequentially write the letters array to the file.
30 for (int i = 0; i < letters.length; i++)
31 randomFile.writeChar(letters[i]);
32
33 // Close the file.
34 randomFile.close();
35
36 System.out.println("Done.");
37 }
38 }

program output

Opening the file.
Writing data to the file...
Done.

After this program executes, the letters of the alphabet will be stored in the Letters.dat file.
Because the writeChar method was used, the letters will each be stored as two-byte charac-
ters. This is important to know later when we want to read the characters from the file.

The File pointer

The RandomAccessFile class treats a file as a stream of bytes. The bytes are numbered, with
the first byte being byte 0. The last byte’s number is one less than the number of bytes in the
file. These byte numbers are similar to an array’s subscripts, and are used to identify loca-
tions in the file.

Internally, the RandomAccessFile class keeps a long integer value known as the file pointer.
The file pointer holds the byte number of a location in the file. When a file is first opened,
the file pointer is set to 0. This causes it to “point” to the first byte in the file. When an item
is read from the file, it is read from the byte that the file pointer points to. Reading also
causes the file pointer to advance to the byte just beyond the item that was read. For
example, let’s say the file pointer points to byte 0 and an int is read from the file with the
readInt method. An int is four bytes in size, so four bytes will be read from the file, starting
at byte 0. After the value is read, the file pointer will be advanced to byte number 4, which is
the 5th byte in the file. If another item is immediately read, the reading will begin at byte
number 4. If the file pointer refers to a byte number that is beyond the end of the file, an
EOFException is thrown when a read operation is performed.

Writing also takes place at the location pointed to by the file pointer. If the file pointer
points to the end of the file when a write operation is performed, then the data will be writ-
ten to the end of the file. However, if the file pointer holds the number of a byte within the
file, at a location where data is already stored, then a write operation will cause data to be
written over the existing data at that location.

744 Chapter 11 Exceptions and Advanced File I/O

Not only does the RandomAccessFile class let you read and write data, but also it allows you
to move the file pointer. This means that you can immediately read data from any byte loca-
tion in the file. It also means that you can write data to any location in the file, over existing
data. To move the file pointer, you use the seek method. Here is the method’s general format:

void seek(long position)

The argument is the number of the byte that you want to move the file pointer to. For
example, look at the following code:

RandomAccessFile file =
 new RandomAccessFile("MyInfo.dat", "r");
file.seek(99);
byte b = file.readByte();

This code opens the file MyInfo.dat for reading. The seek method is called to move the file
pointer to byte number 99 (which is the 100th byte in the file). Then, the readByte method
is called to read byte number 99 from the file. After that statement executes, the file pointer
will be advanced by one byte, so it will point to byte 100. Suppose we continue processing
the same file with the following code:

file.seek(49);
int i = file.readInt();

First, the seek method moves the file pointer to byte number 49 (which is the 50th byte in
the file). Then, the readInt method is called. This reads an int from the file. An int is four
bytes in size, so this statement reads four bytes, beginning at byte number 49. After the
statement executes the file pointer will be advanced by four bytes, so it will point to byte 53.

Although a file might contain chars, ints, doubles, strings, and so forth, the RandomAccessFile
class sees it only as a stream of bytes. The class is unaware of the data types of the data
stored in the file, and it cannot determine where one item of data ends and another begins.
When you write a program that reads data from a random access file, it is your responsibil-
ity to know how the data is structured.

For example, recall that the program in Code Listing 11-15 wrote the letters of the alphabet
to the Letters.dat file. Let’s say the first letter is character 0, the second letter is character 1,
and so forth. Suppose we want to read character 5 (the sixth letter in the file). At first, we
might be tempted to try the following code:

// Open the file for reading.
RandomAccessFile randomFile =
 new RandomAccessFile("Letters.dat", "r");
// Move the file pointer to byte 5, which is the 6th byte.
randomFile.seek(5);
// Read the character.
char ch = randomFile.readChar();
// What will this display?
System.out.println("The sixth letter is " + ch);

Although this code will compile and run, you might be surprised at the result. Recall that
the writeChar method writes a character as two bytes. Because each character occupies
two bytes in the file, the sixth character begins at byte 10, not byte 5. This is illustrated in

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 745

Figure 11-16. In fact, if we try to read a character starting at byte 5, we will read garbage
because byte 5 is not at the beginning of a character.

Figure 11-16 Layout of the Letters.dat file

To determine the position of a character in the file, we must take each character’s size into
account. The following code will correctly read and display the sixth character. To deter-
mine the character’s starting byte number, it multiplies the size of a character by the number
of the character we want to locate.

final int CHAR_SIZE = 2; // Each char uses two bytes
// Move the file pointer to character 5.
randomFile.seek(CHAR_SIZE * 5);
// Read the character.
char ch = randomFile.readChar();
// This will display the correct character.
System.out.println("The sixth character is " + ch);

The program in Code Listing 11-16 demonstrates further. It randomly reads characters 5,
10, and 3 from the file.

code Listing 11-16 (ReadRandomLetters.java)

 1 import java.io.*;
 2
 3 /**
 4 This program uses the RandomAccessFile class to open
 5 the file Letters.dat and randomly read letters from
 6 different locations.
 7 */
 8
 9 public class ReadRandomLetters
10 {
11 public static void main(String[] args) throws IOException
12 {
13 final int CHAR_SIZE = 2; // 2 byte characters
14 long byteNum; // The byte number
15 char ch; // A character from the file
16
17 // Open the file for reading.
18 RandomAccessFile randomFile =
19 new RandomAccessFile("Letters.dat", "r");

746 Chapter 11 Exceptions and Advanced File I/O

20
21 // Move to the character 5. This is the 6th
22 // character from the beginning of the file.
23 byteNum = CHAR_SIZE * 5;
24 randomFile.seek(byteNum);
25
26 // Read the character stored at this location
27 // and display it. Should be the letter f.
28 ch = randomFile.readChar();
29 System.out.println(ch);
30
31 // Move to character 10 (the 11th character),
32 // read the character, and display it.
33 // Should be the letter k.
34 byteNum = CHAR_SIZE * 10;
35 randomFile.seek(byteNum);
36 ch = randomFile.readChar();
37 System.out.println(ch);
38
39 // Move to character 3 (the 4th character),
40 // read the character, and display it.
41 // Should be the letter d.
42 byteNum = CHAR_SIZE * 3;
43 randomFile.seek(byteNum);
44 ch = randomFile.readChar();
45 System.out.println(ch);
46
47 // Close the file.
48 randomFile.close();
49 }
50 }

program output

f
k
d

See Appendix I—Working with Records and Random Access Files. The appendix is avail-
able on the book’s companion Web site, at www.pearsonhighered.com.gaddis.

object serialization
In Appendix I, available on the book’s companion Web site, at www.pearsonhighered.com.
gaddis, you can see how an object’s fields can be retrieved and saved to a file as fields in a
record. If an object contains other types of objects as fields, however, the process of saving
its contents can become complicated. Fortunately, Java allows you to serialize objects,
which is a simpler way of saving objects to a file.

www.pearsonhighered.com.gaddis
http://www.pearsonhighered.com.gaddis
www.pearsonhighered.com.gaddis

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 747

When an object is serialized, it is converted into a series of bytes that contain the object’s
data. If the object is set up properly, even the other objects that it might contain as fields are
automatically serialized. The resulting set of bytes can be saved to a file for later retrieval.

In order for an object to be serialized, its class must implement the Serializable interface.
The Serializable interface, which is in the java.io package, has no methods or fields. It is
used only to let the Java compiler know that objects of the class might be serialized. In addi-
tion, if a class contains objects of other classes as fields, those classes must also implement
the Serializable interface, in order to be serialized.

For example, in this chapter’s source code folder there is a modified version of the
BankAccount class named BankAccount2. The only modification to the class is that it imple-
ments the Serializable interface. Here are the modified lines of code from the file:

import java.io.Serializable;

public class BankAccount2 implements Serializable

This new code tells the compiler that we want to be able to serialize objects of the
BankAccount2 class. To write a serialized object to a file, you use an ObjectOutputStream
object. The ObjectOutputStream class is designed to perform the serialization process (con-
verting an object to a series of bytes). To write the bytes to a file, you must also use an out-
put stream object, such as FileOutputStream. Here is an example:

FileOutputStream outStream =
 new FileOutputStream("Objects.dat");
ObjectOutputStream objectOutputFile =
 new ObjectOutputStream(outStream);

To serialize an object and write it to the file, use the ObjectOutputStream class’s writeObject
method, as shown here:

BankAccount2 account = new BankAccount2(5000.0);
objectOutputFile.writeObject(account);

The writeObject method throws an IOException if an error occurs.

The process of reading a serialized object’s bytes and constructing an object from them is
known as deserialization. To deserialize an object you use an ObjectInputStream object,
along with a FileInputStream object. Here is an example of how to set up the objects:

FileInputStream inStream =
 new FileInputStream("Objects.dat");
ObjectInputStream objectInputFile =
 new ObjectInputStream(inStream);

To read a serialized object from the file, use the ObjectInputStream class’s readObject
method. Here is an example:

BankAccount2 account;
account = (BankAccount2) objectInputFile.readObject();

The readObject method returns the deserialized object. Notice that you must cast the return
value to the desired class type. (The readObject method throws a number of different excep-
tions if an error occurs. See the API documentation for more information.)

748 Chapter 11 Exceptions and Advanced File I/O

The following programs demonstrate how to serialize and deserialize objects. The program
in Code Listing 11-17 serializes three BankAccount2 objects, and the program in Code
Listing 11-18 deserializes them.

code Listing 11-17 (SerializeObjects.java)

 1 import java.io.*;
 2 import java.util.Scanner;
 3
 4 /**
 5 This program serializes the objects in an array of
 6 BankAccount2 objects.
 7 */
 8
 9 public class SerializeObjects
10 {
11 public static void main(String[] args)
12 throws IOException
13 {
14 double balance; // An account balance
15 final int NUM_ITEMS = 3; // Number of accounts
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Create a BankAccount2 array
21 BankAccount2[] accounts =
22 new BankAccount2[NUM_ITEMS];
23
24 // Populate the array.
25 for (int i = 0; i < accounts.length; i++)
26 {
27 // Get an account balance.
28 System.out.print("Enter the balance for " +
29 "account " + (i + 1) + ": ");
30 balance = keyboard.nextDouble();
31
32 // Create an object in the array.
33 accounts[i] = new BankAccount2(balance);
34 }
35
36 // Create the stream objects.
37 FileOutputStream outStream =
38 new FileOutputStream("Objects.dat");
39 ObjectOutputStream objectOutputFile =
40 new ObjectOutputStream(outStream);
41
42 // Write the serialized objects to the file.

 11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization 749

43 for (int i = 0; i < accounts.length; i++)
44 {
45 objectOutputFile.writeObject(accounts[i]);
46 }
47
48 // Close the file.
49 objectOutputFile.close();
50
51 System.out.println("The serialized objects " +
52 "were written to the Objects.dat file.");
53 }
54 }

program output with Example input shown in Bold

Enter the balance for account 1: 5000.0 [Enter]
Enter the balance for account 2: 2500.0 [Enter]
Enter the balance for account 3: 1800.0 [Enter]
The serialized objects were written to the Objects.dat file.

code Listing 11-18 (DeserializeObjects.java)

 1 import java.io.*;
 2
 3 /**
 4 This program deserializes the objects in the Objects.dat
 5 file and stores them in an array.
 6 */
 7
 8 public class DeserializeObjects
 9 {
10 public static void main(String[] args)
11 throws Exception
12 {
13 double balance; // An account balance
14 final int NUM_ITEMS = 3; // Number of accounts
15
16 // Create the stream objects.
17 FileInputStream inStream =
18 new FileInputStream("Objects.dat");
19 ObjectInputStream objectInputFile =
20 new ObjectInputStream(inStream);
21
22 // Create a BankAccount2 array
23 BankAccount2[] accounts =
24 new BankAccount2[NUM_ITEMS];
25
26 // Read the serialized objects from the file.
27 for (int i = 0; i < accounts.length; i++)

750 Chapter 11 Exceptions and Advanced File I/O

28 {
29 accounts[i] =
30 (BankAccount2) objectInputFile.readObject();
31 }
32
33 // Close the file.
34 objectInputFile.close();
35
36 // Display the objects.
37 for (int i = 0; i < accounts.length; i++)
38 {
39 System.out.println("Account " + (i + 1) +
40 " $ " + accounts[i].getBalance());
41 }
42 }
43 }

program output

Account 1 $ 5000.0
Account 2 $ 2500.0
Account 3 $ 1800.0

serializing Aggregate objects
If a class implements the Serializable interface, then all of the fields in that class must be
serializable. This isn’t a problem for primitive variables because they are serializable just as
they are. However, if the class has a reference variable as a field, then the object referenced
by that variable should also be serializable. This means that the object’s class should also
implement the Serializable interface. If it doesn’t, then the transient key word should be
used in the reference variable’s declaration. Here is an example:

private transient SomeClass refVar;

Because of the transient key word, the compiler will skip the object referenced by refVar
during the serialization process. Fortunately, the String class, and most of the other classes
found in the Java API, implement the Serializable interface.

checkpoint

www.myprogramminglab.com

11.20 What is the difference between a text file and a binary file?

11.21 What classes do you use to write output to a binary file? What classes do you use
to read from a binary file?

11.22 What is the difference between sequential and random access?

11.23 What class do you use to work with random access files?

11.24 What are the two modes that a random access file may be opened in? Explain the
difference between them.

11.25 What must you do to a class in order to serialize objects of that class?

http://www.myprogramminglab.com

 Review Questions and Exercises 751

11.4 common Errors to Avoid
•	 Assuming that all statements inside a try block will execute. When an exception is

thrown, the try block is exited immediately. This means that statements appearing in
the try block after the offending statement will not be executed.

•	 Getting the try, catch, and finally clauses out of order. In a try statement, the try
clause must appear first, followed by all of the catch clauses, followed by the optional
finally clause.

•	 Writing two catch clauses that handle the same exception in the same try statement.
You cannot have more than one catch clause per exception type in the same
try statement.

•	 When catching multiple exceptions that are related to one another through inheri-
tance, listing the more general exceptions first. If you are handling multiple exceptions
in the same try statement, and some of the exceptions are related to each other
through inheritance, then you should handle the more specialized exception classes
before the more general exception classes. Otherwise, an error will occur because the
compiler thinks that you are handling the same exception more than once.

•	 Forgetting to write a throws clause on a method that can throw a checked exception
but does not handle the exception. If a method is capable of throwing a checked
exception but does not handle the exception, it must have a throws clause in its header
that specifies the exception.

•	 Calling a method but not handling an exception that it might throw. You must either
handle all of the checked exceptions that a method can throw, or list them in the call-
ing method’s throws clause.

•	 In a custom exception class, forgetting to pass an error message to the superclass’s
constructor. If you do not pass an error message to the superclass’s constructor, the
exception object will have a null error message.

•	 Serializing an object with members that are not serializable. If a class has fields that
are objects of other classes, those classes must implement the Serializable interface
in order to be serialized.

Review Questions and Exercises
Multiple choice and True/False

 1. When an exception is generated, it is said to have been __________.
a. built
b. thrown
c. caught
d. killed

 2. This is a section of code that gracefully responds to exceptions.
a. exception generator
b. exception manipulator
c. exception handler
d. exception monitor

752 Chapter 11 Exceptions and Advanced File I/O

 3. If your code does not handle an exception when it is thrown, it is dealt with by this.
a. default exception handler
b. the operating system
c. system debugger
d. default exception generator

 4. All exception classes inherit from this class.
a. Error
b. RuntimeException
c. JavaException
d. Throwable

 5. FileNotFoundException inherits from __________.
a. Error
b. IOException
c. JavaException
d. FileException

 6. You can think of this code as being “protected” because the application will not halt
if it throws an exception.
a. try block
b. catch block
c. finally block
d. protected block

 7. This method can be used to retrieve the error message from an exception object.
a. errorMessage
b. errorString
c. getError
d. getMessage

 8. The numeric wrapper classes’ “parse” methods all throw an exception of this type.
a. ParseException
b. NumberFormatException
c. IOException
d. BadNumberException

 9. This is one or more statements that are always executed after the try block has exe-
cuted and after any catch blocks have executed if an exception was thrown.
a. try block
b. catch block
c. finally block
d. protected block

 10. This is an internal list of all the methods that are currently executing.
a. invocation list
b. call stack
c. call list
d. list trace

 Review Questions and Exercises 753

 11. This method may be called from any exception object, and it shows the chain of meth-
ods that were called when the exception was thrown.
a. printInvocationList
b. printCallStack
c. printStackTrace
d. printCallList

 12. These are exceptions that inherit from the Error class or the RuntimeException class.
a. unrecoverable exceptions
b. unchecked exceptions
c. recoverable exceptions
d. checked exceptions

 13. All exceptions that do not inherit from the Error class or the RuntimeException
class are __________.
a. unrecoverable exceptions
b. unchecked exceptions
c. recoverable exceptions
d. checked exceptions

 14. This informs the compiler of the exceptions that could get thrown from a method.
a. throws clause
b. parameter list
c. catch clause
d. method return type

 15. You use this statement to throw an exception manually.
a. try
b. generate
c. throw
d. System.exit(0)

 16. This is the process of converting an object to a series of bytes that represent the
object’s data.
a. serialization
b. deserialization
c. dynamic conversion
d. casting

 17. True or False: You are not required to catch exceptions that inherit from the
RuntimeException class.

 18. True or False: When an exception is thrown by code inside a try block, all of the state-
ments in the try block are always executed.

 19. True or False: IOException serves as a superclass for exceptions that are related to
programming errors, such as an out-of-bounds array subscript.

 20. True or False: You cannot have more than one catch clause per try statement.

754 Chapter 11 Exceptions and Advanced File I/O

 21. True or False: When an exception is thrown, the JVM searches the try statement’s
catch clauses from top to bottom and passes control of the program to the first catch
clause with a parameter that is compatible with the exception.

 22. True or False: Not including polymorphic references, a try statement may have only
one catch clause for each specific type of exception.

 23. True or False: When in the same try statement you are handling multiple excep-
tions and some of the exceptions are related to each other through inheritance, you
should handle the more general exception classes before the more specialized excep-
tion classes.

 24. True or False: The throws clause causes an exception to be thrown.

Find the Error

Find the error in each of the following code segments:

 1. catch (FileNotFoundException e)
{
 System.out.println("File not found.");
}
try
{
 File file = new File("MyFile.txt");
 Scanner inputFile = new Scanner(file);
}

 2. // Assume inputFile references a Scanner object.
try
{
 input = inputFile.nextInt();
}
finally
{
 inputFile.close();
}
catch (InputMismatchException e)
{
 System.out.println(e.getMessage());
}

 3. try
{
 number=Integer.parseInt(str);
}
catch (Exception e)
{
 System.out.println(e.getMessage());
}

 Review Questions and Exercises 755

catch (IllegalArgumentException e)
{
 System.out.println("Bad number format.");
}
catch (NumberFormatException e)
{
 System.out.println(str + " is not a number.");
}

Algorithm Workbench

 1. Look at the following program and tell what it will output when run:

public class ExceptionTest
{
 public static void main(String[] args)
 {

 int number;
 String str;

 try
 {
 str = "xyz";
 number = Integer.parseInt(str);
 System.out.println("A");
 }
 catch(NumberFormatException e)
 {
 System.out.println("B");
 }
 catch(IllegalArgumentException e)
 {
 System.out.println("C");
 }

 System.out.println("D");
 }
}

 2. Look at the following program and tell what it will output when run:

public class ExceptionTest
{
 public static void main(String[] args)
 {
 int number;
 String str;

756 Chapter 11 Exceptions and Advanced File I/O

 try
 {
 str = "xyz";
 number = Integer.parseInt(str);
 System.out.println("A");
 }
 catch(NumberFormatException e)
 {
 System.out.println("B");
 }
 catch(IllegalArgumentException e)
 {
 System.out.println("C");
 }
 finally
 {
 System.out.println("D");
 }

 System.out.println("E");
 }
}

 3. Write a method that searches a numeric array for a specified value. The method should
return the subscript of the element containing the value if it is found in the array. If
the value is not found, the method should throw an exception of the Exception class
with the error message “Element not found”.

 4. Write a statement that throws an IllegalArgumentException with the error message
“Argument cannot be negative”.

 5. Write an exception class that can be thrown when a negative number is passed to
a method.

 6. Write a statement that throws an instance of the exception class that you created in
Algorithm Workbench 5.

 7. The method getValueFromFile is public and returns an int. It accepts no arguments.
The method is capable of throwing an IOException and a FileNotFoundException.
Write the header for this method.

 8. Write a try statement that calls the getValueFromFile method described in Algorithm
Workbench 7. Be sure to handle all the exceptions that the method can throw.

 9. Write a statement that creates an object that can be used to write binary data to the
file Configuration.dat.

 10. Write a statement that opens the file Customers.dat as a random access file for both
reading and writing.

 Programming Challenges 757

 11. Assume that the reference variable r refers to a serializable object. Write code that
serializes the object to the file ObjectData.dat.

short Answer

 1. What is meant when it is said that an exception is thrown?

 2. What does it mean to catch an exception?

 3. What happens when an exception is thrown, but the try statement does not have a
catch clause that is capable of catching it?

 4. What is the purpose of a finally clause?

 5. Where does execution resume after an exception has been thrown and caught?

 6. When multiple exceptions are caught in the same try statement and some of them are
related through inheritance, does the order in which they are listed matter?

 7. What types of objects can be thrown?

 8. When are you required to have a throws clause in a method header?

 9. What is the difference between a checked exception and an unchecked exception?

 10. What is the difference between the throw statement and the throws clause?

 11. What is the difference between a text file and a binary file?

 12. What is the difference between a sequential access file and a random access file?

 13. What happens when you serialize an object? What happens when you deserialize
an object?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. TestScores class

Write a class named TestScores. The class constructor should accept an array of test scores
as its argument. The class should have a method that returns the average of the test scores.
If any test score in the array is negative or greater than 100, the class should throw an
IllegalArgumentException. Demonstrate the class in a program.

2. TestScores class custom Exception

Write an exception class named InvalidTestScore. Modify the TestScores class you wrote
in Programming Challenge 1 so that it throws an InvalidTestScore exception if any of the
test scores in the array are invalid.

3. RetailItem Exceptions

Programming Challenge 4 of Chapter 6 required you to write a RetailItem class that holds
data pertaining to a retail item. Write an exception class that can be instantiated and thrown
when a negative number is given for the price. Write another exception class that can be
instantiated and thrown when a negative number is given for the units on hand. Demon-
strate the exception classes in a program.

http://www.myprogramminglab.com

758 Chapter 11 Exceptions and Advanced File I/O

4. Month class Exceptions

Programming Challenge 5 of Chapter 8 required you to write a Month class that holds infor-
mation about the month. Write exception classes for the following error conditions:

•	 A	number	less	than	1	or	greater	than	12	is	given	for	the	month	number.
•	 An	invalid	string	is	given	for	the	name	of	the	month.

Modify the Month class so that it throws the appropriate exception when either of these
errors occurs. Demonstrate the classes in a program.

5. Payroll class Exceptions

Programming Challenge 5 of Chapter 6 required you to write a Payroll class that calculates
an employee’s payroll. Write exception classes for the following error conditions:

•	 An	empty	string	is	given	for	the	employee’s	name.
•	 An	invalid	value	is	given	for	the	employee’s	ID	number.	If	you	implemented	this	field	

as a string, then an empty string would be invalid. If you implemented this field as a
numeric variable, then a negative number or zero would be invalid.

•	 An	invalid	number	is	given	for	the	number	of	hours	worked.	This	would	be	a	negative	
number or a number greater than 84.

•	 An	invalid	number	is	given	for	the	hourly	pay	rate.	This	would	be	a	negative	number	
or a number greater than 25.

Modify the Payroll class so that it throws the appropriate exception when any of these
errors occurs. Demonstrate the exception classes in a program.

6. FileArray class

Design a class that has a static method named writeArray. The method should take two argu-
ments: the name of a file and a reference to an int array. The file should be opened as a binary
file, the contents of the array should be written to the file, and then the file should be closed.

Write a second method in the class named readArray. The method should take two argu-
ments: the name of a file and a reference to an int array. The file should be opened, data
should be read from the file and stored in the array, and then the file should be closed.
Demonstrate both methods in a program.

7. File Encryption Filter

File encryption is the science of writing the contents of a file in a secret code. Your encryp-
tion program should work like a filter, reading the contents of one file, modifying the data
into a code, and then writing the coded contents out to a second file. The second file will be
a version of the first file, but written in a secret code.

Although there are complex encryption techniques, you should come up with a simple one
of your own. For example, you could read the first file one character at a time, and add 10
to the character code of each character before it is written to the second file.

8. File Decryption Filter

Write a program that decrypts the file produced by the program in Programming Challenge 7.
The decryption program should read the contents of the coded file, restore the data to its
original state, and write it to another file.

 Programming Challenges 759

9. TestScores Modification for serialization

Modify the TestScores class that you created for Programming Challenge 1 to be serializ-
able. Write a program that creates an array of at least five TestScore objects and serializes
them. Write another program that deserializes the objects from the file.

10. Exception project

This assignment assumes you have completed Programming Challenge 1 of Chapter 10
(Employee and ProductionWorker Classes). Modify the Employee and ProductionWorker
classes so they throw exceptions when the following errors occur:

•	 The	Employee class should throw an exception named InvalidEmployeeNumber when it
receives an invalid employee number.

•	 The	ProductionWorker class should throw an exception named InvalidShift when it
receives an invalid shift.

•	 The	ProductionWorker class should throw an exception named InvalidPayRate when
it receives a negative number for the hourly pay rate.

Write a test program that demonstrates how each of these exception conditions works.

The Exception
Project

Problem

VideoNote

This page intentionally left blank

761

A First Look at GUI
ApplicationsC

H
A

P
T

E
R

12
Topics

 12.1 Introduction
 12.2 Creating Windows
 12.3 Layout Managers
 12.4 Radio Buttons and Check

Boxes
 12.5 Borders

 12.6 Focus on Problem Solving: Extending
Classes from JPanel

 12.7 Splash Screens
 12.8 Using Console Output to Debug

a GUI Application
 12.9 Common Errors to Avoid

12.1 introduction

concepT: In Java, you use the Java Foundation Classes (JFC) to create a graphical
user interface for your application. Within the JFC you use the Abstract
Windowing Toolkit (AWT) or Swing classes to create a graphical
user interface.

In this chapter, we discuss the basics of creating a Java application with a graphical user
interface or GUI (pronounced “gooey”). A GUI is a graphical window or a system of graph-
ical windows that is presented by an application for interaction with the user. In addition to
accepting input from the keyboard, GUIs typically accept input from a mouse as well.

A window in a GUI commonly consists of several components that present data to the user
and/or allow interaction with the application. Some of the common GUI components are
buttons, labels, text fields, check boxes, and radio buttons. Figure 12-1 shows an example
of a window with a variety of components. Table 12-1 describes the components that
appear in the window.

762 Chapter 12 A First Look at GUI Applications

The JFc, AWT, and swing
Java programmers use the Java Foundation Classes (JFC) to create GUI applications. The
JFC consists of several sets of classes, many of which are beyond the scope of this book. The
two sets of JFC classes that we focus on are the AWT and Swing classes. First, we discuss
the differences between them.

Java has been equipped, since its earliest version, with a set of classes for drawing graphics
and creating GUIs. These classes are part of the Abstract Windowing Toolkit (AWT). The
AWT allows programmers to create applications and applets that interact with the user via
windows and other GUI components.

Table 12-1 Some GUI components

Component Description

Label An area that can display text.

Text field An area in which the user may type a single line of input from
the keyboard.

Combo box A component that displays a drop-down list of items from which the user
may select. A combo box also provides a text field in which the user may
type input. It is called a combo box because it is the combination of a list
and a text field.

Check box A component that has a box that may be checked or unchecked.

List A list from which the user may select an item.

Radio button A component that can be either selected or deselected. Radio buttons
usually appear in groups and allow the user to select one of
several options.

Slider A component that allows the user to select a value by moving a slider
along a track.

Button A button that can cause an action to occur when it is clicked.

Figure 12-1 Various GUI components (Oracle Corporate Counsel)

 12.1 Introduction 763

Programmers are limited in what they can do with the AWT classes, however. This is because
the AWT classes do not actually draw user interface components on the screen. Instead, the
AWT classes communicate with another layer of software, known as the peer classes, which
directs the underlying operating system to draw its own built-in components. Each version
of Java that is developed for a particular operating system has its own set of peer classes.
Although this means that Java programs have a look that is consistent with other applica-
tions on the same system, it also leads to some problems.

One problem is that not all operating systems offer the same set of GUI components. For
example, one operating system might provide a sophisticated slider bar component that is
not found on any other platform. Other operating systems might have their own unique
components as well. In order for the AWT to retain its portability, it has to offer only those
components that are common to all the operating systems that support Java.

Another problem is in the behavior of components across various operating systems. A
component on one operating system might have slightly different behavior than the
same component on a different operating system. In addition, the peer classes for some
operating systems reportedly have bugs. As a result, programmers cannot be completely
sure how their AWT programs will behave on different operating systems until they test
each one.

A third problem is that programmers cannot easily customize the AWT components.
Because these components rely on the appearance and behavior of the underlying oper-
ating system components, there is little that can be done by the programmer to change
their properties.

To remedy these problems, Swing was introduced with the release of Java 2. Swing is a
library of classes that do not replace the AWT, but provide an improved alternative for cre-
ating GUI applications and applets. Very few of the Swing classes rely on an underlying
system of peer classes. Instead, Swing draws most of its own components on the screen. This
means that Swing components can have a consistent look and predictable behavior on any
operating system.

Swing components can also be easily customized. The Swing library provides many
sophisticated components that are not found in the AWT. In this chapter and in Chapter 13,
we primarily use Swing to develop GUI applications. In Chapter 14, we use AWT to
develop applets.

noTe: AWT components are commonly called heavyweight components because they
are coupled with their underlying peer classes. Very few of the Swing components are
coupled with peer classes, so they are referred to as lightweight components.

noTe: Swing applications can have the look of a specific operating system. The pro-
grammer may choose from a variety of “look and feel” themes.

764 Chapter 12 A First Look at GUI Applications

event-Driven programming
Programs that operate in a GUI environment must be event-driven. An event is an action
that takes place within a program, such as the clicking of a button. Part of writing a GUI
application is creating event listeners. An event listener is an object that automatically exe-
cutes one of its methods when a specific event occurs. If you wish for an application to
perform an operation when a particular event occurs, you must create an event listener
object that responds when that event takes place.

The javax.swing and java.awt packages
In this chapter, we use the Swing classes for all of the graphical components that we create
in our GUIs. The Swing classes are part of the javax.swing package. (Take note of the letter
x that appears after the word java.) The following import statement will be used in every
applicaton:

import javax.swing.*;

We also use some of the AWT classes to determine when events, such as the clicking of a
mouse, take place in our applications. The AWT classes are part of the java.awt package.
(Note that there is no x after java in this package name.) Programs that use the AWT classes
will have the following import statement:

import java.awt.*;

12.2 creating Windows

concepT: You can use Swing classes to create windows containing various
GUI components.

The JOptionPane dialog boxes that you learned about in Chapter 2 allow you to easily dis-
play messages and gather input. If an application is to provide a full graphical user inter-
face, however, much more is needed. Often, applications need one or more windows with
various components that allow the user to enter and/or select data and interact with the
application. For example, the window that is displayed in Figure 12-1 has several different
components within it.

A window is a component, but because a window contains other components, it is more
appropriately considered a container. A container is simply a component that holds other
components. In GUI terminology, a container that can be displayed as a window is known
as a frame. A frame appears as a basic window that has a border around it, a title bar, and
a set of buttons for minimizing, maximizing, and closing the window. In a Swing applica-
tion, you create a frame object from the JFrame class.

There are a number of steps involved in creating a window, so let’s look at an example. The
program in Code Listing 12-1 displays the window shown in Figure 12-2.

Creating a
Simple GUI
Application

VideoNote

 12.2 Creating Windows 765

code Listing 12-1 (ShowWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2
 3 /**
 4 This program displays a simple window with a title. The
 5 application exits when the user clicks the close button.
 6 */
 7
 8 public class ShowWindow
 9 {
10 public static void main(String[] args)
11 {
12 final int WINDOW_WIDTH = 350; // Window width in pixels
13 final int WINDOW_HEIGHT = 250; // Window height in pixels
14
15 // Create a window.
16 JFrame window = new JFrame();
17
18 // Set the title.
19 window.setTitle("A Simple Window");
20
21 // Set the size of the window.
22 window.setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
23
24 // Specify what happens when the close button is clicked.
25 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
26
27 // Display the window.
28 window.setVisible(true);
29 }
30 }

Figure 12-2 Window displayed by ShowWindow.java (Oracle Corporate Counsel)

766 Chapter 12 A First Look at GUI Applications

The window shown in Figure 12-2 was produced on a system running Microsoft Windows.
Notice that the window has a border and a title bar with “A Simple Window” displayed in
it. In addition, it has the standard Microsoft Windows buttons in the upper-right corner: a
minimize button, a maximize button, and a close button. These standard features are some-
times referred to as decorations. If you run this program, you will see the window displayed
on your screen. When you click on the close button, the window disappears and the pro-
gram terminates.

Let’s take a closer look at the code. First, notice that the following import statement is used
in line 1:

import javax.swing.*; // Needed for Swing classes

Any program that uses a Swing class, such as JFrame, must have this import statement. In
lines 12 and 13 the two constants WINDOW_WIDTH and WINDOW_HEIGHT are declared as follows:

final int WINDOW_WIDTH = 350; // Window width in pixels
final int WINDOW_HEIGHT = 250; // Window height in pixels

We use these constants later in the program to set the size of the window. The window’s size
is measured in pixels. A pixel is one of the small dots that make up a screen display; the
resolution of your monitor is measured in pixels. For example, if your monitor’s resolution
is 1024 by 768, that means the width of your screen is 1024 pixels, and the height of your
screen is 768 pixels.

Next, we create an instance of the JFrame class with the following statement in line 16:

JFrame window = new JFrame();

This statement creates a JFrame object in memory and assigns its address to the window vari-
able. This statement does not display the window on the screen, however. A JFrame is ini-
tially invisible.

In line 19 we call the JFrame object’s setTitle method as follows:

window.setTitle("A Simple Window");

The string that is passed as an argument to setTitle will appear in the window’s title bar
when it is displayed. In line 22 we call the JFrame object’s setSize method to set the win-
dow’s size as follows:

window.setSize(WINDOW_WIDTH, WINDOW_HEIGHT);

The two arguments passed to setSize specify the window’s width and height in pixels. In
this program we pass the constants WINDOW_WIDTH and WINDOW_HEIGHT, which we declared
earlier, to set the size of the window to 350 pixels by 250 pixels.

In line 25 we specify the action that we wish to take place when the user clicks on the close
button, which appears in the upper-right corner of the window as follows:

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

There are a number of actions that can take place when the user clicks on the close button.
The setDefaultCloseOperation method takes an int argument, which specifies the action.
In this statement, we pass the constant JFrame.EXIT_ON_CLOSE, which causes the application

 12.2 Creating Windows 767

Let’s look at the SimpleWindow class in Code Listing 12-2. This is an example of a class that
extends the JFrame class.

code Listing 12-2 (SimpleWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2
 3 /**
 4 This class extends the JFrame class. Its constructor displays
 5 a simple window with a title. The application exits when the

to end with a System.exit method call. If we had passed JFrame.HIDE_ON_CLOSE, the window
would be hidden from view, but the application would not end. The default action is
JFrame.HIDE_ON_CLOSE.

Last, in line 28, we use the following code to display the window:

window.setVisible(true);

The setVisible method takes a boolean argument. If the argument is true, the window is
made visible. If the argument is false, the window is hidden.

Using inheritance to extend the JFrame class
The program in Code Listing 12-1 performs a very simple operation: It creates an instance
of the JFrame class and displays it. Most of the time, your GUI applications will be much
more involved than this. As you progress through this chapter, you will add numerous com-
ponents and capabilities to the windows that you create.

Instead of simply creating an instance of the JFrame class, as shown in Code Listing 12-1,
a more common technique is to use inheritance to create a new class that extends the
JFrame class.

iF YoU’ve skippeD AheAD To This chApTer: This chapter is written so
that you can skip ahead to it any time after Chapter 6. Reading about inheritance and
interfaces in Chapter 10 would be helpful; but if you have not read that material yet, the
following summarizes what you need to know for this chapter.

When a new class extends an existing class, it inherits many of the existing class’s members
just as if they were part of the new class. For example, you saw how the program in Code
Listing 12-1 created a JFrame object and then called four of its methods: setTitle, setSize,
setDefaultCloseOperation, and setVisible. These methods are all members of the JFrame
class. If you create a new class that extends the JFrame class, the new class will automatically
inherit these methods. Then these methods can be called from an instance of the new class
just as if they were written into its declaration. You can add your own custom code to the
new class, making it a specialized, or extended, version of the JFrame class. Programs can
then create instances of your new specialized class instead of the more generic JFrame class.

768 Chapter 12 A First Look at GUI Applications

 6 user clicks the close button.
 7 */
 8
 9 public class SimpleWindow extends JFrame
10 {
11 /**
12 Constructor
13 */
14
15 public SimpleWindow()
16 {
17 final int WINDOW_WIDTH = 350; // Window width in pixels
18 final int WINDOW_HEIGHT = 250; // Window height in pixels
19
20 // Set this window's title.
21 setTitle("A Simple Window");
22
23 // Set the size of this window.
24 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
25
26 // Specify what happens when the close button is clicked.
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 // Display the window.
30 setVisible(true);
31 }
32 }

Notice the class header in line 9 as follows:

public class SimpleWindow extends JFrame

The words extends JFrame indicate that the SimpleWindow class extends the JFrame class.
This means that the SimpleWindow class inherits members of the JFrame class, such as the
setTitle, setSize, setDefaultCloseOperation, and setVisible methods, just as if they
were written into the SimpleWindow class declaration. Now look at the constructor. In lines
17 and 18 we declare the WINDOW_WIDTH and WINDOW_HEIGHT constants, which will be used to
establish the size of the window as follows:

final int WINDOW_WIDTH = 350; // Window width in pixels
final int WINDOW_HEIGHT = 250; // Window height in pixels

In line 21 we call the setTitle method to set the text for the window’s title bar as follows:

setTitle("A Simple Window");

Notice that we are calling the method without an object reference and a dot preceding it.
This is because the method was inherited from the JFrame class, and we can call it just as if
it were written into the SimpleWindow class declaration.

The rest of the constructor calls the setSize, setDefaultCloseOperation, and setVisible
methods. All that is necessary to display the window is to create an instance of the

 12.2 Creating Windows 769

SimpleWindow class, as shown in the program in Code Listing 12-3. When this program
runs, the window that was previously shown in Figure 12-2 is displayed. Remember, the
SimpleWindow class is an extended version of the JFrame class. When we create an instance
of the SimpleWindow class, we are really creating an instance of the JFrame class, with some
customized code added to its constructor.

code Listing 12-3 (SimpleWindowDemo.java)

 1 /**
 2 This program creates an instance of the
 3 SimpleWindow class.
 4 */
 5
 6 public class SimpleWindowDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 SimpleWindow myWindow = new SimpleWindow();
11 }
12 }

equipping GUi classes with a main Method
You know that a Java application always starts execution with a static method named main.
The previous example consists of two separate files:

•	 SimpleWindow.java: This file contains the SimpleWindow class, which defines a GUI
window.

•	 SimpleWindowDemo.java: This file contains a static main method that creates an object
of the GUI window class, thus displaying it.

The purpose of the SimpleWindowDemo.java file is simply to create an instance of the
SimpleWindow class. It is possible to eliminate the second file, SimpleWindowDemo.java, by
writing the static main method directly into the SimpleWindow.java file. The EmbeddedMain
class in Code Listing 12-4 shows an example.

code Listing 12-4 (EmbeddedMain.java)

 1 import javax.swing.*; // Needed for Swing classes
 2
 3 /**
 4 This class defines a GUI window and has its own
 5 main method.
 6 */
 7
 8 public class EmbeddedMain extends JFrame
 9 {
10 final int WINDOW_WIDTH = 350; // Window width in pixels
11 final int WINDOW_HEIGHT = 250; // Window height in pixels

770 Chapter 12 A First Look at GUI Applications

12
13 /**
14 Constructor
15 */
16
17 public EmbeddedMain()
18 {
19 // Set this window's title.
20 setTitle("A Simple Window");
21
22 // Set the size of this window.
23 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
24
25 // Specify what happens when the close button is clicked.
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27
28 // Display the window.
29 setVisible(true);
30 }
31
32 /**
33 The main method creates an instance of the EmbeddedMain
34 class, which causes it to display its window.
35 */
36
37 public static void main(String[] args)
38 {
39 EmbeddedMain em = new EmbeddedMain();
40 }
41 }

The EmbeddedMain class contains its own static main method (in lines 37 through 40), which
creates an instance of the class. Notice that the main method has exactly the same header as any
other static main method that we have written. We can compile the EmbeddedMain.java file
and then run the resulting .class file. When we do, we see the window shown in Figure 12-3.

Figure 12-3 Window displayed by the EmbeddedMain class (Oracle Corporate Counsel)

 12.2 Creating Windows 771

Notice that in line 39 the main method declares a variable named em to reference the
instance of the class. Once the instance is created, however, the variable is not used
again. Because we do not need the variable, we can instantiate the class anonymously as
shown here:

public static void main(String[] args)
{
 new EmbeddedMain();
}

In this version of the method, an instance of the EmbeddedMain class is created in memory,
but its address is not assigned to any reference variable.

Adding components to a Window
Swing provides numerous GUI components that can be added to a window. Three funda-
mental components are the label, the text field, and the button. These are summarized in
Table 12-2.

Table 12-2 Label, text field, and button controls

Component Swing Class Description

Label JLabel An area that can display text

Text field JTextField An area in which the user may type a single line of
input from the keyboard

Button JButton A button that can cause an action to occur when it is
clicked

In Swing, labels are created with the JLabel class, text fields are created with the
JTextField class, and buttons are created with the JButton class. To demonstrate these
components, we will build a simple GUI application: The Kilometer Converter. This appli-
cation will present a window in which the user will be able to enter a distance in kilome-
ters, and then click a button to see that distance converted to miles. The conversion
formula is as follows:

Miles 5 Kilometers 3 0.6214

When designing a GUI application, it is usually helpful to draw a sketch showing the win-
dow you are creating. Figure 12-4 shows a sketch of what the Kilometer Converter applica-
tion’s window will look like. As you can see from the sketch, the window will have a label,
a text field, and a button. When the user clicks the button, the distance in miles will be dis-
played in a separate JOptionPane dialog box.

772 Chapter 12 A First Look at GUI Applications

content panes and panels

Before we start writing code, you should be familiar with content panes and panels. A con-
tent pane is a container that is part of every JFrame object. You cannot see the content pane
and it does not have a border, but any component that is to be displayed in a JFrame must
be added to its content pane.

A panel is also a container that can hold GUI components. Unlike JFrame objects, panels cannot
be displayed by themselves; however, they are commonly used to hold and organize collections
of related components. With Swing, you create panels with the JPanel class. In our Kilometer
Converter application, we will create a panel to hold the label, text field, and button. Then we
will add the panel to the JFrame object’s content pane. This is illustrated in Figure 12-5.

Figure 12-4 Sketch of the Kilometer Converter window (Oracle Corporate Counsel)

Code Listing 12-5 shows the initial code for the KiloConverter class. We will be adding to
this code as we develop the application. This version of the class is stored in the source code
folder Chapter 12\KiloConverter Phase 1.

code Listing 12-5 (KiloConverter.java)

 1 import javax.swing.*;
 2
 3 /**
 4 The KiloConverter class displays a JFrame that
 5 lets the user enter a distance in kilometers. When

Content Pane

Figure 12-5 A panel is added to the content pane (Oracle Corporate Counsel)

 12.2 Creating Windows 773

 6 the Calculate button is clicked, a dialog box is
 7 displayed with the distance converted to miles.
 8 */
 9
10 public class KiloConverter extends JFrame
11 {
12 private JPanel panel; // To reference a panel
13 private JLabel messageLabel; // To reference a label
14 private JTextField kiloTextField; // To reference a text field
15 private JButton calcButton; // To reference a button
16 private final int WINDOW_WIDTH = 310; // Window width
17 private final int WINDOW_HEIGHT = 100;// Window height
18
19 /**
20 Constructor
21 */
22
23 public KiloConverter()
24 {
25 // Set the window title.
26 setTitle("Kilometer Converter");
27
28 // Set the size of the window.
29 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
30
31 // Specify what happens when the close button is clicked.
32 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
33
34 // Build the panel and add it to the frame.
35 buildPanel();
36
37 // Add the panel to the frame's content pane.
38 add(panel);
39
40 // Display the window.
41 setVisible(true);
42 }
43
44 /**
45 The buildPanel method adds a label, a text field,
46 and a button to a panel.
47 */
48
49 private void buildPanel()
50 {
51 // Create a label to display instructions.
52 messageLabel = new JLabel("Enter a distance " +
53 "in kilometers");

774 Chapter 12 A First Look at GUI Applications

54
55 // Create a text field 10 characters wide.
56 kiloTextField = new JTextField(10);
57
58 // Create a button with the caption "Calculate".
59 calcButton = new JButton("Calculate");
60
61 // Create a JPanel object and let the panel
62 // field reference it.
63 panel = new JPanel();
64
65 // Add the label, text field, and button
66 // components to the panel.
67 panel.add(messageLabel);
68 panel.add(kiloTextField);
69 panel.add(calcButton);
70 }
71
72 /**
73 main method
74 */
75
76 public static void main(String[] args)
77 {
78 new KiloConverter();
79 }
80 }

Let’s take a closer look at this class. First, notice in line 10 that the KiloConverter class
extends the JFrame class as follows:

public class KiloConverter extends JFrame

Next, in lines 12 through 17, notice in the following that the class declares a number of
fields, and according to good class design principles, the fields are private:

private JPanel panel; // To reference a panel
private JLabel messageLabel; // To reference a label
private JTextField kiloTextField; // To reference a text field
private JButton calcButton; // To reference a button
private final int WINDOW_WIDTH = 310; // Window width
private final int WINDOW_HEIGHT = 100; // Window height

The statement in line 12 declares a JPanel reference variable named panel, which we will
use to reference the panel that will hold the other components. The messageLabel vari-
able, declared in line 13, will reference a JLabel object that displays a message instructing
the user to enter a distance in kilometers. The kiloTextField variable, declared in line 14,
will reference a JTextField object that will hold a value typed by the user. The calcButton

 12.2 Creating Windows 775

variable, declared in line 15, will reference a JButton object that will calculate and dis-
play the kilometers converted to miles when clicked. The WINDOW_WIDTH and WINDOW_HEIGHT
fields, declared in lines 16 and 17, are constants that hold the width and height of
the window.

Now let’s look at the constructor. In line 26 the setTitle method, which was inherited from
the JFrame class, is called to set the text for the window’s title bar. Next, in line 29, the
inherited setSize method is called to establish the size of the window. In line 32, the inher-
ited setDefaultCloseOperation method is called to establish the action that should occur
when the window’s close button is clicked.

Line 35 calls the buildPanel method. The buildPanel method is defined in this class, in
lines 49 through 70. The purpose of the buildPanel method is to create a label, a text field,
and a button, and then add those components to a panel. Let’s look at the method.

First, look at the method header in line 49 and notice that it is declared private. When a
method is private, only other methods in the same class can call it. This method is not meant
to be called by code outside the class, so it is declared private. In lines 52 and 53, the
method uses the following statement to create a JLabel object and assign its address to the
message field:

messageLabel = new JLabel("Enter a distance " +
 "in kilometers");

The string that is passed to the JLabel constructor is the text that will be displayed in the
label. The following statement appears in line 56. It creates a JTextField object, and assigns
its address to the kiloTextField field:

kiloTextField = new JTextField(10);

The argument that is passed to the JTextField constructor is the width of the text field in
columns. One column is enough space to hold the letter “m,” which is the widest letter in
the alphabet.

The following statement appears in line 59; it creates a JButton object, and assigns its
address to the calcButton field:

calcButton = new JButton("Calculate");

The string that is passed as an argument to the JButton constructor is the text that will be
displayed on the button.

Next, in line 63, the method uses the following statement to create a JPanel object and
assign its address to the panel field, which is a private field in the class:

panel = new JPanel();

A JPanel object is used to hold other components. You add a component to a JPanel object
with the add method. The following code, in lines 67 through 69, adds the objects refer-
enced by the messageLabel, kiloTextField, and calcButton variables to the JPanel object:

panel.add(messageLabel);
panel.add(kiloTextField);
panel.add(calcButton);

776 Chapter 12 A First Look at GUI Applications

At this point, the panel is fully constructed in memory. The buildPanel method ends, and
control returns to the class constructor. Here’s the next statement in the constructor, which
appears in line 38:

add(panel);

This statement calls the add method, which was inherited from the JFrame class. The pur-
pose of the add method is to add an object to the content pane. This statement adds the
object referenced by panel to the content pane.

The constructor’s last statement, in line 41, calls the inherited setVisible method to display
the window on the screen as follows:

setVisible(true);

The class has a static main method, which appears in lines 76 through 79. Line 78 creates an
instance of the KiloConverter class. When this program is executed, the window shown in
Figure 12-6 is displayed on the screen.

Figure 12-6 Kilometer Converter window

Figure 12-7 shows the window again, this time pointing out each of the components.

Although you can type input into the text field, the application does nothing when you click
the Calculate button because we have not written an event handler that will execute when
the button is clicked. That’s the next step.

JLabel component JTextField component

JButton component

Figure 12-7 Components in the Kilometer Converter window (Oracle Corporate Counsel)

noTe: Recall that the size of the window in the KiloConverter class is set to 310 pixels
wide by 100 pixels high. This is set with the WINDOW_WIDTH and WINDOW_HEIGHT constants.
Figures 12-6 and 12-7 show the window as it appears on a system set at a video resolu-
tion of 1024 by 768 pixels. If your video resolution is lower, the window might not
appear exactly as shown in the figures. If this is the case, you can increase the values of
the WINDOW_WIDTH and WINDOW_HEIGHT constants and recompile the program. This is true
for other applications in this chapter as well.

 12.2 Creating Windows 777

When an inner class is private, as shown in the figure, it is accessible only to code in the
class that contains it. For example, the Inner class shown in the figure would be accessible
only to methods that belong to the Outer class. Code outside the Outer class would not be
able to access the Inner class. A common technique for writing an event listener class is to
write it as a private inner class, inside the class that creates the GUI. Although this is not the
only way to write event listener classes, it is the approach we take in this book.

handling events with Action Listeners
An event is an action that takes place within a program, such as the clicking of a button.
When an event takes place, the component that is responsible for the event creates an event
object in memory. The event object contains information about the event. The component
that generated the event object is known as the event source. For example, when the user
clicks a button, the JButton component generates an event object. The JButton component
that generated the event object is the event source.

But what happens to the event object once it is generated by a source component? It is
possible that the source component is connected to one or more event listeners. An event
listener is an object that responds to events. If the source component is connected to an
event listener, then the event object is automatically passed, as an argument, to a specific
method in the event listener. The method then performs any actions that it was pro-
grammed to perform in response to the event. This process is sometimes referred to as
event firing.

When you are writing a GUI application, it is your responsibility to write the classes for the
event listeners that your application needs. For example, if you write an application with a
JButton component, an event will be generated each time the user clicks the button.
Therefore, you should write an event listener class that can handle the event. In your appli-
cation you would create an instance of the event listener class and connect it to the JButton
component. Before looking at a specific example, we must discuss two important topics
that arise when writing event listeners: private inner classes and interfaces.

Writing event Listener classes as private inner classes

Java allows you to write a class definition inside of another class definition. A class that is
defined inside of another class is known as an inner class. Figure 12-8 illustrates a class
definition inside of another class definition.

Figure 12-8 A class with an inner class (Oracle Corporate Counsel)

Handling Events
VideoNote

778 Chapter 12 A First Look at GUI Applications

You use the implements key word in a class header to indicate that it implements an inter-
face. Here is an example of a class named MyButtonListener that implements the
ActionListener interface:

private class MyButtonListener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 Write code here to handle the event.
 }
}

Remember, when you write a class that implements an interface, you are “promising” that
the class will have the methods specified in the interface. Notice that this class lives up to its
promise. It has a method named actionPerformed, with a header that matches the
actionPerformed header in the ActionListener interface exactly.

event Listeners Must implement an interface

There is a special requirement that all event listener classes must meet: They must implement
an interface.

We discussed interfaces in detail in Chapter 10, but in case you haven’t read that material,
you can think of an interface as something like a class, containing one or more method
headers. Interfaces do not have actual methods, however, only their headers. When you
write a class that implements an interface, you are agreeing that the class will have all of the
methods that are specified in the interface.

Java provides numerous interfaces that you can use with event listener classes. There are
several different types of events that can occur within a GUI application, and the specific
interface that you use depends on the type of event you want to handle. JButton compo-
nents generate action events, and an event listener class that can handle action events is also
known as an action listener class. When you write an action listener class for a JButton
component, it must implement an interface known as ActionListener. In case you are curi-
ous, this is what the code for the ActionListener interface looks like:

public interface ActionListener
{
 public void actionPerformed(ActionEvent e);
}

As you can see, the ActionListener interface contains the header for only one method:
actionPerformed. Notice that the method has public access, is void, and has a param-
eter of the ActionEvent type. When you write a class that implements this interface, it
must have a method named actionPerformed, with a header exactly like the one in the
interface.

noTe: The ActionListener interface, as well as other event listener interfaces, is in
the java.awt.event package. We will use the following import statement in order to
use those interfaces:

import java.awt.event.*;

 12.2 Creating Windows 779

registering an event Listener object

Once you have written an event listener class, you can create an object of that class, and
then connect the object with a GUI component. The process of connecting an event listener
object to a GUI component is known as registering the event listener.

When a JButton component generates an event, it automatically executes the actionPerformed
method of the event listener object that is registered with it, passing the event object as an
argument. This is illustrated in Figure 12-9.

noTe: In your action listener class, the only part of the actionPerformed method
header that does not have to match that which is shown in the ActionListener interface
exactly is the name of the parameter variable. Instead of using the name e, you can use
any legal variable name that you wish.

Figure 12-9 A JButton component firing an action event (Oracle Corporate Counsel)

Writing an event Listener for the
KiloConverter class
Now that we’ve gone over the basics of event listeners, let’s continue to develop the
KiloConverter class. Code Listing 12-6 shows the class with an action listener added to it.
This version of the class is stored in the source code folder Chapter 12\KiloConverter
Phase 2. The action listener is a private inner class named CalcButtonListener. The new
code is shown in bold.

code Listing 12-6 (KiloConverter.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.event.*; // Needed for ActionListener Interface
 3
 4 /**
 5 The KiloConverter class displays a JFrame that
 6 lets the user enter a distance in kilometers. When
 7 the Calculate button is clicked, a dialog box is
 8 displayed with the distance converted to miles.

780 Chapter 12 A First Look at GUI Applications

 9 */
 10
 11 public class KiloConverter extends JFrame
 12 {
 13 private JPanel panel; // To reference a panel
 14 private JLabel messageLabel; // To reference a label
 15 private JTextField kiloTextField; // To reference a text field
 16 private JButton calcButton; // To reference a button
 17 private final int WINDOW_WIDTH = 310; // Window width
 18 private final int WINDOW_HEIGHT = 100; // Window height
 19
 20 /**
 21 Constructor
 22 */
 23
 24 public KiloConverter()
 25 {
 26 // Set the window title.
 27 setTitle("Kilometer Converter");
 28
 29 // Set the size of the window.
 30 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 31
 32 // Specify what happens when the close button is clicked.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 // Build the panel and add it to the frame.
 36 buildPanel();
 37
 38 // Add the panel to the frame's content pane.
 39 add(panel);
 40
 41 // Display the window.
 42 setVisible(true);
 43 }
 44
 45 /**
 46 The buildPanel method adds a label, a text field,
 47 and a button to a panel.
 48 */
 49
 50 private void buildPanel()
 51 {
 52 // Create a label to display instructions.
 53 messageLabel = new JLabel("Enter a distance " +
 54 "in kilometers");
 55
 56 // Create a text field 10 characters wide.

 12.2 Creating Windows 781

 57 kiloTextField = new JTextField(10);
 58
 59 // Create a button with the caption "Calculate".
 60 calcButton = new JButton("Calculate");
 61
 62 // Add an action listener to the button.
 63 calcButton.addActionListener(new CalcButtonListener());
 64
 65 // Create a JPanel object and let the panel
 66 // field reference it.
 67 panel = new JPanel();
 68
 69 // Add the label, text field, and button
 70 // components to the panel.
 71 panel.add(messageLabel);
 72 panel.add(kiloTextField);
 73 panel.add(calcButton);
 74 }
 75
 76 /**
 77 CalcButtonListener is an action listener class for
 78 the Calculate button.
 79 */
 80
 81 private class CalcButtonListener implements ActionListener
 82 {
 83 /**
 84 The actionPerformed method executes when the user
 85 clicks on the Calculate button.
 86 @param e The event object.
 87 */
 88
 89 public void actionPerformed(ActionEvent e)
 90 {
 91 final double CONVERSION = 0.6214;
 92 String input; // To hold the user's input
 93 double miles; // The number of miles
 94
 95 // Get the text entered by the user into the
 96 // text field.
 97 input = kiloTextField.getText();
 98
 99 // Convert the input to miles.
100 miles = Double.parseDouble(input) * CONVERSION;
101
102 // Display the result.
103 JOptionPane.showMessageDialog(null, input +
104 " kilometers is " + miles + " miles.");

782 Chapter 12 A First Look at GUI Applications

105 }
106 }
107
108 /**
109 main method
110 */
111
112 public static void main(String[] args)
113 {
114 new KiloConverter();
115 }
116 }

First, notice that we’ve added the import java.awt.event.*; statement in line 2. This is
necessary for our program to use the ActionListener interface. Next, look at the following
code in line 81:

private class CalcButtonListener implements ActionListener

This is the header for an inner class that we will use to create event listener objects. The
name of this class is CalcButtonListener and it implements the ActionListener interface.
We could have named the class anything we wanted to, but because it will handle the JButton
component’s action events, it must implement the ActionListener interface. The class
has one method, actionPerformed, which is required by the ActionListener interface. The
header for the actionPerformed method appears in line 89 as follows:

public void actionPerformed(ActionEvent e)

This method will be executed when the user clicks the JButton component. It has one
parameter, e, which is an ActionEvent object. This parameter receives the event object that
is passed to the method when it is called. Although we do not actually use the e parameter
in this method, we still have to list it inside the method header’s parentheses because it is
required by the ActionListener interface.

The actionPerformed method declares a constant for the conversion factor in line 91, and
two local variables in lines 92 and 93: input, a reference to a String object; and miles, a
double. The following statement appears in line 97:

input = kiloTextField.getText();

All JTextField objects have a getText method that returns the text contained in the text
field. This will be any value entered into the text field by the user. The value is returned as a
string. So, this statement retrieves any value entered by the user into the text field and
assigns it to input.

The following statement appears in line 100:

miles = Double.parseDouble(input) * CONVERSION;

This statement converts the value in input to a double, and then multiplies it by the con-
stant CONVERSION, which is set to 0.6214. This will convert the number of kilometers entered
by the user to miles. The result is stored in the miles variable. The method’s last statement,

 12.2 Creating Windows 783

in lines 103 and 104, uses JOptionPane to display a dialog box showing the distance con-
verted to miles as follows:

JOptionPane.showMessageDialog(null, input +
 " kilometers is " + miles + " miles.");

Writing an action listener class is only part of the process of handling a JButton compo-
nent’s action events. We must also create an object from the class and then register the
object with the JButton component. When we register the action listener object with the
JButton component, we are creating a connection between the two objects.

JButton components have a method named addActionListener, which is used for regis-
tering action event listeners. In line 63, which is in the buildPanel method, the follow-
ing statement creates a CalcButtonListener object and registers that object with the
calcButton object:

calcButton.addActionListener(new CalcButtonListener());

You pass the address of an action listener object as the argument to the addActionListener
method. This statement uses the expression new CalcButtonListener() to create an instance
of the CalcButtonListener class. The address of that instance is then passed to the
addActionListener method. Now, when the user clicks the Calculate button, the
CalcButtonListener object’s actionPerformed method will be executed.

Tip: Instead of the one statement in line 63, we could have written the following two
statements:

CalcButtonListener listener = new CalcButtonListener();
calcButton.addActionListener(listener);

The first statement shown here declares a CalcButtonListener variable named listener,
creates a new CalcButtonListener object, and assigns the object’s address to the listener
variable. The second statement passes the address in listener to the addActionListener
method. These two statements accomplish the same thing as the one statement in line 63,
but they declare a variable, listener, that we will not use again in the program. A better
way is to use the one statement that appears in line 63 as follows:

calcButton.addActionListener(new CalcButtonListener());

Recall that the new key word creates an object and returns the object’s address. This state-
ment uses the new key word to create a CalcButtonListener object, and passes the object’s
address directly to the addActionListener method. Because we do not need to refer to the
object again in the program, we do not assign the object’s address to a variable. It is
known as an anonymous object.

When this program is executed, the first window shown in Figure 12-10 is displayed on the
screen. If the user enters 2 in the text field and clicks the Calculate button, the second win-
dow shown in the figure (a dialog box) appears. To exit the application, the user clicks the
OK button on the dialog box, and then clicks the close button in the upper-right corner of
the main window.

784 Chapter 12 A First Look at GUI Applications

Background and Foreground colors
Many of the Swing component classes have methods named setBackground and
setForeground. You call these methods to change a component’s color. The background
color is the color of the component itself, and the foreground color is the color of text that
might be displayed on the component.

The argument that you pass to the setBackground and setForeground methods is a color
code. Table 12-3 lists several predefined constants that you can use for colors. To use these
constants, you must have the import java.awt.*; statement in your code.

This window appears first. The user enters 2 in the
text field and then clicks the Calculate button. This dialog box appears next.

Figure 12-10 Windows displayed by the KiloConverter class (Oracle Corporate Counsel)

Table 12-3 Color constants (Oracle Corporate Counsel)

Color.BLACK Color.BLUE

Color.CYAN Color.DARK_GRAY

Color.GRAY Color.GREEN

Color.LIGHT_GRAY Color.MAGENTA

Color.ORANGE Color.PINK

Color.RED Color.WHITE

Color.YELLOW

For example, the following code creates a button with the text “OK” displayed on it. The
setBackground and setForeground methods are called to make the button blue and the
text yellow.

JButton okButton = new JButton("OK");
okButton.setBackground(Color.BLUE);
okButton.setForeground(Color.YELLOW);

The ColorWindow class in Code Listing 12-7 displays a window with a label and three but-
tons. When the user clicks a button, it changes the background color of the panel that con-
tains the components and the foreground color of the label.

 12.2 Creating Windows 785

code Listing 12-7 (ColorWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for Color class
 3 import java.awt.event.*; // Needed for event listener interface
 4
 5 /**
 6 This class demonstrates how to set the background color of
 7 a panel and the foreground color of a label.
 8 */
 9
 10 public class ColorWindow extends JFrame
 11 {
 12 private JLabel messageLabel; // To display a message
 13 private JButton redButton; // Changes color to red
 14 private JButton blueButton; // Changes color to blue
 15 private JButton yellowButton; // Changes color to yellow
 16 private JPanel panel; // A panel to hold components
 17 private final int WINDOW_WIDTH = 200; // Window width
 18 private final int WINDOW_HEIGHT = 125; // Window height
 19
 20 /**
 21 Constructor
 22 */
 23
 24 public ColorWindow()
 25 {
 26 // Set the title bar text.
 27 setTitle("Colors");
 28
 29 // Set the size of the window.
 30 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 31
 32 // Specify an action for the close button.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 // Create a label.
 36 messageLabel = new JLabel("Click a button to " +
 37 "select a color.");
 38
 39 // Create the three buttons.
 40 redButton = new JButton("Red");
 41 blueButton = new JButton("Blue");
 42 yellowButton = new JButton("Yellow");
 43
 44 // Register an event listener with all 3 buttons.

786 Chapter 12 A First Look at GUI Applications

 45 redButton.addActionListener(new RedButtonListener());
 46 blueButton.addActionListener(new BlueButtonListener());
 47 yellowButton.addActionListener(new YellowButtonListener());
 48
 49 // Create a panel and add the components to it.
 50 panel = new JPanel();
 51 panel.add(messageLabel);
 52 panel.add(redButton);
 53 panel.add(blueButton);
 54 panel.add(yellowButton);
 55
 56 // Add the panel to the content pane.
 57 add(panel);
 58
 59 // Display the window.
 60 setVisible(true);
 61 }
 62
 63 /**
 64 Private inner class that handles the event when
 65 the user clicks the Red button.
 66 */
 67
 68 private class RedButtonListener implements ActionListener
 69 {
 70 public void actionPerformed(ActionEvent e)
 71 {
 72 // Set the panel's background to red.
 73 panel.setBackground(Color.RED);
 74
 75 // Set the label's text to blue.
 76 messageLabel.setForeground(Color.BLUE);
 77 }
 78 }
 79
 80 /**
 81 Private inner class that handles the event when
 82 the user clicks the Blue button.
 83 */
 84
 85 private class BlueButtonListener implements ActionListener
 86 {
 87 public void actionPerformed(ActionEvent e)
 88 {
 89 // Set the panel's background to blue.
 90 panel.setBackground(Color.BLUE);

 12.2 Creating Windows 787

 91
 92 // Set the label's text to yellow.
 93 messageLabel.setForeground(Color.YELLOW);
 94 }
 95 }
 96
 97 /**
 98 Private inner class that handles the event when
 99 the user clicks the Yellow button.
100 */
101
102 private class YellowButtonListener implements ActionListener
103 {
104 public void actionPerformed(ActionEvent e)
105 {
106 // Set the panel's background to yellow.
107 panel.setBackground(Color.YELLOW);
108
109 // Set the label's text to black.
110 messageLabel.setForeground(Color.BLACK);
111 }
112 }
113
114 /**
115 main method
116 */
117
118 public static void main(String[] args)
119 {
120 new ColorWindow();
121 }
122 }

Notice that this class has three action listener classes, one for each button. The action listener
classes are RedButtonListener, BlueButtonListener, and YellowButtonListener. The
 following statements, in lines 45 through 47, register instances of these classes with the
appropriate button components:

redButton.addActionListener(new RedButtonListener());
blueButton.addActionListener(new BlueButtonListener());
yellowButton.addActionListener(new YellowButtonListener());

When you run the program, the window shown in Figure 12-11 appears.

788 Chapter 12 A First Look at GUI Applications

changing the Background color of a JFrame object’s content pane

Recall that a JFrame object has a content pane, which is a container for all the components
that are added to the JFrame. When you add a component to a JFrame object, you are actu-
ally adding it to the object’s content pane. In the example shown in this section, we added a
label and some buttons to a panel, and then added the panel to the JFrame object’s content
pane. When we changed the background color, we changed the background color of the
panel. In this example, the color of the content pane does not matter because it is completely
filled up by the panel. The color of the panel covers up the color of the content pane.

In some cases, where you have not filled up the JFrame object’s content pane with a panel,
you might want to change the background color of the content pane. If you wish to change
the background color of a JFrame object’s content pane, you must call the content pane’s
setBackground method, not the JFrame object’s setBackground method. For example, in a
class that extends the JFrame class, the following statement can be used to change the con-
tent pane’s background to blue:

getContentPane().setBackground(Color.BLUE);

In this statement, the getContentPane method is called to get a reference to the JFrame
object’s content pane. This reference is then used to call the content pane’s setBackground
method. As a result, the content pane’s background color will change to blue.

The ActionEvent object
The action listener’s actionPerformed method has a parameter variable named e that is
declared as follows:

ActionEvent e

ActionEvent is a class that is defined in the Java API. When an action event occurs, an
object of the ActionEvent class is created, the action listener’s actionPerformed method is

The window components first
appear in their default colors.

When the user clicks on the Red button, the
panel turns red and the label turns blue.

When the user clicks on the Blue button, the
panel turns blue and the label turns yellow.

When the user clicks on the Yellow button, the
panel turns yellow and the label turns black.

Figure 12-11 The window produced by the ColorWindow class (Oracle Corporate Counsel)

 12.2 Creating Windows 789

called, and a reference to the ActionEvent object is passed into the e parameter variable. So,
when the actionPerformed method executes, the e parameter references the event object
that was generated in response to the event.

Earlier it was mentioned that the event object contains information about the event. If you
wish, you can retrieve certain information about the event by calling one of the event
object’s methods. Two of the ActionEvent methods are listed in Table 12-4.

Table 12-4 ActionEvent methods

Method Name Description

getActionCommand() Returns the action command for this event as a String

getSource() Returns a reference to the object that generated this event

The getActionCommand Method

The first method listed in Table 12-4, getActionCommand, returns the action command that
is associated with the event. When a JButton component generates an event, the action
command is the text that appears on the button. The getActionCommand returns this text as
a String. You can use the getActionCommand method to determine which button was clicked
when several buttons share the same action listener class.

To demonstrate, look at the EventObjectWindow class in Code Listing 12-8. It produces a
window with three buttons. The buttons have the text “Button 1”, “Button 2”, and “Button 3”.
The action listener class displays the contents of the event object’s action command when
any of these buttons are clicked.

code Listing 12-8 (EventObjectWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.event.*; // Needed for event listener interface
 3
 4 /**
 5 This class demonstrates how to retrieve the action command
 6 from an event object.
 7 */
 8
 9 public class EventObject extends JFrame
10 {
11 private JButton button1; // Button 1
12 private JButton button2; // Button 2
13 private JButton button3; // Button 3
14 private JPanel panel; // A panel to hold components
15 private final int WINDOW_WIDTH = 300; // Window width
16 private final int WINDOW_HEIGHT = 70; // Window height

790 Chapter 12 A First Look at GUI Applications

17
18 /**
19 Constructor
20 */
21
22 public EventObject()
23 {
24 // Set the title bar text.
25 setTitle("Event Object Demonstration");
26
27 // Set the size of the window.
28 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
29
30 // Specify what happens when the close button is clicked.
31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
32
33 // Create the three buttons.
34 button1 = new JButton("Button 1");
35 button2 = new JButton("Button 2");
36 button3 = new JButton("Button 3");
37
38 // Register an event listener with all 3 buttons.
39 button1.addActionListener(new ButtonListener());
40 button2.addActionListener(new ButtonListener());
41 button3.addActionListener(new ButtonListener());
42
43 // Create a panel and add the buttons to it.
44 panel = new JPanel();
45 panel.add(button1);
46 panel.add(button2);
47 panel.add(button3);
48
49 // Add the panel to the content pane.
50 add(panel);
51
52 // Display the window.
53 setVisible(true);
54 }
55
56 /**
57 Private inner class that handles the event when
58 the user clicks a button.
59 */
60
61 private class ButtonListener implements ActionListener
62 {
63 public void actionPerformed(ActionEvent e)

 12.2 Creating Windows 791

64 {
65 // Get the action command.
66 String actionCommand = e.getActionCommand();
67
68 // Determine which button was clicked and display
69 // a message.
70 if (actionCommand.equals("Button 1"))
71 {
72 JOptionPane.showMessageDialog(null, "You clicked " +
73 "the first button.");
74 }
75 else if (actionCommand.equals("Button 2"))
76 {
77 JOptionPane.showMessageDialog(null, "You clicked " +
78 "the second button.");
79 }
80 else if (actionCommand.equals("Button 3"))
81 {
82 JOptionPane.showMessageDialog(null, "You clicked " +
83 "the third button.");
84 }
85 }
86 }
87
88 /**
89 main method
90 */
91
92 public static void main(String[] args)
93 {
94 new EventObject();
95 }
96 }

Previously you saw the ColorWindow class, in Code Listing 12-7, which had three buttons
and three different action listener classes. The EventObjectWindow class also has three but-
tons, but only one action listener class. In lines 39 through 41, we create and register three
separate instances of the class with the three buttons as follows:

button1.addActionListener(new ButtonListener());
button2.addActionListener(new ButtonListener());
button3.addActionListener(new ButtonListener());

Figure 12-12 shows the output of the application when the user clicks Button 1, Button 2,
and Button 3.

792 Chapter 12 A First Look at GUI Applications

The getSource Method

The second ActionEvent method listed in Table 12-4, getSource, returns a reference to the
component that is the source of the event. As with the getActionCommand method, if you
have several buttons and use objects of the same action listener class to respond to their
events, you can use the getSource method to determine which button was clicked. For
example, the ButtonListener class’s actionPerformed method in Code Listing 12-8 could
have been written as follows, to achieve the same result:

public void actionPerformed(ActionEvent e)
{
 // Determine which button was clicked and display
 // a message.

This window appears first.

1

The user clicks Button 1 and this dialog box
appears next. The user clicks the OK button
to dismiss the dialog box.

2

The user clicks Button 2 and this dialog box
appears next. The user clicks the OK button
to dismiss the dialog box.

3

The user clicks Button 3 and this dialog box
appears next. The user clicks the OK button
to dismiss the dialog box.

4

Figure 12-12 Output of EventObjectWindow class (Oracle Corporate Counsel)

Tip: The text that is displayed on a button is the default action command. You can
change the action command by calling the JButton class’s setActionCommand method. For
example, assuming that myButton references a JButton component, the following state-
ment would change the component’s action command to “The button was clicked”:

myButton.setActionCommand("The button was clicked");

noTe: Changing a JButton component’s action command does not change the text that
is displayed on the button. For a demonstration of how to change the action command,
see the ActionCommand.java file in this chapter’s source code folder.

 12.3 Layout Managers 793

 if (e.getSource() == button1)
 {
 JOptionPane.showMessageDialog(null, "You clicked " +
 "the first button.");
 }
 else if (e.getSource() == button2)
 {
 JOptionPane.showMessageDialog(null, "You clicked " +
 "the second button.");
 }
 else if (e.getSource() == button3)
 {
 JOptionPane.showMessageDialog(null, "You clicked " +
 "the third button.");
 }
}

See the EventObjectWindow2.java file in this chapter’s source code folder for a demon-
stration of this code.

checkpoint

www.myprogramminglab.com

12.1 What is a frame? How do you create a frame with Swing?

12.2 How do you set a frame’s size?

12.3 How do you display a frame on the screen?

12.4 What is a content pane?

12.5 What is the difference between a frame and a panel?

12.6 What is an event listener?

12.7 If you are writing an event listener class for a JButton component, what interface
must the class implement? What method must the class have? When is this
method executed?

12.8 How do you register an event listener with a JButton component?

12.9 How do you change the background color of a component? How do you change
the color of text displayed by a label or a button?

12.3 Layout Managers

concepT: A layout manager is an object that governs the positions and sizes of
components in a container. The layout manager automatically repositions
and, in some cases, resizes the components when the container is resized.

An important part of designing a GUI application is determining the layout of the compo-
nents that are displayed in the application’s windows. The term layout refers to the

http://www.myprogramminglab.com

794 Chapter 12 A First Look at GUI Applications

 positioning and sizing of components. In Java, you do not normally specify the exact loca-
tion of a component within a window. Instead, you let a layout manager control the posi-
tions of components for you. A layout manager is an object that has its own rules about
how components are to be positioned and sized, and it makes adjustments when necessary.
For example, when the user resizes a window, the layout manager determines where the
components should be moved to.

In order to use a layout manager with a group of components, you must place the compo-
nents in a container, and then create a layout manager object. The layout manager object
and the container work together. In this chapter we discuss the three layout managers
described in Table 12-5. To use any of these classes, your code should have the following
import statement: import java.awt.*;

Table 12-5 Layout managers

Layout Manager Description

FlowLayout Arranges components in rows; this is the default layout manager for
JPanel objects

BorderLayout Arranges components in five regions: north, south, east, west, and center;
this is the default layout manager for a JFrame object’s content pane

GridLayout Arranges components in a grid with rows and columns

Adding a Layout Manager to a container
You add a layout manager to a container, such as a content pane or a panel, by calling the
setLayout method and passing a reference to a layout manager object as the argument. For
example, the following code creates a JPanel object, then sets a BorderLayout object as its
layout manager:

JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

Likewise, the following code might appear in the constructor of a class that extends the
JFrame class. It sets a FlowLayout object as the layout manager for the content pane:

setLayout(new FlowLayout());

Once you establish a layout manager for a container, the layout manager governs the posi-
tions and sizes of the components that are added to the container.

The FlowLayout Manager
The FlowLayout manager arranges components in rows. This is the default layout manager
for JPanel objects. Here are some rules that the FlowLayout manager follows:

•	 You	can	add	multiple	components	to	a	container	that	uses	a	FlowLayout manager.
•	 When	you	add	components	to	a	container	that	uses	a	FlowLayout manager, the com-

ponents appear horizontally, from left to right, in the order that they were added to
the component.

•	 When	there	is	no	more	room	in	a	row	but	more	components	are	added,	the	new	com-
ponents “flow” to the next row.

 12.3 Layout Managers 795

For example, the FlowWindow class shown in Code Listing 12-9 extends JFrame. This class
creates a 200 pixel wide by 105 pixel high window. In the constructor, the setLayout
method is called to give the content pane a FlowLayout manager. Then, three buttons are
created and added to the content pane. The main method creates an instance of the
FlowWindow class, which displays the window.

code Listing 12-9 (FlowWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for FlowLayout class
 3
 4 /**
 5 This class demonstrates how to use a FlowLayout manager
 6 with the content pane.
 7 */
 8
 9 public class FlowWindow extends JFrame
10 {
11 private final int WINDOW_WIDTH = 200; // Window width
12 private final int WINDOW_HEIGHT = 105; // Window height
13
14 /**
15 Constructor
16 */
17
18 public FlowWindow()
19 {
20 // Set the title bar text.
21 setTitle("Flow Layout");
22
23 // Set the size of the window.
24 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
25
26 // Specify an action for the close button.
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 // Add a FlowLayout manager to the content pane.
30 setLayout(new FlowLayout());
31
32 // Create three buttons.
33 JButton button1 = new JButton("Button 1");
34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36
37 // Add the three buttons to the content pane.
38 add(button1);
39 add(button2);
40 add(button3);

796 Chapter 12 A First Look at GUI Applications

41
42 // Display the window.
43 setVisible(true);
44 }
45
46 /**
47 The main method creates an instance of the FlowWindow
48 class, causing it to display its window.
49 */
50
51 public static void main(String[] args)
52 {
53 new FlowWindow();
54 }
55 }

Figure 12-13 shows the window that is displayed by this class. Notice that the buttons
appear from left to right in the order they were added to the content pane. Because there is
only enough room for the first two buttons in the first row, the third button is positioned in
the second row. By default, the content of each row is centered and there is a five pixel gap
between the components.

Figure 12-13 The window displayed by the FlowWindow class (Oracle Corporate Counsel)

Figure 12-14 The arrangements of the buttons after resizing

If the user resizes the window, the layout manager repositions the components according to
its rules. Figure 12-14 shows the appearance of the window in three different sizes.

Adjusting the FlowLayout Alignment

The FlowLayout manager allows you to align components in the center of each row or along
the left or right edge of each row. An overloaded constructor allows you to pass one of the
following constants as an argument to set an alignment: FlowLayout.CENTER,
FlowLayout.LEFT, or FlowLayout.RIGHT. Here is an example that sets left alignment:

setLayout(new FlowLayout(FlowLayout.LEFT));

 12.3 Layout Managers 797

Figure 12-15 shows examples of windows that use a FlowLayout manager with left, center,
and right alignment.

Adjusting the FlowLayout component Gaps

By default, the FlowLayout manager inserts a gap of five pixels between components, both
horizontally and vertically. You can adjust this gap by passing values for the horizontal and
vertical gaps as arguments to an overloaded FlowLayout constructor. The constructor has
the following format:

FlowLayout(int alignment, int horizontalGap, int verticalGap)

You pass one of the alignment constants discussed in the previous section to the alignment
parameter. The horizontalGap parameter is the number of pixels to separate components
horizontally, and the verticalGap parameter is the number of pixels to separate compo-
nents vertically. Here is an example of the constructor call:

setLayout(new FlowLayout(FlowLayout.LEFT, 10, 7));

This statement causes components to be left aligned with a horizontal gap of 10 pixels and
a vertical gap of seven pixels.

Left Alignment

Right Alignment

Center Alignment

Figure 12-15 Left, center, and right alignment (Oracle Corporate Counsel)

The BorderLayout Manager
The BorderLayout manager divides a container into five regions. The regions are known as
north, south, east, west, and center. The arrangement of these regions is shown in Figure
12-16.

798 Chapter 12 A First Look at GUI Applications

When a component is placed into a container that is managed by a BorderLayout manager,
the component must be placed into one of these five regions. Only one component at a time
may be placed into a region. When adding a component to the container, you specify the
region by passing one of the following constants as a second argument to the container’s
add method: BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.EAST,
BorderLayout.WEST, or BorderLayout.CENTER.

For example, look at the following code:

JPanel panel = new JPanel();
JButton button = new JButton("Click Me");
panel.setLayout(new BorderLayout());
panel.add(button, BorderLayout.NORTH);

The first statement creates a JPanel object, referenced by the panel variable. The second
statement creates a JButton object, referenced by the button variable. The third statement
sets the JPanel object’s layout manager to a BorderLayout object. The fourth statement adds
the JButton object to the JPanel object’s north region.

If you do not pass a second argument to the add method, the component will be added to
the center region. Here are some rules that the BorderLayout manager follows:

•	 Each	region	can	hold	only	one	component	at	a	time.
•	 When	a	component	is	added	to	a	region,	the	component	is	stretched	so	it	fills	up	the	

entire region.

Look at the BorderWindow class shown in Code Listing 12-10, which extends JFrame. This
class creates a 400 pixel wide by 300 pixel high window. In the constructor, the setLayout
method is called to give the content pane a BorderLayout manager. Then, five buttons are
created and each is added to a different region.

code Listing 12-10 (BorderWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for BorderLayout class

Figure 12-16 The regions of a BorderLayout manager (Oracle Corporate Counsel)

 12.3 Layout Managers 799

 3
 4 /**
 5 This class demonstrates the BorderLayout manager.
 6 */
 7
 8 public class BorderWindow extends JFrame
 9 {
10 private final int WINDOW_WIDTH = 400; // Window width
11 private final int WINDOW_HEIGHT = 300; // Window height
12
13 /**
14 Constructor
15 */
16
17 public BorderWindow()
18 {
19 // Set the title bar text.
20 setTitle("Border Layout");
21
22 // Set the size of the window.
23 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
24
25 // Specify an action for the close button.
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27
28 // Add a BorderLayout manager to the content pane.
29 setLayout(new BorderLayout());
30
31 // Create five buttons.
32 JButton button1 = new JButton("North Button");
33 JButton button2 = new JButton("South Button");
34 JButton button3 = new JButton("East Button");
35 JButton button4 = new JButton("West Button");
36 JButton button5 = new JButton("Center Button");
37
38 // Add the five buttons to the content pane.
39 add(button1, BorderLayout.NORTH);
40 add(button2, BorderLayout.SOUTH);
41 add(button3, BorderLayout.EAST);
42 add(button4, BorderLayout.WEST);
43 add(button5, BorderLayout.CENTER);
44
45 // Display the window.
46 setVisible(true);
47 }
48
49 /**

800 Chapter 12 A First Look at GUI Applications

50 The main method creates an instance of the BorderWindow
51 class, causing it to display its window.
52 */
53
54 public static void main(String[] args)
55 {
56 new BorderWindow();
57 }
58 }

noTe: A JFrame object’s content pane is automatically given a BorderLayout manager.
We have explicitly added it in Code Listing 12-10 so it is clear that we are using a
BorderLayout manager.

Figure 12-17 shows the window that is displayed. Normally the size of a button is just large
enough to accommodate the text that is displayed on the button. Notice that the buttons
displayed in this window did not retain their normal size. Instead, they were stretched to fill
all of the space in their regions. If the user resizes the window, the sizes of the components
will be changed as well. This is shown in Figure 12-18.

Figure 12-17 The window displayed by the BorderWindow class (Oracle Corporate Counsel)

Here are the rules that govern how a BorderLayout manager resizes components:

•	 A	component	that	is	placed	in	the	north	or	south	regions	may	be	resized	horizontally	
so it fills up the entire region.

•	 A	component	that	is	placed	in	the	east	or	west	regions	may	be	resized	vertically	so	it	
fills up the entire region.

 12.3 Layout Managers 801

•	 A	component	that	is	placed	in	the	center	region	may	be	resized	both	horizontally	and	
vertically so it fills up the entire region.

Figure 12-18 The window resized

Tip: You do not have to place a component in every region of a border layout. To
achieve the desired positioning, you might want to place components in only a few of the
layout regions. In Chapter 13, you will see examples of applications that do this.

By default there is no gap between the regions. You can use an overloaded version of the
BorderLayout constructor to specify horizontal and vertical gaps, however. Here is the con-
structor’s format:

BorderLayout(int horizontalGap, int verticalGap)

The horizontalGap parameter is the number of pixels to separate the regions horizontally,
and the verticalGap parameter is the number of pixels to separate the regions vertically.
Here is an example of the constructor call:

setLayout(new BorderLayout(5, 10));

This statement causes the regions to appear with a horizontal gap of five pixels and a verti-
cal gap of 10 pixels.

nesting panels inside a container’s regions

You might think that the BorderLayout manager is limiting because it allows only one com-
ponent per region, and the components that are placed in its regions are automatically
resized to fill up any extra space. These limitations are easy to overcome, however, by add-
ing components to panels and then nesting the panels inside the regions.

For example, suppose we wish to modify the BorderWindow class in Code Listing 12-10
so the buttons retain their original size. We can accomplish this by placing each button in
a separate JPanel object and then adding the JPanel objects to the content pane’s five
regions. This is illustrated in Figure 12-19. As a result, the BorderLayout manager resizes
the JPanel objects to fill up the space in the regions, not the buttons contained within the
JPanel objects.

802 Chapter 12 A First Look at GUI Applications

The BorderPanelWindow class in Code Listing 12-11 demonstrates this technique. This class
also introduces a new way of sizing windows. Notice that the constructor does not explic-
itly set the size of the window with the setSize method. Instead, it calls the pack method
just before calling the setVisible method. The pack method, which is inherited from JFrame,
automatically sizes the window to accommodate the components contained within it.
Figure 12-20 shows the window that the class displays.

code Listing 12-11 (BorderPanelWindow.java)

 1 import java.awt.*; // Needed for BorderLayout class
 2 import javax.swing.*; // Needed for Swing classes
 3
 4 /**
 5 This class demonstrates how JPanels can be nested
 6 inside each region of a content pane governed by
 7 a BorderLayout manager.
 8 */
 9
10 public class BorderPanelWindow extends JFrame
11 {
12 /**
13 Constructor
14 */
15
16 public BorderPanelWindow()
17 {
18 // Set the title bar text.
19 setTitle("Border Layout");
20
21 // Specify an action for the close button.
22 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23
24 // Add a BorderLayout manager to the content pane.

Figure 12-19 Nesting JPanel objects inside each region (Oracle Corporate Counsel)

 12.3 Layout Managers 803

25 setLayout(new BorderLayout());
26
27 // Create five panels.
28 JPanel panel1 = new JPanel();
29 JPanel panel2 = new JPanel();
30 JPanel panel3 = new JPanel();
31 JPanel panel4 = new JPanel();
32 JPanel panel5 = new JPanel();
33
34 // Create five buttons.
35 JButton button1 = new JButton("North Button");
36 JButton button2 = new JButton("South Button");
37 JButton button3 = new JButton("East Button");
38 JButton button4 = new JButton("West Button");
39 JButton button5 = new JButton("Center Button");
40
41 // Add the buttons to the panels.
42 panel1.add(button1);
43 panel2.add(button2);
44 panel3.add(button3);
45 panel4.add(button4);
46 panel5.add(button5);
47
48 // Add the five panels to the content pane.
49 add(panel1, BorderLayout.NORTH);
50 add(panel2, BorderLayout.SOUTH);
51 add(panel3, BorderLayout.EAST);
52 add(panel4, BorderLayout.WEST);
53 add(panel5, BorderLayout.CENTER);
54
55 // Pack and display the window.
56 pack();
57 setVisible(true);
58 }
59
60 /**
61 The main method creates an instance of the
62 BorderPanelWindow class, causing it to display
63 its window.
64 */
65
66 public static void main(String[] args)
67 {
68 new BorderPanelWindow();
69 }
70 }

804 Chapter 12 A First Look at GUI Applications

The GridLayout Manager
The GridLayout manager creates a grid with rows and columns, much like a spreadsheet. As
a result, the container that is managed by a GridLayout object is divided into equally sized
cells. Figure 12-21 illustrates a container with three rows and five columns. This means that
the container is divided into 15 cells.

Figure 12-20 Window displayed by the BorderPanelWindow class (Oracle Corporate Counsel)

noTe: There are multiple layout managers at work in the BorderPanelWindow class.
The content pane uses a BorderLayout manager, and each of the JPanel objects use a
FlowLayout manager.

Figure 12-21 The GridLayout manager divides a container into cells

Here are some rules that the GridLayout manager follows:

•	 Each	cell	can	hold	only	one	component.
•	 All	of	the	cells	are	the	same	size.	This	 is	the	size	of	the	 largest	component	placed	

within the layout.
•	 A	component	that	is	placed	in	a	cell	is	automatically	resized	to	fill	up	any	extra	space.

 12.3 Layout Managers 805

You pass the number of rows and columns that a container should have as arguments to the
GridLayout constructor. Here is the general format of the constructor:

GridLayout(int rows, int columns)

Here is an example of the constructor call:

setLayout(new GridLayout(2, 3));

This statement gives the container two rows and three columns, for a total of six cells. You
can pass 0 as an argument for the rows or the columns, but not both. Passing 0 for both
arguments will cause an error.

When adding components to a container that is governed by the GridLayout manager, you
cannot specify a cell. Instead, the components are assigned to cells in the order they are
added. The first component added to the container is assigned to the first cell, which is in
the upper-left corner. As other components are added, they are assigned to the remaining
cells in the first row, from left to right. When the first row is filled up, components are
assigned to the cells in the second row, and so forth.

The GridWindow class shown in Code Listing 12-12 demonstrates. It creates a 400 pixel
wide by 200 pixel high window, governed by a GridLayout manager. The content pane is
divided into two rows and three columns, and a button is added to each cell. Figure 12-22
shows the window displayed by the class.

code Listing 12-12 (GridWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for GridLayout class
 3
 4 /**
 5 This class demonstrates the GridLayout manager.
 6 */
 7
 8 public class GridWindow extends JFrame
 9 {
10 private final int WINDOW_WIDTH = 400; // Window width
11 private final int WINDOW_HEIGHT = 200; // Window height
12
13 /**
14 Constructor
15 */
16
17 public GridWindow()
18 {
19 // Set the title bar text.
20 setTitle("Grid Layout");
21

806 Chapter 12 A First Look at GUI Applications

22 // Set the size of the window.
23 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
24
25 // Specify an action for the close button.
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27
28 // Add a GridLayout manager to the content pane.
29 setLayout(new GridLayout(2, 3));
30
31 // Create six buttons.
32 JButton button1 = new JButton("Button 1");
33 JButton button2 = new JButton("Button 2");
34 JButton button3 = new JButton("Button 3");
35 JButton button4 = new JButton("Button 4");
36 JButton button5 = new JButton("Button 5");
37 JButton button6 = new JButton("Button 6");
38
39 // Add the six buttons to the content pane.
40 add(button1); // Goes into row 1, column 1
41 add(button2); // Goes into row 1, column 2
42 add(button3); // Goes into row 1, column 3
43 add(button4); // Goes into row 2, column 1
44 add(button5); // Goes into row 2, column 2
45 add(button6); // Goes into row 2, column 3
46
47 // Display the window.
48 setVisible(true);
49 }
50
51 /**
52 The main method creates an instance of the GridWindow
53 class, causing it to display its window.
54 */
55
56 public static void main(String[] args)
57 {
58 new GridWindow();
59 }
60 }

As previously mentioned, the GridLayout manager limits each cell to only one component
and resizes components to fill up all of the space in a cell. To get around these limitations
you can nest panels inside the cells and add other components to the panels. For example,
the GridPanelWindow class shown in Code Listing 12-13 is a modification of the GridWindow
class. It creates six panels and adds a button and a label to each panel. These panels are then
added to the content pane’s cells. Figure 12-23 shows the window displayed by this class.

 12.3 Layout Managers 807

code Listing 12-13 (GridPanelWindow.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.*; // Needed for GridLayout class
 3
 4 /**
 5 This class demonstrates how panels may be added to
 6 the cells created by a GridLayout manager.
 7 */
 8
 9 public class GridPanelWindow extends JFrame
10 {
11 private final int WINDOW_WIDTH = 400; // Window width
12 private final int WINDOW_HEIGHT = 200; // Window height
13
14 /**
15 Constructor
16 */
17
18 public GridPanelWindow()
19 {
20 // Set the title bar text.
21 setTitle("Grid Layout");
22
23 // Set the size of the window.
24 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
25
26 // Specify an action for the close button.
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28
29 // Add a GridLayout manager to the content pane.
30 setLayout(new GridLayout(2, 3));
31
32 // Create six buttons.
33 JButton button1 = new JButton("Button 1");

Figure 12-22 Window displayed by the GridWindow class (Oracle Corporate Counsel)

808 Chapter 12 A First Look at GUI Applications

34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36 JButton button4 = new JButton("Button 4");
37 JButton button5 = new JButton("Button 5");
38 JButton button6 = new JButton("Button 6");
39
40 // Create six labels.
41 JLabel label1 = new JLabel("This is cell 1.");
42 JLabel label2 = new JLabel("This is cell 2.");
43 JLabel label3 = new JLabel("This is cell 3.");
44 JLabel label4 = new JLabel("This is cell 4.");
45 JLabel label5 = new JLabel("This is cell 5.");
46 JLabel label6 = new JLabel("This is cell 6.");
47
48 // Create six panels.
49 JPanel panel1 = new JPanel();
50 JPanel panel2 = new JPanel();
51 JPanel panel3 = new JPanel();
52 JPanel panel4 = new JPanel();
53 JPanel panel5 = new JPanel();
54 JPanel panel6 = new JPanel();
55
56 // Add the labels to the panels.
57 panel1.add(label1);
58 panel2.add(label2);
59 panel3.add(label3);
60 panel4.add(label4);
61 panel5.add(label5);
62 panel6.add(label6);
63
64 // Add the buttons to the panels.
65 panel1.add(button1);
66 panel2.add(button2);
67 panel3.add(button3);
68 panel4.add(button4);
69 panel5.add(button5);
70 panel6.add(button6);
71
72 // Add the panels to the content pane.
73 add(panel1); // Goes into row 1, column 1
74 add(panel2); // Goes into row 1, column 2
75 add(panel3); // Goes into row 1, column 3
76 add(panel4); // Goes into row 2, column 1
77 add(panel5); // Goes into row 2, column 2
78 add(panel6); // Goes into row 2, column 3
79
80 // Display the window.
81 setVisible(true);

 12.3 Layout Managers 809

82 }
83
84 /**
85 The main method creates an instance of the
86 GridPanelWindow class, displaying its window.
87 */
88
89 public static void main(String[] args)
90 {
91 new GridPanelWindow();
92 }
93 }

Figure 12-23 Window displayed by the GridPanelWindow class

Because we have containers nested inside the content pane, there are multiple layout manag-
ers at work in the GridPanelWindow class. The content pane uses a GridLayout manager, and
each of the JPanel objects uses a FlowLayout manager.

checkpoint

www.myprogramminglab.com

12.10 How do you add a layout manager to a container?

12.11 Which layout manager divides a container into regions known as north, south, east,
west, and center?

12.12 Which layout manager arranges components in a row, from left to right, in the
order they were added to the container?

12.13 Which layout manager arranges components in rows and columns?

12.14 How many components can you have at one time in a BorderLayout region? In a
GridLayout cell?

12.15 How do you prevent the BorderLayout manager from resizing a component that
has been placed in its region?

12.16 How can you cause a content pane to be automatically sized to accommodate the
components contained within it?

12.17 What is the default layout manager for a JFrame object’s content pane? For a
JPanel object?

http://www.myprogramminglab.com

810 Chapter 12 A First Look at GUI Applications

12.4 radio Buttons and check Boxes

concepT: Radio buttons normally appear in groups of two or more and allow the user
to select one of several possible options. Check boxes, which may appear
alone or in groups, allow the user to make yes/no or on/off selections.

radio Buttons
Radio buttons are useful when you want the user to select one choice from several possible
options. Figure 12-24 shows a group of radio buttons.

Figure 12-24 Radio buttons (Oracle Corporate Counsel)

A radio button may be selected or deselected. Each radio button has a small circle that
appears filled in when the radio button is selected and appears empty when the radio but-
ton is deselected. You use the JRadioButton class to create radio buttons. Here are the gen-
eral formats of two JRadioButton constructors:

JRadioButton(String text)
JRadioButton(String text, boolean selected)

The first constructor shown creates a deselected radio button. The argument passed to the
text parameter is the string that is displayed next to the radio button. For example, the fol-
lowing statement creates a radio button with the text “Choice 1” displayed next to it. The
radio button initially appears deselected.

JRadioButton radio1 = new JRadioButton("Choice 1");

The second constructor takes an additional boolean argument, which is passed to the
selected parameter. If true is passed as the selected argument, the radio button initially
appears selected. If false is passed, the radio button initially appears deselected. For exam-
ple, the following statement creates a radio button with the text “Choice 1” displayed next
to it. The radio button initially appears selected.

JRadioButton radio1 = new JRadioButton("Choice 1", true);

Radio buttons are normally grouped together. When a set of radio buttons are grouped
together, only one of the radio buttons in the group may be selected at any time. Clicking a
radio button selects it and automatically deselects any other radio button in the same group.
Because only one radio button in a group can be selected at any given time, the buttons are
said to be mutually exclusive.

 12.4 Radio Buttons and Check Boxes 811

Grouping with the ButtonGroup class

Once you have created the JRadioButton objects that you wish to appear in a group, you
must create an instance of the ButtonGroup class, and then add the JRadioButton objects to
it. The ButtonGroup object creates the mutually exclusive relationship among the radio but-
tons that it contains. The following code shows an example:

// Create three radio buttons.
JRadioButton radio1 = new JRadioButton("Choice 1", true);
JRadioButton radio2 = new JRadioButton("Choice 2");
JRadioButton radio3 = new JRadioButton("Choice 3");

// Create a ButtonGroup object.
ButtonGroup group = new ButtonGroup();

// Add the radio buttons to the ButtonGroup object.
group.add(radio1);
group.add(radio2);
group.add(radio3);

Although you add radio buttons to a ButtonGroup object, ButtonGroup objects are not con-
tainers like JPanel objects, or content frames. The function of a ButtonGroup object is to
deselect all the other radio buttons when one of them is selected. If you wish to add the
radio buttons to a panel or a content frame, you must add them individually, as shown here:

// Add the radio buttons to the JPanel referenced by panel.
panel.add(radio1);
panel.add(radio2);
panel.add(radio3);

responding to radio Button events

Just like JButton objects, JRadioButton objects generate an action event when they are
clicked. To respond to a radio button action event, you must write an action listener class
and then register an instance of that class with the JRadioButton object. To demonstrate, we
will look at the MetricConverter class, which is similar to the KiloConverter class shown
earlier. The MetricConverter class presents a window in which the user can enter a distance
in kilometers, and then click radio buttons to see that distance converted to miles, feet, or
inches. The conversion formulas are as follows:

Miles 5 Kilometers 3 0.6214
Feet 5 Kilometers 3 3281.0
Inches 5 Kilometers 3 39370.0

noTe: The name “radio button” refers to the old car radios that had push buttons for
selecting stations. Only one of the buttons could be pushed in at a time. When you pushed
a button in, it automatically popped out any other button that was pushed in.

812 Chapter 12 A First Look at GUI Applications

Figure 12-25 shows a sketch of what the window will look like. As you can see from the
sketch, the window will have a label, a text field, and three radio buttons. When the user
clicks on one of the radio buttons, the distance will be converted to the selected units and
displayed in a separate JOptionPane dialog box.

Figure 12-25 Metric Converter window (Oracle Corporate Counsel)

The MetricConverter class is shown in Code Listing 12-14. The class initially displays the
window shown at the top of Figure 12-26. The figure also shows the dialog boxes that are
displayed when the user clicks any of the radio buttons.

code Listing 12-14 (MetricConverter.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 The MetricConverter class lets the user enter a
 7 distance in kilometers. Radio buttons can be selected to
 8 convert the kilometers to miles, feet, or inches.
 9 */
 10
 11 public class MetricConverter extends JFrame
 12 {
 13 private JPanel panel; // A holding panel
 14 private JLabel messageLabel; // A message to the user
 15 private JTextField kiloTextField; // To hold user input
 16 private JRadioButton milesButton; // To convert to miles
 17 private JRadioButton feetButton; // To convert to feet
 18 private JRadioButton inchesButton; // To convert to inches
 19 private ButtonGroup radioButtonGroup; // To group radio buttons
 20 private final int WINDOW_WIDTH = 400; // Window width
 21 private final int WINDOW_HEIGHT = 100; // Window height
 22
 23 /**
 24 Constructor
 25 */
 26
 27 public MetricConverter()
 28 {

 12.4 Radio Buttons and Check Boxes 813

 29 // Set the title.
 30 setTitle("Metric Converter");
 31
 32 // Set the size of the window.
 33 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 34
 35 // Specify an action for the close button.
 36 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 37
 38 // Build the panel and add it to the frame.
 39 buildPanel();
 40
 41 // Add the panel to the frame's content pane.
 42 add(panel);
 43
 44 // Display the window.
 45 setVisible(true);
 46 }
 47
 48 /**
 49 The buildPanel method adds a label, text field, and
 50 and three buttons to a panel.
 51 */
 52
 53 private void buildPanel()
 54 {
 55 // Create the label, text field, and radio buttons.
 56 messageLabel = new JLabel("Enter a distance in kilometers");
 57 kiloTextField = new JTextField(10);
 58 milesButton = new JRadioButton("Convert to miles");
 59 feetButton = new JRadioButton("Convert to feet");
 60 inchesButton = new JRadioButton("Convert to inches");
 61
 62 // Group the radio buttons.
 63 radioButtonGroup = new ButtonGroup();
 64 radioButtonGroup.add(milesButton);
 65 radioButtonGroup.add(feetButton);
 66 radioButtonGroup.add(inchesButton);
 67
 68 // Add action listeners to the radio buttons.
 69 milesButton.addActionListener(new RadioButtonListener());
 70 feetButton.addActionListener(new RadioButtonListener());
 71 inchesButton.addActionListener(new RadioButtonListener());
 72
 73 // Create a panel and add the components to it.
 74 panel = new JPanel();
 75 panel.add(messageLabel);
 76 panel.add(kiloTextField);

814 Chapter 12 A First Look at GUI Applications

 77 panel.add(milesButton);
 78 panel.add(feetButton);
 79 panel.add(inchesButton);
 80 }
 81
 82 /**
 83 Private inner class that handles the event when
 84 the user clicks one of the radio buttons.
 85 */
 86
 87 private class RadioButtonListener implements ActionListener
 88 {
 89 public void actionPerformed(ActionEvent e)
 90 {
 91 String input; // To hold the user's input
 92 String convertTo = ""; // The units we're converting to
 93 double result = 0.0; // To hold the conversion
 94
 95 // Get the kilometers entered.
 96 input = kiloTextField.getText();
 97
 98 // Determine which radio button was clicked.
 99 if (e.getSource() == milesButton)
100 {
101 // Convert to miles.
102 convertTo = " miles.";
103 result = Double.parseDouble(input) * 0.6214;
104 }
105 else if (e.getSource() == feetButton)
106 {
107 // Convert to feet.
108 convertTo = " feet.";
109 result = Double.parseDouble(input) * 3281.0;
110 }
111 else if (e.getSource() == inchesButton)
112 {
113 // Convert to inches.
114 convertTo = " inches.";
115 result = Double.parseDouble(input) * 39370.0;
116 }
117
118 // Display the conversion.
119 JOptionPane.showMessageDialog(null, input +
120 " kilometers is " + result + convertTo);
121 }
122 }

 12.4 Radio Buttons and Check Boxes 815

123
124 /**
125 The main method creates an instance of the
126 MetricConverter class, displaying its window.
127 */
128
129 public static void main(String[] args)
130 {
131 new MetricConverter();
132 }
133 }

This window appears first. The user enters 2 into the text field.

This dialog box appears when the user clicks
the "Convert to miles" radio button.

This dialog box appears when the user clicks
the "Convert to feet" radio button.

This dialog box appears when the user
clicks the "Convert to inches" radio button.

Figure 12-26 Window and dialog boxes displayed by the MetricConverter class

Determining in code Whether a radio Button is selected

In many applications you will merely want to know whether a radio button is selected. The
JRadioButton class’s isSelected method returns a boolean value indicating whether the
radio button is selected. If the radio button is selected, the method returns true. Otherwise,
it returns false. In the following code, the radio variable references a radio button. The if
statement calls the isSelected method to determine whether the radio button is selected.

816 Chapter 12 A First Look at GUI Applications

if (radio.isSelected())
{
 // Code here executes if the radio
 // button is selected.
}

selecting a radio Button in code

It is also possible to select a radio button in code with the JRadioButton class’s doClick
method. When the method is called, the radio button is selected just as if the user had
clicked on it. As a result, an action event is generated. In the following statement, the radio
variable references a radio button. When this statement executes, the radio button will
be selected.

radio.doClick();

check Boxes
A check box appears as a small box with a label appearing next to it. The window shown in
Figure 12-27 has three check boxes.

Figure 12-27 Check boxes (Oracle Corporate Counsel)

Like radio buttons, check boxes may be selected or deselected at run time. When a check
box is selected, a small check mark appears inside the box. Although check boxes are often
displayed in groups, they are not usually grouped in a ButtonGroup like radio buttons. This
is because check boxes are not normally used to make mutually exclusive selections. Instead,
the user is allowed to select any or all of the check boxes that are displayed in a group.

You create a check box with the JCheckBox class. Here are the general formats of two
JCheckBox constructors:

JCheckBox(String text)
JCheckBox(String text, boolean selected)

The first constructor shown creates a deselected check box. The argument passed to the
text parameter is the string that is displayed next to the check box. For example, the fol-
lowing statement creates a check box with the text “Macaroni” displayed next to it. The
check box initially appears deselected.

JCheckBox check1 = new JCheckBox("Macaroni");

 12.4 Radio Buttons and Check Boxes 817

The second constructor takes an additional boolean argument, which is passed to the
selected parameter. If true is passed as the selected argument, the radio check box ini-
tially appears selected. If false is passed, the check box initially appears deselected. For
example, the following statement creates a check box with the text “Macaroni” displayed
next to it. The radio check box initially appears selected.

JCheckBox check1 = new JCheckBox("Macaroni", true);

responding to check Box events

When a JCheckBox object is selected or deselected, it generates an item event. You handle
item events in a manner similar to the way you handle the action events that are generated
by JButton and JRadioButton objects. First, you write an item listener class, which must
meet the following requirements:

•	 It	must	implement	the	ItemListener interface.
•	 It	must	have	a	method	named	itemStateChanged with the following header:

public void itemStateChanged(ItemEvent e)

noTe: When implementing the ItemListener interface, your code must have the
 following import statement: import java.awt.event.*;

Once you have written an item listener class, you create an object of that class, and then
register the item listener object with the JCheckBox component. When a JCheckBox compo-
nent generates an event, it automatically executes the itemStateChanged method of the item
listener object that is registered to it, passing the event object as an argument.

Determining in code Whether a check Box is selected

As with JRadioButton, you use the isSelected method to determine whether a JCheckBox
component is selected. The method returns a boolean value. If the check box is selected, the
method returns true. Otherwise, it returns false. In the following code, the checkBox vari-
able references a JCheckBox component. The if statement calls the isSelected method to
determine whether the check box is selected.

if (checkBox.isSelected())
{
 // Code here executes if the check
 // box is selected.
}

The ColorCheckBoxWindow class, shown in Code Listing 12-15, demonstrates how check
boxes are used. It displays the window shown in Figure 12-28. When the “Yellow back-
ground” check box is selected, the background color of the content pane, the label, and the
check boxes turns yellow. When this check box is deselected, the background colors go back
to light gray. When the “Red foreground” check box is selected, the color of the text dis-
played in the label and the check boxes turns red. When this check box is deselected, the
foreground colors go back to black.

818 Chapter 12 A First Look at GUI Applications

code Listing 12-15 (ColorCheckBoxWindow.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The ColorCheckBoxWindow class demonstrates how check boxes
 7 can be used.
 8 */
 9
 10 public class ColorCheckBoxWindow extends JFrame
 11 {
 12 private JLabel messageLabel; // A message to the user
 13 private JCheckBox yellowCheckBox; // To select yellow background
 14 private JCheckBox redCheckBox; // To select red foreground
 15 private final int WINDOW_WIDTH = 300; // Window width
 16 private final int WINDOW_HEIGHT = 100; // Window height
 17
 18 /**
 19 Constructor
 20 */
 21
 22 public ColorCheckBoxWindow()
 23 {
 24 // Set the text for the title bar.
 25 setTitle("Color Check Boxes");
 26
 27 // Set the size of the window.
 28 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 29
 30 // Specify an action for the close button.
 31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 32
 33 // Create a label.
 34 messageLabel = new JLabel("Select the check " +
 35 "boxes to change colors.");
 36
 37 // Create the check boxes.
 38 yellowCheckBox = new JCheckBox("Yellow background");
 39 redCheckBox = new JCheckBox("Red foreground");
 40
 41 // Add an item listener to the check boxes.
 42 yellowCheckBox.addItemListener(new CheckBoxListener());
 43 redCheckBox.addItemListener(new CheckBoxListener());
 44
 45 // Add a FlowLayout manager to the content pane.
 46 setLayout(new FlowLayout());

 12.4 Radio Buttons and Check Boxes 819

 47
 48 // Add the label and check boxes to the content pane.
 49 add(messageLabel);
 50 add(yellowCheckBox);
 51 add(redCheckBox);
 52
 53 // Display the window.
 54 setVisible(true);
 55 }
 56
 57 /**
 58 Private inner class that handles the event when
 59 the user clicks one of the check boxes.
 60 */
 61
 62 private class CheckBoxListener implements ItemListener
 63 {
 64 public void itemStateChanged(ItemEvent e)
 65 {
 66 // Determine which check box was clicked.
 67 if (e.getSource() == yellowCheckBox)
 68 {
 69 // Is the yellow check box selected? If so, we
 70 // want to set the background color to yellow.
 71 if (yellowCheckBox.isSelected())
 72 {
 73 // The yellow check box was selected. Set
 74 // the background color for the content
 75 // pane and the two check boxes to yellow.
 76 getContentPane().setBackground(Color.YELLOW);
 77 yellowCheckBox.setBackground(Color.YELLOW);
 78 redCheckBox.setBackground(Color.YELLOW);
 79 }
 80 else
 81 {
 82 // The yellow check box was deselected. Set
 83 // the background color for the content
 84 // pane and the two check boxes to light gray.
 85 getContentPane().setBackground(Color.LIGHT_GRAY);
 86 yellowCheckBox.setBackground(Color.LIGHT_GRAY);
 87 redCheckBox.setBackground(Color.LIGHT_GRAY);
 88 }
 89 }
 90 else if (e.getSource() == redCheckBox)
 91 {
 92 // Is the red check box selected? If so, we want
 93 // to set the foreground color to red.
 94 if (redCheckBox.isSelected())

820 Chapter 12 A First Look at GUI Applications

 95 {
 96 // The red check box was selected. Set the
 97 // foreground color for the label and the
 98 // two check boxes to red.
 99 messageLabel.setForeground(Color.RED);
100 yellowCheckBox.setForeground(Color.RED);
101 redCheckBox.setForeground(Color.RED);
102 }
103 else
104 {
105 // The red check box was deselected. Set the
106 // foreground color for the label and the
107 // two check boxes to black.
108 messageLabel.setForeground(Color.BLACK);
109 yellowCheckBox.setForeground(Color.BLACK);
110 redCheckBox.setForeground(Color.BLACK);
111 }
112 }
113 }
114 }
115
116 /**
117 The main method creates an instance of the
118 ColorCheckBoxWindow class, displaying its window.
119 */
120
121 public static void main(String[] args)
122 {
123 new ColorCheckBoxWindow();
124 }
125 }

Figure 12-28 Window displayed by the ColorCheckBoxWindow class (Oracle Corporate Counsel)

selecting a check Box in code

As with radio buttons, it is possible to select check boxes in code with the JCheckBox class’s
doClick method. When the method is called, the radio check box is selected just as if the
user had clicked on it. As a result, an item event is generated. In the following statement, the

 12.5 Borders 821

checkBox variable references a JCheckBox object. When this statement executes, the check
box will be selected.

checkBox.doClick();

checkpoint

www.myprogramminglab.com

12.18 You want the user to be able to select only one item from a group of items. Which
type of component would you use for the items, radio buttons or check boxes?

12.19 You want the user to be able to select any number of items from a group of
items. Which type of component would you use for the items, radio buttons
or check boxes?

12.20 What is the purpose of a ButtonGroup object?

12.21 Do you normally add radio buttons, check boxes, or both to a ButtonGroup object?

12.22 What type of event does a radio button generate when the user clicks on it?

12.23 What type of event does a check box generate when the user clicks on it?

12.24 How do you determine in code whether a radio button is selected?

12.25 How do you determine in code whether a check box is selected?

12.5 Borders

concepT: A component can appear with several different styles of borders around
it. A Border object specifies the details of a border. You use the
BorderFactory class to create Border objects.

Sometimes it is helpful to place a border around a component or a group of components on
a panel. You can give windows a more organized look by grouping related components
inside borders. For example, Figure 12-29 shows a group of check boxes that are enclosed
in a border. In addition, notice that the border has a title.

Figure 12-29 A group of check boxes with a titled border

JPanel components have a method named setBorder, which is used to add a border to the
panel. The setBorder method accepts a Border object as its argument. A Border object con-
tains detailed information describing the appearance of a border.

Rather than creating Border objects yourself, you should use the BorderFactory class to
 create them for you. The BorderFactory class has methods that return various types of

http://www.myprogramminglab.com

822 Chapter 12 A First Look at GUI Applications

 borders. Table 12-6 describes borders that can be created with the BorderFactory class. The
table also lists the BorderFactory methods that can be called to create the borders. Note
that there are several overloaded versions of each method.

Table 12-6 Borders produced by the BorderFactory class

Border BorderFactory Method Description

Compound
 border

createCompoundBorder A border that has two parts: an inside edge
and an outside edge. The inside and outside
edges can be any of the other borders.

Empty border createEmptyBorder A border that contains only empty space.

Etched border createEtchedBorder A border with a 3-D appearance that looks
“etched” into the background.

Line border createLineBorder A border that appears as a line.

Lowered bevel
border

createLoweredBevelBorder A border that looks like beveled edges.
It has a 3-D appearance that gives the
illusion of being sunken into the
surrounding background.

Matte border createMatteBorder A line border that can have edges of different
thicknesses.

Raised bevel
 border

createRaisedBevelBorder A border that looks like beveled edges. It has
a 3-D appearance that gives the illusion of
being raised above the surrounding
 background.

Titled border createTitledBorder An etched border with a title.

noTe: If you use the BorderFactory class in your code, you should have the following
import statement: import javax.swing.*;

In this chapter, we will concentrate on empty borders, line borders, and titled borders.

empty Borders

An empty border is simply empty space around the edges of a component. To create an
empty border, call the BorderFactory class’s createEmtpyBorder method. Here is the meth-
od’s general format:

BorderFactory.createEmptyBorder(int top, int left,
 int bottom, int right);

The arguments passed into top, left, bottom, and right specify in pixels the size of the
border’s top, left, bottom, and right edges. The method returns a reference to a Border object.
The following is an example of a statement that uses the method. Assume that the panel
variable references a JPanel object.

panel.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));

 12.5 Borders 823

After this statement executes, the JPanel referenced by panel will have an empty border of
five pixels around each edge.

noTe: In case you’ve skipped ahead to this chapter, the BorderFactory methods are
static, which means that you call them without creating an instance of the BorderFactory
class. (You simply write BorderFactory. before the method name to call the method.)
This is similar to the way the Math class and wrapper class methods we have discussed are
called. Static methods are covered in Chapter 8.

Line Borders

A line border is a line of a specified color and thickness that appears around the edges of a
component. To create a line border, call the BorderFactory class’s createLineBorder
method. Here is the method’s general format:

BorderFactory.createLineBorder(Color color, int thickness);

The arguments passed into color and thickness specify the color of the line and the size of
the line in pixels. The method returns a reference to a Border object. The following is an
example of a statement that uses the method. Assume that the panel variable references a
JPanel object.

panel.setBorder(BorderFactory.createLineBorder(Color.RED, 1));

After this statement executes, the JPanel referenced by panel will have a red line border
that is one pixel thick around its edges.

Titled Borders

A titled border is an etched border with a title displayed on it. To create a titled border,
call the BorderFactory class’s createTitledBorder method. Here is the method’s gen-
eral format:

BorderFactory.createTitledBorder(String title);

The argument passed into title is the text that is to be displayed as the border’s title. The
method returns a reference to a Border object. The following is an example of a statement
that uses the method. Assume that the panel variable references a JPanel object.

panel.setBorder(BorderFactory.createTitledBorder("Choices"));

After this statement executes, the JPanel referenced by panel will have an etched border
with the title “Choices” displayed on it.

checkpoint

www.myprogramminglab.com

12.26 What method do you use to set a border around a component?

12.27 What is the preferred way of creating a Border object?

http://www.myprogramminglab.com

824 Chapter 12 A First Look at GUI Applications

12.6 Focus on problem solving: extending
classes from JPanel

concepT: By writing a class that is extended from the JPanel class, you can create
a custom panel component that can hold other components and their
related code.

In the applications that you have studied so far in this chapter, we have used the
extends JFrame clause in the class header to extend the class from the JFrame class. Recall
that the extended class is then a specialized version of the JFrame class, and we use its con-
structor to create the panels, buttons, and all of the other components needed. This approach
works well for simple applications. But for applications that use many components, this
approach can be cumbersome. Bundling all of the code and event listeners for a large num-
ber of components into a single class can lead to a large and complex class. A better
approach is to encapsulate smaller groups of related components and their event listeners
into their own classes.

A commonly used technique is to extend a class from the JPanel class. This allows you to
create your own specialized panel component, which can contain other components and
related code such as event listeners. A complex application that uses numerous components
can be constructed from several specialized panel components. In this section we will exam-
ine such an application.

The Brandi’s Bagel house Application
Brandi’s Bagel House has a bagel and coffee delivery service for the businesses in her neigh-
borhood. Customers may call in and order white and whole wheat bagels with a variety of
toppings. In addition, customers may order three different types of coffee. (Delivery for
 coffee alone is not available, however.) Here is a complete price list:

Bagels: White bagel $1.25, whole wheat bagel $1.50
Toppings: Cream cheese $0.50, butter $0.25, peach jelly $0.75, blueberry jam $0.75
Coffee: Regular coffee $1.25, decaf coffee $1.25, cappuccino $2.00

Brandi, the owner, needs an “order calculator” application that her staff can use to calculate
the price of an order as it is called in. The application should display the subtotal, the
amount of a 6 percent sales tax, and the total of the order. Figure 12-30 shows a sketch of
the application’s window. The user selects the type of bagel, toppings, and coffee, then clicks
the Calculate button. A dialog box appears displaying the subtotal, amount of sales tax, and
total. The user can exit the application by clicking either the Exit button or the standard
close button in the upper-right corner.

The layout shown in the sketch can be achieved using a BorderLayout manager with the
window’s content pane. The label that displays “Welcome to Brandi’s Bagel House” is in the
north region, the radio buttons for the bagel types are in the west region, the check boxes
for the toppings are in the center region, the radio buttons for the coffee selection are in the
east region, and the Calculate and Exit buttons are in the south region. To construct this
window, we create the following specialized panel classes that are extended from JPanel:

 12.6 Focus on Problem Solving: Extending Classes from JPanel 825

•	 GreetingsPanel. This panel contains the label that appears in the window’s north region.
•	 BagelPanel. This panel contains the radio buttons for the types of bagels.
•	 ToppingPanel. This panel contains the check boxes for the types of bagels.
•	 CoffeePanel. This panel contains the radio buttons for the coffee selections.

(We will not create a specialized panel for the Calculate and Exit buttons. The reason is
explained later.) After these classes have been created, we can create objects from them and
add the objects to the correct regions of the window’s content pane. Let’s take a closer look
at each of these classes.

The GreetingPanel class
The GreetingPanel class holds the label displaying the text “Welcome to Brandi’s Bagel
House”. Code Listing 12-16 shows the class, which extends JPanel.

code Listing 12-16 (GreetingPanel.java)

 1 import javax.swing.*;
 2
 3 /**
 4 The GreetingPanel class displays a greeting in a panel.
 5 */
 6
 7 public class GreetingPanel extends JPanel
 8 {
 9 private JLabel greeting; // To display a greeting
10
11 /**
12 Constructor
13 */
14
15 public GreetingPanel()
16 {
17 // Create the label.

Figure 12-30 Sketch of the Order Calculator window (Oracle Corporate Counsel)

826 Chapter 12 A First Look at GUI Applications

18 greeting = new JLabel("Welcome to Brandi's Bagel House");
19
20 // Add the label to this panel.
21 add(greeting);
22 }
23 }

In line 21 the add method is called to add the JLabel component referenced by greeting.
Notice that we are calling the method without an object reference and a dot preceding it.
This is because the method was inherited from the JPanel class, and we can call it just as if
it were written into the GreetingPanel class declaration.

When we create an instance of this class, we are creating a JPanel component that displays
a label with the text “Welcome to Brandi’s Bagel House”. Figure 12-31 shows how the com-
ponent will appear when it is placed in the window’s north region.

Figure 12-31 Appearance of the GreetingPanel component

The BagelPanel class
The BagelPanel class holds the radio buttons for the types of bagels. Notice that this panel
uses a GridLayout manager with two rows and one column. Code Listing 12-17 shows the
class, which is extended from JPanel.

code Listing 12-17 (BagelPanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The BagelPanel class allows the user to select either
 6 a white or whole wheat bagel.
 7 */
 8
 9 public class BagelPanel extends JPanel
10 {
11 // The following constants are used to indicate
12 // the cost of each type of bagel.
13 public final double WHITE_BAGEL = 1.25;
14 public final double WHEAT_BAGEL = 1.50;
15
16 private JRadioButton whiteBagel; // To select white
17 private JRadioButton wheatBagel; // To select wheat

 12.6 Focus on Problem Solving: Extending Classes from JPanel 827

18 private ButtonGroup bg; // Radio button group
19
20 /**
21 Constructor
22 */
23
24 public BagelPanel()
25 {
26 // Create a GridLayout manager with
27 // two rows and one column.
28 setLayout(new GridLayout(2, 1));
29
30 // Create the radio buttons.
31 whiteBagel = new JRadioButton("White", true);
32 wheatBagel = new JRadioButton("Wheat");
33
34 // Group the radio buttons.
35 bg = new ButtonGroup();
36 bg.add(whiteBagel);
37 bg.add(wheatBagel);
38
39 // Add a border around the panel.
40 setBorder(BorderFactory.createTitledBorder("Bagel"));
41
42 // Add the radio buttons to the panel.
43 add(whiteBagel);
44 add(wheatBagel);
45 }
46
47 /**
48 getBagelCost method
49 @return The cost of the selected bagel.
50 */
51
52 public double getBagelCost()
53 {
54 double bagelCost = 0.0;
55
56 if (whiteBagel.isSelected())
57 bagelCost = WHITE_BAGEL;
58 else
59 bagelCost = WHEAT_BAGEL;
60
61 return bagelCost;
62 }
63 }

828 Chapter 12 A First Look at GUI Applications

Notice that the whiteBagel radio button is automatically selected when it is created. This is
the default choice. This class does not have an inner event listener class because we do not
want to execute any code when the user selects a bagel. Instead, we want this class to be
able to report the cost of the selected bagel. That is the purpose of the getBagelCost method,
which returns the cost of the selected bagel as a double. (This method will be called by the
Calculate button’s event listener.) Figure 12-32 shows how the component appears when it
is placed in the window’s west region.

Figure 12-32 Appearance of the BagelPanel component (Oracle Corporate Counsel)

The ToppingPanel class
The ToppingPanel class holds the check boxes for the available toppings. Code Listing
12-18 shows the class, which is also extended from JPanel.

code Listing 12-18 (ToppingPanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The ToppingPanel class allows the user to select
 6 the toppings for the bagel.
 7 */
 8
 9 public class ToppingPanel extends JPanel
10 {
11 // The following constants are used to indicate
12 // the cost of toppings.
13 public final double CREAM_CHEESE = 0.50;
14 public final double BUTTER = 0.25;
15 public final double PEACH_JELLY = 0.75;
16 public final double BLUEBERRY_JAM = 0.75;
17
18 private JCheckBox creamCheese; // To select cream cheese
19 private JCheckBox butter; // To select butter
20 private JCheckBox peachJelly; // To select peach jelly
21 private JCheckBox blueberryJam; // To select blueberry jam
22

 12.6 Focus on Problem Solving: Extending Classes from JPanel 829

23 /**
24 Constructor
25 */
26
27 public ToppingPanel()
28 {
29 // Create a GridLayout manager with
30 // four rows and one column.
31 setLayout(new GridLayout(4, 1));
32
33 // Create the check boxes.
34 creamCheese = new JCheckBox("Cream cheese");
35 butter = new JCheckBox("Butter");
36 peachJelly = new JCheckBox("Peach jelly");
37 blueberryJam = new JCheckBox("Blueberry jam");
38
39 // Add a border around the panel.
40 setBorder(BorderFactory.createTitledBorder("Toppings"));
41
42 // Add the check boxes to the panel.
43 add(creamCheese);
44 add(butter);
45 add(peachJelly);
46 add(blueberryJam);
47 }
48
49 /**
50 getToppingCost method
51 @return The cost of the selected toppings.
52 */
53
54 public double getToppingCost()
55 {
56 double toppingCost = 0.0;
57
58 if (creamCheese.isSelected())
59 toppingCost += CREAM_CHEESE;
60 if (butter.isSelected())
61 toppingCost += BUTTER;
62 if (peachJelly.isSelected())
63 toppingCost += PEACH_JELLY;
64 if (blueberryJam.isSelected())
65 toppingCost += BLUEBERRY_JAM;
66
67 return toppingCost;
68 }
69 }

830 Chapter 12 A First Look at GUI Applications

As with the BagelPanel class, this class does not have an inner event listener class because
we do not want to execute any code when the user selects a topping. Instead, we want this
class to be able to report the total cost of all the selected toppings. That is the purpose of the
getToppingCost method, which returns the cost of all the selected toppings as a double.
(This method will be called by the Calculate button’s event listener.) Figure 12-33 shows
how the component appears when it is placed in the window’s center region.

Figure 12-33 Appearance of the ToppingPanel component (Oracle Corporate Counsel)

The CoffeePanel class
The CoffeePanel class holds the radio buttons for the available coffee selections. Code
 Listing 12-19 shows the class, which extends JPanel.

code Listing 12-19 (CoffeePanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The CoffeePanel class allows the user to select coffee.
 6 */
 7
 8 public class CoffeePanel extends JPanel
 9 {
10 // The following constants are used to indicate
11 // the cost of coffee.
12 public final double NO_COFFEE = 0.0;
13 public final double REGULAR_COFFEE = 1.25;
14 public final double DECAF_COFFEE = 1.25;
15 public final double CAPPUCCINO = 2.00;
16
17 private JRadioButton noCoffee; // To select no coffee
18 private JRadioButton regularCoffee; // To select regular coffee
19 private JRadioButton decafCoffee; // To select decaf
20 private JRadioButton cappuccino; // To select cappuccino
21 private ButtonGroup bg; // Radio button group
22
23 /**
24 Constructor

 12.6 Focus on Problem Solving: Extending Classes from JPanel 831

25 */
26
27 public CoffeePanel()
28 {
29 // Create a GridLayout manager with
30 // four rows and one column.
31 setLayout(new GridLayout(4, 1));
32
33 // Create the radio buttons.
34 noCoffee = new JRadioButton("None");
35 regularCoffee = new JRadioButton("Regular coffee", true);
36 decafCoffee = new JRadioButton("Decaf coffee");
37 cappuccino = new JRadioButton("Cappuccino");
38
39 // Group the radio buttons.
40 bg = new ButtonGroup();
41 bg.add(noCoffee);
42 bg.add(regularCoffee);
43 bg.add(decafCoffee);
44 bg.add(cappuccino);
45
46 // Add a border around the panel.
47 setBorder(BorderFactory.createTitledBorder("Coffee"));
48
49 // Add the radio buttons to the panel.
50 add(noCoffee);
51 add(regularCoffee);
52 add(decafCoffee);
53 add(cappuccino);
54 }
55
56 /**
57 getCoffeeCost method
58 @return The cost of the selected coffee.
59 */
60
61 public double getCoffeeCost()
62 {
63 double coffeeCost = 0.0;
64
65 if (noCoffee.isSelected())
66 coffeeCost = NO_COFFEE;
67 else if (regularCoffee.isSelected())
68 coffeeCost = REGULAR_COFFEE;
69 else if (decafCoffee.isSelected())
70 coffeeCost = DECAF_COFFEE;
71 else if (cappuccino.isSelected())
72 coffeeCost = CAPPUCCINO;

832 Chapter 12 A First Look at GUI Applications

73
74 return coffeeCost;
75 }
76 }

As with the BagelPanel and ToppingPanel classes, this class does not have an inner event
listener class because we do not want to execute any code when the user selects coffee.
Instead, we want this class to be able to report the cost of the selected coffee. The
getCoffeeCost method returns the cost of the selected coffee as a double. (This method will
be called by the Calculate button’s event listener.) Figure 12-34 shows how the component
appears when it is placed in the window’s east region.

Figure 12-34 Appearance of the CoffeePanel component

putting it All Together
The last step in creating this application is to write a class that builds the application’s win-
dow and adds the Calculate and Exit buttons. This class, which we name OrderCalculatorGUI,
is extended from JFrame and uses a BorderLayout manager with its content pane. Figure 12-35
shows how instances of the GreetingPanel, BagelPanel, ToppingPanel, and CoffeePanel
classes are placed in the content pane.

Figure 12-35 Placement of the custom panels

 12.6 Focus on Problem Solving: Extending Classes from JPanel 833

We have not created a custom panel class to hold the Calculate and Exit buttons. The reason
is that the Calculate button’s event listener must call the getBagelCost, getToppingCost,
and getCoffeeCost methods. In order to call those methods, the event listener must
have access to the BagelPanel, ToppingPanel, and CoffeePanel objects that are created
in the OrderCalculatorGUI class. The approach taken in this example is to have the
OrderCalculatorGUI class itself create the buttons. The code for the OrderCalculatorGUI
class is shown in Code Listing 12-20.

code Listing 12-20 (OrderCalculatorGUI.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The OrderCalculatorGUI class creates the GUI for the
 7 Brandi's Bagel House application.
 8 */
 9
 10 public class OrderCalculatorGUI extends JFrame
 11 {
 12 private BagelPanel bagels; // Bagel panel
 13 private ToppingPanel toppings; // Topping panel
 14 private CoffeePanel coffee; // Coffee panel
 15 private GreetingPanel banner; // To display a greeting
 16 private JPanel buttonPanel; // To hold the buttons
 17 private JButton calcButton; // To calculate the cost
 18 private JButton exitButton; // To exit the application
 19 private final double TAX_RATE = 0.06; // Sales tax rate
 20
 21 /**
 22 Constructor
 23 */
 24
 25 public OrderCalculatorGUI()
 26 {
 27 // Display a title.
 28 setTitle("Order Calculator");
 29
 30 // Specify an action for the close button.
 31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 32
 33 // Create a BorderLayout manager.
 34 setLayout(new BorderLayout());

834 Chapter 12 A First Look at GUI Applications

 35
 36 // Create the custom panels.
 37 banner = new GreetingPanel();
 38 bagels = new BagelPanel();
 39 toppings = new ToppingPanel();
 40 coffee = new CoffeePanel();
 41
 42 // Create the button panel.
 43 buildButtonPanel();
 44
 45 // Add the components to the content pane.
 46 add(banner, BorderLayout.NORTH);
 47 add(bagels, BorderLayout.WEST);
 48 add(toppings, BorderLayout.CENTER);
 49 add(coffee, BorderLayout.EAST);
 50 add(buttonPanel, BorderLayout.SOUTH);
 51
 52 // Pack the contents of the window and display it.
 53 pack();
 54 setVisible(true);
 55 }
 56
 57 /**
 58 The buildButtonPanel method builds the button panel.
 59 */
 60
 61 private void buildButtonPanel()
 62 {
 63 // Create a panel for the buttons.
 64 buttonPanel = new JPanel();
 65
 66 // Create the buttons.
 67 calcButton = new JButton("Calculate");
 68 exitButton = new JButton("Exit");
 69
 70 // Register the action listeners.
 71 calcButton.addActionListener(new CalcButtonListener());
 72 exitButton.addActionListener(new ExitButtonListener());
 73
 74 // Add the buttons to the button panel.
 75 buttonPanel.add(calcButton);
 76 buttonPanel.add(exitButton);
 77 }
 78
 79 /**
 80 Private inner class that handles the event when
 81 the user clicks the Calculate button.

 12.6 Focus on Problem Solving: Extending Classes from JPanel 835

 82 */
 83
 84 private class CalcButtonListener implements ActionListener
 85 {
 86 public void actionPerformed(ActionEvent e)
 87 {
 88 // Variables to hold the subtotal, tax, and total
 89 double subtotal, tax, total;
 90
 91 // Calculate the subtotal.
 92 subtotal = bagels.getBagelCost() +
 93 toppings.getToppingCost() +
 94 coffee.getCoffeeCost();
 95
 96 // Calculate the sales tax.
 97 tax = subtotal * TAX_RATE;
 98
 99 // Calculate the total.
100 total = subtotal + tax;
101
102 // Display the charges.
103 JOptionPane.showMessageDialog(null,
104 String.format("Subtotal: $%,.2f\n" +
105 "Tax: $%,.2f\n" +
106 "Total: $%,.2f",
107 subtotal, tax, total));
108 }
109 }
110
111 /**
112 Private inner class that handles the event when
113 the user clicks the Exit button.
114 */
115
116 private class ExitButtonListener implements ActionListener
117 {
118 public void actionPerformed(ActionEvent e)
119 {
120 System.exit(0);
121 }
122 }
123
124 /**
125 main method
126 */
127

836 Chapter 12 A First Look at GUI Applications

128 public static void main(String[] args)
129 {
130 new OrderCalculatorGUI();
131 }
132 }

When the application runs, the window shown in Figure 12-36 appears. Figure 12-37 shows
the JOptionPane dialog box that is displayed when the user selects a wheat bagel with
 butter, cream cheese, and decaf coffee.

Figure 12-36 The Order Calculator window (Oracle Corporate Counsel)

Figure 12-37 The subtotal, tax, and total displayed (Oracle Corporate Counsel)

12.7 splash screens

concepT: A splash screen is a graphic image that is displayed while an application
loads into memory and starts up.

Most major applications display a splash screen, which is a graphic image that is displayed
while the application is loading into memory. Splash screens usually show company logos

 12.8 Using Console Output to Debug a GUI Application 837

and keep the user’s attention while the application starts up. Splash screens are particularly
important for large applications that take a long time to load, because they assure the user
that the program is not malfunctioning.

Beginning with Java 6, you can display splash screens with your Java applications. First,
you have to use a graphics program to create the image that you want to display. Java sup-
ports splash screens in the GIF, PNG, or JPEG formats. (If you are using Windows, you can
create images with Microsoft Paint, which supports all of these formats.)

To display the splash screen you use the java command in the following way when you run
the application:

java -splash:GraphicFileName ClassFileName

GraphicFileName is the name of the file that contains the graphic image, and ClassFileName
is the name of the .class file that you are running. For example, in the same source code folder
as the Brandi’s Bagel House application, you will find a file named BrandiLogo.jpg. This
image, which is shown in Figure 12-38, is a logo for the Brandi’s Bagel House application. To
display the splash screen when the application starts, you would use the following command:

java splash:BrandiLogo.jpg Bagel

When you run this command, the graphic file will immediately be displayed in the center of
the screen. It will remain displayed until the application’s window appears.

Figure 12-38 Splash screen for the Brandi’s Bagel House application (Oracle Corporate Counsel)

12.8 Using console output to Debug a GUi Application

concepT: When debugging a GUI application, you can use System.out.println to
send diagnostic messages to the console.

When an application is not performing correctly, programmers sometimes write statements
that display diagnostic messages into the application. For example, if an application is not
giving the correct result for a calculation, diagnostic messages can be displayed at various
points in the program’s execution showing the values of all the variables used in the calcula-
tion. If the trouble is caused by a variable that has not been properly initialized, or that has
not been assigned the correct value, the diagnostic messages reveal this problem. This helps
the programmer see what is going on “under the hood” while an application is running.

838 Chapter 12 A First Look at GUI Applications

The System.out.println method can be a valuable tool for displaying diagnostic mes-
sages in a GUI application. Because the System.out.println method sends its output to the
console, diagnostic messages can be displayed without interfering with the application’s
GUI windows.

Code Listing 12-21 shows an example. This is a modified version of the KiloConverter
class, discussed earlier in this chapter. Inside the actionPerformed method, which is in the
CalcButtonListener inner class, calls to the System.out.println method have been written.
The new code, which appears in lines 99 through 104 and 113 through 115, is shown in
bold. These new statements display the value that the application has retrieved from the
text field, and is working within its calculation. (This file is stored in the source code folder
Chapter 12\KiloConverter Phase 3.)

code Listing 12-21 (KiloConverter.java)

 1 import javax.swing.*; // Needed for Swing classes
 2 import java.awt.event.*; // Needed for ActionListener Interface
 3
 4 /**
 5 The KiloConverter class displays a JFrame that
 6 lets the user enter a distance in kilometers. When
 7 the Calculate button is clicked, a dialog box is
 8 displayed with the distance converted to miles.
 9 */
 10
 11 public class KiloConverter extends JFrame
 12 {
 13 private JPanel panel; // To reference a panel
 14 private JLabel messageLabel; // To reference a label
 15 private JTextField kiloTextField; // To reference a text field
 16 private JButton calcButton; // To reference a button
 17 private final int WINDOW_WIDTH = 310; // Window width
 18 private final int WINDOW_HEIGHT = 100; // Window height
 19
 20 /**
 21 Constructor
 22 */
 23
 24 public KiloConverter()
 25 {
 26 // Set the window title.
 27 setTitle("Kilometer Converter");
 28
 29 // Set the size of the window.
 30 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
 31
 32 // Specify what happens when the close button is clicked.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 12.8 Using Console Output to Debug a GUI Application 839

 34
 35 // Build the panel and add it to the frame.
 36 buildPanel();
 37
 38 // Add the panel to the frame's content pane.
 39 add(panel);
 40
 41 // Display the window.
 42 setVisible(true);
 43 }
 44
 45 /**
 46 The buildPanel method adds a label, a text field,
 47 and a button to a panel.
 48 */
 49
 50 private void buildPanel()
 51 {
 52 // Create a label to display instructions.
 53 messageLabel = new JLabel("Enter a distance " +
 54 "in kilometers");
 55
 56 // Create a text field 10 characters wide.
 57 kiloTextField = new JTextField(10);
 58
 59 // Create a button with the caption "Calculate".
 60 calcButton = new JButton("Calculate");
 61
 62 // Add an action listener to the button.
 63 calcButton.addActionListener(new CalcButtonListener());
 64
 65 // Create a JPanel object and let the panel
 66 // field reference it.
 67 panel = new JPanel();
 68
 69 // Add the label, text field, and button
 70 // components to the panel.
 71 panel.add(messageLabel);
 72 panel.add(kiloTextField);
 73 panel.add(calcButton);
 74 }
 75
 76 /**
 77 CalcButtonListener is an action listener class for
 78 the Calculate button.
 79 */
 80
 81 private class CalcButtonListener implements ActionListener

840 Chapter 12 A First Look at GUI Applications

 82 {
 83 /**
 84 The actionPerformed method executes when the user
 85 clicks on the Calculate button.
 86 @param e The event object.
 87 */
 88
 89 public void actionPerformed(ActionEvent e)
 90 {
 91 final double CONVERSION = 0.6214;
 92 String input; // To hold the user's input
 93 double miles; // The number of miles
 94
 95 // Get the text entered by the user into the
 96 // text field.
 97 input = kiloTextField.getText();
 98
 99 // For debugging, display the text entered, and
100 // its value converted to a double.
101 System.out.println("Reading " + input +
102 " from the text field.");
103 System.out.println("Converted value: " +
104 Double.parseDouble(input));
105
106 // Convert the input to miles.
107 miles = Double.parseDouble(input) * CONVERSION;
108
109 // Display the result.
110 JOptionPane.showMessageDialog(null, input +
111 " kilometers is " + miles + " miles.");
112
113 // For debugging, display a message indicating
114 // the application is ready for more input.
115 System.out.println("Ready for the next input.");
116 }
117 } // End of CalcButtonListener class
118
119 /**
120 The main method creates an instance of the
121 KiloConverter class, which displays
122 its window on the screen.
123 */
124
125 public static void main(String[] args)
126 {
127 new KiloConverter();
128 }
129 }

 12.8 Using Console Output to Debug a GUI Application 841

Let’s take a closer look. In lines 101 and 102, a message is displayed to the console showing
the value that was read from the text field. In lines 103 and 104, another message is dis-
played showing the value after it is converted to a double. Then, in line 115, a message is
displayed indicating that the application is ready for its next input. Figure 12-39 shows an
example session with the application on a computer running Microsoft Windows. Both the
console window and the application windows are shown.

1. A command is typed in the console window to execute the
 application. The application's window appears.

3. The user dismisses the dialog box and a message is displayed in
 the console window indicating that the application is ready for the
 next input.

2. The user types a value into the text field and clicks the Calculate
 button. Debugging messages appear in the console window, and a
 message dialog appears showing the value converted to miles.

Figure 12-39 Messages displayed to the console during the application’s execution

The messages that are displayed to the console are meant for only the programmer to see,
while he or she is debugging the application. Once the programmer is satisfied that the
application is running correctly, the calls to System.out.println can be taken out.

842 Chapter 12 A First Look at GUI Applications

12.9 common errors to Avoid
•	 Misspelling javax.swing in an import statement. Don’t forget the letter x that appears

after java in this import statement.
•	 Forgetting to specify the action taken when the user clicks on a JFrame’s close button.

By default, a window is hidden from view when the close button is clicked, but the
application is not terminated. If you wish to exit the application when a JFrame's
close button is clicked, you must call the setDefaultCloseOperation method and pass
JFrame.EXIT_ON_CLOSE as the argument.

•	 Forgetting to write an event listener for each event you wish an application to respond
to. In order to respond to an event, you must write an event listener that implements
the proper type of interface, registered to the component that generates the event.

•	 Forgetting to register an event listener. Even if you write an event listener, it will not
execute unless it has been registered with the correct component.

•	 When writing an event listener method that is required by an interface, not using the
method header specified by the interface. The header of an actionPerformed method
must match that specified by the ActionListener interface. Also, the header of an
itemStateChanged method must match that specified by the ItemListener method.

•	 Placing components directly into the regions of a container governed by a BorderLayout
manager when you do not want the components resized or you want to add more than
one component per region. If you do not want the components that you place in a
BorderLayout region to be resized, place them in a JPanel component and then add
the JPanel component to the region.

•	 Placing components directly into the cells of a container governed by a GridLayout
manager when you do not want the components resized or you want to add more than
one component per cell. If you do not want the components that you place in a
GridLayout cell to be resized, place them in a JPanel component, and then add the
JPanel component to the cell.

•	 Forgetting to add JRadioButton components to a ButtonGroup object. A mutually
exclusive relationship is created between radio buttons only when they are added to a
ButtonGroup object.

review Questions and exercises
Multiple choice and True/False

 1. With Swing, you use this class to create a frame.
a. Frame
b. SwingFrame
c. JFrame
d. JavaFrame

 2. This is the part of a JFrame object that holds the components that have been added to
the JFrame object.
a. content pane
b. viewing area
c. component array
d. object collection

 Review Questions and Exercises 843

 3. This is a JPanel object’s default layout manager.
a. BorderLayout
b. GridLayout
c. FlowLayout
d. None

 4. This is the default layout manager for a JFrame object’s content pane.
a. BorderLayout
b. GridLayout
c. FlowLayout
d. None

 5. If a container is governed by a BorderLayout manager and you add a component to it,
but you do not pass the second argument specifying the region, this is the region in
which the component will be added.
a. north
b. south
c. east
d. center

 6. Components in this/these regions of a BorderLayout manager are resized horizontally
so they fill up the entire region.
a. north and south
b. east and west
c. center only
d. north, south, east, and west

 7. Components in this/these regions of a BorderLayout manager are resized vertically so
they fill up the entire region.
a. north and south
b. east and west
c. center only
d. north, south, east, and west

 8. Components in this/these regions of a BorderLayout manager are resized both hori-
zontally and vertically so they fill up the entire region.
a. north and south
b. east and west
c. center only
d. north, south, east, and west

 9. This is the default alignment of a FlowLayout manager.
a. left
b. center
c. right
d. no alignment

 10. Adding radio button components to this type of object creates a mutually exclusive
relationship between them.
a. MutualExclude
b. RadioGroup
c. LogicalGroup
d. ButtonGroup

844 Chapter 12 A First Look at GUI Applications

 11. You use this class to create Border objects.
a. BorderFactory
b. BorderMaker
c. BorderCreator
d. BorderSource

 12. True or False: A panel cannot be displayed by itself.

 13. True or False: You can place multiple components inside a GridLayout cell.

 14. True or False: You can place multiple components inside a BorderLayout region.

 15. True or False: You can place multiple components inside a container governed by a
FlowLayout manager.

 16. True or False: You can place a panel inside a region governed by a BorderLayout manager.

 17. True or False: A component placed in a GridLayout manager’s cell will not be resized
to fill up any extra space in the cell.

 18. True or False: You normally add JCheckBox components to a ButtonGroup object.

 19. True or False: A mutually exclusive relationship is automatically created among all
JRadioButton components in the same container.

 20. True or False: You can write a class that extends the JPanel class.

Find the error

 1. The following statement is in a class that uses Swing components:

import java.swing.*;

 2. The following is an inner class that will be registered as an action listener for a
JButton component:

private class ButtonListener implements ActionListener
{
 public void actionPerformed()
 {
 // Code appears here.
 }
}

 3. The intention of the following statement is to give the panel object a GridLayout
manager with 10 columns and 5 rows:

panel.setLayout(new GridLayout(10, 5));

 4. The panel variable references a JPanel governed by a BorderLayout manager. The
following statement attempts to add the button component to the north region of
panel:

panel.add(button, NORTH);

 5. The panel variable references a JPanel object. The intention of the following state-
ment is to create a titled border around panel:

panel.setBorder(new BorderFactory("Choices"));

 Programming Challenges 845

Algorithm Workbench

 1. The variable myWindow references a JFrame object. Write a statement that sets the size
of the object to 500 pixels wide and 250 pixels high.

 2. The variable myWindow references a JFrame object. Write a statement that causes the
application to end when the user clicks on the JFrame object’s close button.

 3. The variable myWindow references a JFrame object. Write a statement that displays the
object’s window on the screen.

 4. The variable myButton references a JButton object. Write the code to set the object’s
background color to white and foreground color to red.

 5. Assume that a class inherits from the JFrame class. Write code that can appear in the
class constructor, which gives the content pane a FlowLayout manager. Components
added to the content pane should be aligned with the left edge of each row.

 6. Assume that a class inherits from the JFrame class. Write code that can appear in the
class constructor, which gives the content pane a GridLayout manager with five rows
and 10 columns.

 7. Assume that the variable panel references a JPanel object that uses a BorderLayout
manager. In addition, the variable button references a JButton object. Write code that
adds the button object to the panel object’s west region.

 8. Write code that creates three radio buttons with the text “Option 1”, “Option 2”, and
“Option 3”. The radio button that displays the text “Option 1” should be initially
selected. Make sure these components are grouped so that a mutually exclusive rela-
tionship exists among them.

 9. Assume that panel references a JPanel object. Write code that creates a two pixel thick
blue line border around it.

short Answer

 1. If you do not change the default close operation, what happens when the user clicks
on the close button on a JFrame object?

 2. Why is it sometimes necessary to place a component inside a panel and then place the
panel inside a container governed by a BorderLayout manager?

 3. In what type of situation would you present a group of items to the user with radio
buttons? With check boxes?

 4. How can you create a specialized panel component that can be used to hold other
components and their related code?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. retail price calculator

Create a GUI application where the user enters the wholesale cost of an item and its markup
percentage into text fields. (For example, if an item’s wholesale cost is $5 and its markup

http://www.myprogramminglab.com

846 Chapter 12 A First Look at GUI Applications

percentage is 100 percent, then its retail price is $10.) The application should have a button
that displays the item’s retail price when clicked.

2. Monthly sales Tax

A retail company must file a monthly sales tax report listing the total sales for the month,
and the amount of state and county sales tax collected. The state sales tax rate is 4 percent
and the county sales tax rate is 2 percent. Create a GUI application that allows the user to
enter the total sales for the month into a text field. From this figure, the application should
calculate and display the following:

•	 The	amount	of	county	sales	tax
•	 The	amount	of	state	sales	tax
•	 The	total	sales	tax	(county	plus	state)

In the application’s code, represent the county tax rate (0.02) and the state tax rate (0.04)
as named constants.

3. property Tax

A county collects property taxes on the assessment value of property, which is 60 percent
of the property’s actual value. If an acre of land is valued at $10,000, its assessment value is
$6,000. The property tax is then $0.64 for each $100 of the assessment value. The tax for
the acre assessed at $6,000 will be $38.40. Create a GUI application that displays the assess-
ment value and property tax when a user enters the actual value of a property.

4. Travel expenses

Create a GUI application that calculates and displays the total travel expenses of a business
person on a trip. Here is the information that the user must provide:

•	 Number	of	days	on	the	trip
•	 Amount	of	airfare,	if	any
•	 Amount	of	car	rental	fees,	if	any
•	 Number	of	miles	driven,	if	a	private	vehicle	was	used
•	 Amount	of	parking	fees,	if	any
•	 Amount	of	taxi	charges,	if	any
•	 Conference	or	seminar	registration	fees,	if	any
•	 Lodging	charges,	per	night

The company reimburses travel expenses according to the following policy:

•	 $37	per	day	for	meals
•	 Parking	fees,	up	to	$10.00	per	day
•	 Taxi	charges	up	to	$20.00	per	day
•	 Lodging	charges	up	to	$95.00	per	day
•	 If	a	private	vehicle	is	used,	$0.27	per	mile	driven

The application should calculate and display the following:

•	 Total	expenses	incurred	by	the	business	person
•	 The	total	allowable	expenses	for	the	trip
•	 The	excess	that	must	be	paid	by	the	business	person,	if	any
•	 The	amount	saved	by	the	business	person	if	the	expenses	are	under	the	total	allowed

The Monthly
Sales Tax
Problem

VideoNote

 Programming Challenges 847

5. Theater revenue

A movie theater only keeps a percentage of the revenue earned from ticket sales. The re-
mainder goes to the movie company. Create a GUI application that allows the user to enter
the following data into text fields:

•	 Price	per	adult	ticket
•	 Number	of	adult	tickets	sold
•	 Price	per	child	ticket
•	 Number	of	child	tickets	sold

The application should calculate and display the following data for one night’s box office
business at a theater:

•	 Gross revenue for adult tickets sold. This is the amount of money taken in for all adult
tickets sold.

•	 Net revenue for adult tickets sold. This is the amount of money from adult ticket sales
left over after the payment to the movie company has been deducted.

•	 Gross revenue for child tickets sold. This is the amount of money taken in for all child
tickets sold.

•	 Net revenue for child tickets sold. This is the amount of money from child ticket sales
left over after the payment to the movie company has been deducted.

•	 Total gross revenue. This is the sum of gross revenue for adult and child tickets sold.
•	 Total net revenue. This is the sum of net revenue for adult and child tickets sold.

Assume the theater keeps 20 percent of its box office receipts. Use a constant in your code
to represent this percentage.

6. Joe’s Automotive

Joe’s Automotive performs the following routine maintenance services:

•	 Oil	change—$26.00
•	 Lube	job—$18.00
•	 Radiator	flush—$30.00
•	 Transmission	flush—$80.00
•	 Inspection—$15.00
•	 Muffler	replacement—$100.00
•	 Tire	rotation—$20.00

Joe also performs other nonroutine services and charges for parts and for labor ($20 per
hour). Create a GUI application that displays the total for a customer’s visit to Joe’s.

7. Long Distance calls

A long-distance provider charges the following rates for telephone calls:

Rate Category Rate per Minute

Daytime (6:00 a.m. through 5:59 p.m.) $0.07

Evening (6:00 p.m. through 11:59 p.m.) $0.12

Off-Peak (12:00 a.m. through 5:59 a.m.) $0.05

848 Chapter 12 A First Look at GUI Applications

Create a GUI application that allows the user to select a rate category (from a set of radio
buttons), and enter the number of minutes of the call into a text field. A dialog box should
display the charge for the call.

8. Latin Translator

Look at the following list of Latin words and their meanings.

Latin English

sinister left

dexter right

medium center

Write a GUI application that translates the Latin words to English. The window should
have three buttons, one for each Latin word. When the user clicks a button, the program
displays the English translation in a label.

9. MpG calculator

Write a GUI application that calculates a car’s gas mileage. The application should let the
user enter the number of gallons of gas the car holds, and the number of miles it can be
driven on a full tank. When a Calculate MPG button is clicked, the application should
display the number of miles that the car may be driven per gallon of gas. Use the following
formula to calculate MPG:

MPG 5
Miles

Gallons

10. celsius to Fahrenheit

Write a GUI application that converts Celsius temperatures to Fahrenheit temperatures. The
user should be able to enter a Celsius temperature, click a button, and then see the equiva-
lent Fahrenheit temperature. Use the following formula to make the conversion:

F 5 9
5

 C 1 32

F is the Fahrenheit temperature and C is the Celsius temperature.

849

Advanced GUI Applications

C
H

A
P

T
E

R

13
TOPICS

 13.1 The Swing and AWT Class Hierarchy
 13.2 Read-Only Text Fields
 13.3 Lists
 13.4 Combo Boxes
 13.5 Displaying Images in Labels and

Buttons
 13.6 Mnemonics and Tool Tips
 13.7 File Choosers and Color Choosers

 13.8 Menus
 13.9 More about Text Components: Text

Areas and Fonts
 13.10 Sliders
 13.11 Look and Feel
 13.12 Common Errors to Avoid
 On the Web: Case Study—
 A Simple Text Editor

13.1 The Swing and AWT Class Hierarchy
Now that you have used some of the fundamental GUI components, let’s look at how they
fit into the class hierarchy. Figure 13-1 shows the parts of the Swing and AWT class hierar-
chy that contain the JFrame, JPanel, JLabel, JTextField, JButton, JRadioButton, and
JCheckBox classes. Because of the inheritance relationships that exist, there are many other
classes in the figure as well.

The classes that are in the unshaded top part of the figure are AWT classes and are in the
java.awt package. The classes that are in the shaded bottom part of the figure are Swing
classes and are in the javax.swing package. Notice that all of the components we have dealt
with ultimately inherit from the Component class.

850 Chapter 13 Advanced GUI Applications

13.2 Read-Only Text Fields

COnCePT: A read-only text field displays text that can be changed by code in the
application, but cannot be edited by the user.

A read-only text field is not a new component, but a different way to use the JTextField
component. The JTextField component has a method named setEditable, which has the
following general format:

Figure 13-1 Part of the Swing and AWT class hierarchy (Oracle Corporate Counsel)

 13.2 Read-Only Text Fields 851

setEditable(boolean editable)

You pass a boolean argument to this method. By default a text field is editable, which means
that the user can enter data into it. If you call the setEditable method and pass false as the
argument, then the text field becomes read-only. This means it is not editable by the user.
Figure 13-2 shows a window that has three read-only text fields.

Read-Only Text Fields

Figure 13-2 A window with three read-only text fields (Oracle Corporate Counsel)

The following code could be used to create the read-only text fields shown in the figure:

// Create a read-only text field for the subtotal.
JTextField subtotalField = new JTextField(10);
subtotalField.setEditable(false);

// Create a read-only text field for the sales tax.
JTextField taxField = new JTextField(10);
taxField.setEditable(false);

// Create a read-only text field for the total.
JTextField totalField = new JTextField(10);
totalField.setEditable(false);

A read-only text field looks like a label with a border drawn around it. You can use the
setText method to display data inside it. Here is an example:

subtotalField.setText("100.00");
taxField.setText("6.00");
totalField.setText("106.00");

This code causes the text fields to appear as shown in Figure 13-3.

Figure 13-3 Read-only text fields with data displayed (Oracle Corporate Counsel)

852 Chapter 13 Advanced GUI Applications

13.3 Lists

COnCePT: A list component displays a list of items and allows the user to select an
item from the list.

A list is a component that displays a list of items and also allows the user to select one or
more items from the list. Java provides the JList component for creating lists. Figure 13-4
shows an example. The JList component in the figure shows a list of names. At runtime,
the user may select an item in the list, which causes the item to appear highlighted. In the
figure, the first name is selected.

When you create an instance of the JList class, you pass an array of objects to the construc-
tor. Here is the general format of the constructor call:

JList (Object[] array)

The JList component uses the array to create the list of items. In this text we always pass
an array of String objects to the JList constructor. For example, the list component shown
in Figure 13-4 could be created with the following code:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JList nameList = new JList(names);

Selection Modes
The JList component can operate in any of the following selection modes:

•	 Single	Selection	Mode.	In	this	mode	only	one	item	can	be	selected	at	a	time.	When	an	
item is selected, any other item that is currently selected is deselected.

•	 Single	Interval	Selection	Mode.	In	this	mode	multiple	items	can	be	selected,	but	they	
must be in a single interval. An interval is a set of contiguous items.

•	 Multiple	Interval	Selection	Mode.	In	this	mode	multiple	items	may	be	selected	with	no	
restrictions. This is the default selection mode.

Figure 13-5 shows an example of a list in each type of selection mode.

Figure 13-4 A JList component (Oracle Corporate Counsel)

The JList
Component

VideoNote

 13.3 Lists 853

The default mode is multiple interval selection. To keep our applications simple, we will use
single selection mode for now. You change a JList component’s selection mode with the
setSelectionMode method. The method accepts an int argument that determines the selec-
tion mode.

The ListSelectionModel class, which is in the javax.swing package, provides the following
constants that you can use as arguments to the setSelectionMode method:

•	 	ListSelectionModel.SINGLE_SELECTION
•	 	ListSelectionModel.SINGLE_INTERVAL_SELECTION
•	 	ListSelectionModel.MULTIPLE_INTERVAL_SELECTION

Assuming that nameList references a JList component, the following statement sets the
component to single selection mode:

nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

Responding to List events
When an item in a JList object is selected it generates a list selection event. You handle list
selection events with a list selection listener class, which must meet the following requirements:

•	 It	must	implement	the	ListSelectionListener interface.
•	 It	must	have	a	method	named	valueChanged. This method must take an argument of

the ListSelectionEvent type.

Single selection mode allows
only one item to be selected
at a time.

Single interval selection mode allows
a single interval of contiguous items
to be selected.

Multiple interval selection mode allows
multiple items to be selected with no
restrictions.

Figure 13-5 Selection modes (Oracle Corporate Counsel)

Once you have written a list selection listener class, you create an object of that class and
then pass it as an argument to the JList component’s addListSelectionListener method.
When the JList component generates an event, it automatically executes the valueChanged
method of the list selection listener object, passing the event object as an argument. You will
see an example in a moment.

nOTe: The ListSelectionListener interface is in the javax.swing.event package, so
you must have an import statement for that package in your source code.

854 Chapter 13 Advanced GUI Applications

Retrieving the Selected Item
You may use either the getSelectedValue method or the getSelectedIndex method to
determine which item in a list is currently selected. The getSelectedValue method returns a
reference to the item that is currently selected. For example, assume that nameList refer-
ences the JList component shown earlier in Figure 13-4. The following code retrieves a
reference to the name that is currently selected and assigns it to the selectedName variable:

String selectedName;
selectedName = (String) nameList.getSelectedValue();

Note that the return value of the getSelectedValue method is an Object reference. In this
code we had to cast the return value to the String type in order to store it in the selectedName
variable. If no item in the list is selected, the method returns null.

The getSelectedIndex method returns the index of the selected item, or 21 if no item is
selected. Internally, the items that are stored in a list are numbered. Each item’s number is
called its index. The first item (which is the item stored at the top of the list) has the index 0,
the second item has the index 1, and so forth. You can use the index of the selected item to
retrieve the item from an array. For example, assume that the following code was used to
build the nameList component shown in Figure 13-4:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JList nameList = new JList(names);

Because the names array holds the values displayed in the namesList component, the follow-
ing code could be used to determine the selected item:

int index;
String selectedName;
index = nameList.getSelectedIndex();
if (index != -1)
 selectedName = names[index];

The ListWindow class shown in Code Listing 13-1 demonstrates the concepts we have dis-
cussed so far. It uses a JList component with a list selection listener. When an item is
selected from the list, it is displayed in a read-only text field. The main method creates an
instance of the ListWindow class, which displays the window shown on the left in Figure 13-6.
After the user selects October from the list, the window appears as that shown on the right
in the figure.

Code Listing 13-1 (ListWindow.java)

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This class demonstrates the List Component.
 7 */

 13.3 Lists 855

 8
 9 public class ListWindow extends JFrame
 10 {
 11 private JPanel monthPanel; // To hold components
 12 private JPanel selectedMonthPanel; // To hold components
 13 private JList monthList; // The months
 14 private JTextField selectedMonth; // The selected month
 15 private JLabel label; // A message
 16
 17 // The following array holds the values that will
 18 // be displayed in the monthList list component.
 19 private String[] months = { "January", "February",
 20 "March", "April", "May", "June", "July",
 21 "August", "September", "October", "November",
 22 "December" };
 23
 24 /**
 25 Constructor
 26 */
 27
 28 public ListWindow()
 29 {
 30 // Set the title.
 31 setTitle("List Demo");
 32
 33 // Specify an action for the close button.
 34 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 35
 36 // Add a BorderLayout manager.
 37 setLayout(new BorderLayout());
 38
 39 // Build the month and selectedMonth panels.
 40 buildMonthPanel();
 41 buildSelectedMonthPanel();
 42
 43 // Add the panels to the content pane.
 44 add(monthPanel, BorderLayout.CENTER);
 45 add(selectedMonthPanel, BorderLayout.SOUTH);
 46
 47 // Pack and display the window.
 48 pack();
 49 setVisible(true);
 50 }
 51
 52 /**
 53 The buildMonthPanel method adds a list containing
 54 the names of the months to a panel.
 55 */

856 Chapter 13 Advanced GUI Applications

 56
 57 private void buildMonthPanel()
 58 {
 59 // Create a panel to hold the list.
 60 monthPanel = new JPanel();
 61
 62 // Create the list.
 63 monthList = new JList(months);
 64
 65 // Set the selection mode to single selection.
 66 monthList.setSelectionMode(
 67 ListSelectionModel.SINGLE_SELECTION);
 68
 69 // Register the list selection listener.
 70 monthList.addListSelectionListener(
 71 new ListListener());
 72
 73 // Add the list to the panel.
 74 monthPanel.add(monthList);
 75 }
 76
 77 /**
 78 The buildSelectedMonthPanel method adds an
 79 uneditable text field to a panel.
 80 */
 81
 82 private void buildSelectedMonthPanel()
 83 {
 84 // Create a panel to hold the text field.
 85 selectedMonthPanel = new JPanel();
 86
 87 // Create the label.
 88 label = new JLabel("You selected: ");
 89
 90 // Create the text field.
 91 selectedMonth = new JTextField(10);
 92
 93 // Make the text field uneditable.
 94 selectedMonth.setEditable(false);
 95
 96 // Add the label and text field to the panel.
 97 selectedMonthPanel.add(label);
 98 selectedMonthPanel.add(selectedMonth);
 99 }
100
101 /**
102 Private inner class that handles the event when
103 the user selects an item from the list.

 13.3 Lists 857

104 */
105
106 private class ListListener
107 implements ListSelectionListener
108 {
109 public void valueChanged(ListSelectionEvent e)
110 {
111 // Get the selected month.
112 String selection =
113 (String) monthList.getSelectedValue();
114
115 // Put the selected month in the text field.
116 selectedMonth.setText(selection);
117 }
118 }
119
120 /**
121 The main method creates an instance of the
122 ListWindow class which causes it to display
123 its window.
124 */
125
126 public static void main(String[] args)
127 {
128 new ListWindow();
129 }
130 }

Window as initially displayed. Window after the user selects October.

Figure 13-6 Window displayed by the ListWindow class (Oracle Corporate Counsel)

858 Chapter 13 Advanced GUI Applications

Placing a Border around a List
As with other components, you can use the setBorder method, which was discussed in
Chapter 12, to draw a border around a JList. For example the following statement can be
used to draw a black 1-pixel thick line border around the monthList component:

monthList.setBorder(BorderFactory.createLineBorder(Color.BLACK, 1));

This code will cause the list to appear as shown in Figure 13-7.

Adding a Scroll Bar to a List
By default, a list component is large enough to display all of the items it contains. Some-
times	a	list	component	contains	too	many	items	to	be	displayed	at	once,	however.	Most	GUI	
applications display a scroll bar on list components that contain a large number of items.
The user simply uses the scroll bar to scroll through the list of items.

List components do not automatically display a scroll bar. To display a scroll bar on a list
component, you must follow the following general steps:

 1. Set the number of visible rows for the list component.
 2. Create a scroll pane object and add the list component to it.
 3. Add the scroll pane object to any other containers, such as panels.

Let’s take a closer look at how these steps can be used to apply a scroll bar to the list com-
ponent created in the following code:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JList nameList = new JList(names);

First, we establish the size of the list component with the JList class’s setVisibleRowCount
method. The following statement sets the number of visible rows in the nameList compo-
nent to three:

nameList.setVisibleRowCount(3);

Figure 13-7 List with a line border (Oracle Corporate Counsel)

 13.3 Lists 859

This statement causes the nameList component to display only three items at a time.

Next, we create a scroll pane object and add the list component to it. A scroll pane
object is a container that displays scroll bars on any component it contains. In Java we
use the JScrollPane class to create a scroll pane object. We pass the object that we wish
to add to the scroll pane as an argument to the JScrollPane constructor. The following
statement demonstrates:

JScrollPane scrollPane = new JScrollPane(nameList);

This statement creates a JScrollPane object and adds the nameList component to it.

Next, we add the scroll pane object to any other containers that are necessary for our GUI.
For example, the following code adds the scroll pane to a JPanel, which is then added to the
JFrame object’s content pane:

// Create a panel and add the scroll pane to it.
JPanel panel = new JPanel();
panel.add(scrollPane);

// Add the panel to this JFrame object's contentPane.
add(panel);

When the list component is displayed, it will appear as shown in Figure 13-8.

Although the list component displays only three items at a time, the user can scroll through
all of the items it contains.

The ListWindowWithScroll class shown in Code Listing 13-2 is a modification of the
ListWindow class. In this class, the monthList component shows only six items at a time, but
displays a scroll bar. The code shown in bold is the new lines that are used to add the scroll
bar to the list. The main method creates an instance of the class, which displays the window
shown in Figure 13-9.

Figure 13-8 List component with a scroll bar (Oracle Corporate Counsel)

Figure 13-9 List component with scroll bars (Oracle Corporate Counsel)

860 Chapter 13 Advanced GUI Applications

Code Listing 13-2 (ListWindowWithScroll.java)

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This class demonstrates the List Component.
 7 */
 8
 9 public class ListWindowWithScroll extends JFrame
 10 {
 11 private JPanel monthPanel; // To hold components
 12 private JPanel selectedMonthPanel; // To hold components
 13 private JList monthList; // The months
 14 private JScrollPane scrollPane; // A scroll pane
 15 private JTextField selectedMonth; // The selected month
 16 private JLabel label; // A message
 17
 18 // The following array holds the values that will
 19 // be displayed in the monthList list component.
 20 private String[] months = { "January", "February",
 21 "March", "April", "May", "June", "July",
 22 "August", "September", "October", "November",
 23 "December" };
 24
 25 /**
 26 Constructor
 27 */
 28
 29 public ListWindowWithScroll()
 30 {
 31 // Set the title.
 32 setTitle("List Demo");
 33
 34 // Specify an action for the close button.
 35 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 36
 37 // Add a BorderLayout manager.
 38 setLayout(new BorderLayout());
 39
 40 // Build the month and selectedMonth panels.
 41 buildMonthPanel();
 42 buildSelectedMonthPanel();
 43
 44 // Add the panels to the content pane.
 45 add(monthPanel, BorderLayout.CENTER);

 13.3 Lists 861

 46 add(selectedMonthPanel, BorderLayout.SOUTH);
 47
 48 // Pack and display the window.
 49 pack();
 50 setVisible(true);
 51 }
 52
 53 /**
 54 The buildMonthPanel method adds a list containing
 55 the names of the months to a panel.
 56 */
 57
 58 private void buildMonthPanel()
 59 {
 60 // Create a panel to hold the list.
 61 monthPanel = new JPanel();
 62
 63 // Create the list.
 64 monthList = new JList(months);
 65
 66 // Set the selection mode to single selection.
 67 monthList.setSelectionMode(
 68 ListSelectionModel.SINGLE_SELECTION);
 69
 70 // Register the list selection listener.
 71 monthList.addListSelectionListener(
 72 new ListListener());
 73
 74 // Set the number of visible rows to 6.
 75 monthList.setVisibleRowCount(6);
 76
 77 // Add the list to a scroll pane.
 78 scrollPane = new JScrollPane(monthList);
 79
 80 // Add the scroll pane to the panel.
 81 monthPanel.add(scrollPane);
 82 }
 83
 84 /**
 85 The buildSelectedMonthPanel method adds an
 86 uneditable text field to a panel.
 87 */
 88
 89 private void buildSelectedMonthPanel()
 90 {
 91 // Create a panel to hold the text field.
 92 selectedMonthPanel = new JPanel();

862 Chapter 13 Advanced GUI Applications

 93
 94 // Create the label.
 95 label = new JLabel("You selected: ");
 96
 97 // Create the text field.
 98 selectedMonth = new JTextField(10);
 99
100 // Make the text field uneditable.
101 selectedMonth.setEditable(false);
102
103 // Add the label and text field to the panel.
104 selectedMonthPanel.add(label);
105 selectedMonthPanel.add(selectedMonth);
106 }
107
108 /**
109 Private inner class that handles the event when
110 the user selects an item from the list.
111 */
112
113 private class ListListener
114 implements ListSelectionListener
115 {
116 public void valueChanged(ListSelectionEvent e)
117 {
118 // Get the selected month.
119 String selection =
120 (String) monthList.getSelectedValue();
121
122 // Put the selected month in the text field.
123 selectedMonth.setText(selection);
124 }
125 }
126
127 /**
128 The main method creates an instance of the
129 ListWindowWithScroll class which causes it
130 to display its window.
131 */
132
133 public static void main(String[] args)
134 {
135 new ListWindowWithScroll();
136 }
137 }

 13.3 Lists 863

Adding Items to an existing JList Component
The JList class’s setListData method allows you to store items in an existing JList com-
ponent. Here is the method’s general format:

void setListData(Object[] data)

The argument passed into data is an array of objects that will become the items displayed
in the JList component. Any items that are currently displayed in the component will be
replaced by the new items.

In addition to replacing the existing items in a list, you can use this method to add items to
an empty list. You can create an empty list by passing no argument to the JList constructor.
Here is an example:

JList nameList = new JList();

This statement creates an empty JList component referenced by the nameList variable. You
can then add items to the list, as shown here:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
nameList.setListData(names);

Multiple Selection Lists
For simplicity, the previous examples used a JList component in single selection mode.
Recall that the other two selection modes are single interval and multiple interval. Both of
these modes allow the user to select multiple items. Let’s take a closer look at each of
these modes.

Single Interval Selection Mode

You put a JList component in single interval selection mode by passing the constant
ListSelectionModel.SINGLE_INTERVAL_SELECTION to the component’s setSelectionMode
method. In single interval selection mode, single or multiple items can be selected. An inter-
val is a set of contiguous items. (See Figure 13-5 to see an example of an interval.)

To select an interval of items, the user selects the first item in the interval by clicking on
it, and then selects the last item in the interval by holding down the Shift key while
clicking on it. All of the items that appear in the list from the first item through the last
item are selected.

nOTe: By default, when a JList component is added to a JScrollPane object, the scroll
bar is only displayed when there are more items in the list than there are visible rows.

nOTe: When a JList component is added to a JScrollPane object, a border will
automatically appear around the list.

864 Chapter 13 Advanced GUI Applications

In single interval selection mode, the getSelectedValue method returns the first item in the
selected interval. The getSelectedIndex method returns the index of the first item in the
selected interval. To get the entire selected interval, use the getSelectedValues method. This
method returns an array of objects. The array will hold the items in the selected interval.
You can also use the getSelectedIndices method, which returns an array of int values.
The values in the array will be the indices of all the selected items in the list.

Multiple Interval Selection Mode

You put a JList component in multiple interval selection mode by passing the constant
ListSelectionModel.MULTIPLE_INTERVAL_SELECTION to the component’s setSelectionMode
method. In multiple interval selection mode, multiple items can be selected and the items do
not have to be in the same interval. (See Figure 13-5 for an example.)

In multiple interval selection mode, the user can select single items or intervals. When the
user holds down the Ctrl key while clicking on an item, it selects the item without deselect-
ing any items that are currently selected. This allows the user to select multiple items that
are not in an interval.

In multiple interval selection mode, the getSelectedValue method returns the first selected
item. The getSelectedIndex method returns the index of the first selected item. The
getSelectedValues method returns an array of objects containing the items that are selected.
The getSelectedIndices method returns an int array containing the indices of all the
selected items in the list.

The MultipleIntervalSelection class, shown in Code Listing 13-3, demonstrates a JList
component used in multiple interval selection mode. The main method creates an instance of
the class that displays the window shown on the left in Figure 13-10. When the user selects
items from the top JList component and then clicks the Get Selections button, the selected
items appear in the bottom JList component.

Code Listing 13-3 (MultipleIntervalSelection.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 This class demonstrates the List Component in
 7 multiple interval selection mode.
 8 */
 9
 10 public class MultipleIntervalSelection extends JFrame
 11 {
 12 private JPanel monthPanel; // To hold components
 13 private JPanel selectedMonthPanel; // To hold components
 14 private JPanel buttonPanel; // To hold the button
 15

 13.3 Lists 865

 16 private JList monthList; // To hold months
 17 private JList selectedMonthList; // Selected months
 18
 19 private JScrollPane scrollPane1; // Scroll pane - first list
 20 private JScrollPane scrollPane2; // Scroll pane - second list
 21
 22 private JButton button; // A button
 23
 24 // The following array holds the values that
 25 // will be displayed in the monthList list component.
 26 private String[] months = { "January", "February",
 27 "March", "April", "May", "June", "July",
 28 "August", "September", "October", "November",
 29 "December" };
 30
 31 /**
 32 Constructor
 33 */
 34
 35 public MultipleIntervalSelection()
 36 {
 37 // Set the title.
 38 setTitle("List Demo");
 39
 40 // Specify an action for the close button.
 41 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 42
 43 // Add a BorderLayout manager.
 44 setLayout(new BorderLayout());
 45
 46 // Build the panels.
 47 buildMonthPanel();
 48 buildSelectedMonthsPanel();
 49 buildButtonPanel();
 50
 51 // Add the panels to the content pane.
 52 add(monthPanel, BorderLayout.NORTH);
 53 add(selectedMonthPanel,BorderLayout.CENTER);
 54 add(buttonPanel, BorderLayout.SOUTH);
 55
 56 // Pack and display the window.
 57 pack();
 58 setVisible(true);
 59 }
 60
 61 /**
 62 The buildMonthPanel method adds a list containing the
 63 names of the months to a panel.

866 Chapter 13 Advanced GUI Applications

 64 */
 65
 66 private void buildMonthPanel()
 67 {
 68 // Create a panel to hold the list.
 69 monthPanel = new JPanel();
 70
 71 // Create the list.
 72 monthList = new JList(months);
 73
 74 // Set the selection mode to multiple
 75 // interval selection.
 76 monthList.setSelectionMode(
 77 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
 78
 79 // Set the number of visible rows to 6.
 80 monthList.setVisibleRowCount(6);
 81
 82 // Add the list to a scroll pane.
 83 scrollPane1 = new JScrollPane(monthList);
 84
 85 // Add the scroll pane to the panel.
 86 monthPanel.add(scrollPane1);
 87 }
 88
 89 /**
 90 The buildSelectedMonthsPanel method adds a list
 91 to a panel. This will hold the selected months.
 92 */
 93
 94 private void buildSelectedMonthsPanel()
 95 {
 96 // Create a panel to hold the list.
 97 selectedMonthPanel = new JPanel();
 98
 99 // Create the list.
100 selectedMonthList = new JList();
101
102 // Set the number of visible rows to 6.
103 selectedMonthList.setVisibleRowCount(6);
104
105 // Add the list to a scroll pane.
106 scrollPane2 =
107 new JScrollPane(selectedMonthList);
108
109 // Add the scroll pane to the panel.
110 selectedMonthPanel.add(scrollPane2);

 13.3 Lists 867

111 }
112
113 /**
114 The buildButtonPanel method adds a
115 button to a panel.
116 */
117
118 private void buildButtonPanel()
119 {
120 // Create a panel to hold the list.
121 buttonPanel = new JPanel();
122
123 // Create the button.
124 button = new JButton("Get Selections");
125
126 // Add an action listener to the button.
127 button.addActionListener(new ButtonListener());
128
129 // Add the button to the panel.
130 buttonPanel.add(button);
131 }
132
133 /**
134 Private inner class that handles the event when
135 the user clicks the button.
136 */
137
138 private class ButtonListener implements ActionListener
139 {
140 public void actionPerformed(ActionEvent e)
141 {
142 // Get the selected values.
143 Object[] selections =
144 monthList.getSelectedValues();
145
146 // Store the selected items in selectedMonthList.
147 selectedMonthList.setListData(selections);
148 }
149 }
150
151 /**
152 The main method creates an instance of the
153 MultipleIntervalSelection class which causes it
154 to display its window.
155 */
156
157 public static void main(String[] args)

868 Chapter 13 Advanced GUI Applications

158 {
159 new MultipleIntervalSelection();
160 }
161 }

13.4 Combo Boxes

COnCePT: A combo box allows the user to select an item from a drop-down list.

A combo box presents a list of items that the user may select from. Unlike a list component,
a combo box presents its items in a drop-down list. You use the JComboBox class, which is in
the javax.swing package, to create a combo box. You pass an array of objects that are to be
displayed as the items in the drop-down list to the constructor. Here is an example:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JComboBox nameBox = new JComboBox(names);

When displayed, the combo box created by this code will initially appear as the button
shown on the left in Figure 13-11. The button displays the item that is currently selected.
Notice that the first item in the list is automatically selected when the combo box is first
displayed. When the user clicks the button, the drop-down list appears and the user may
select another item.

This is the window as it is intially displayed.

This is the window after the user has selected
some items from the top list and clicked the
Get Selections button.

Figure 13-10 The window displayed by the MultipleIntervalSelection class (Oracle

Corporate Counsel)

The JComboBox
Component

VideoNote

 13.4 Combo Boxes 869

As you can see, a combo box is a combination of two components. In the case of the combo
box shown in Figure 13-11, it is the combination of a button and a list. This is where the
name “combo box” comes from.

Responding to Combo Box events

When an item in a JComboBox object is selected, it generates an action event. As with
JButton components, you handle action events with an action event listener class, which
must have an actionPerformed method. When the user selects an item in a combo box, the
combo box executes its action event listener’s actionPerformed method, passing an
ActionEvent object as an argument.

Retrieving the Selected Item
There are two methods in the JComboBox class that you can use to determine which item in
a combo box is currently selected: getSelectedItem and getSelectedIndex. The
getSelectedItem method returns a reference to the item that is currently selected. For
example, assume that nameBox references the JComboBox component shown earlier in Figure
13-11. The following code retrieves a reference to the name that is currently selected and
assigns it to the selectedName variable:

String selectedName;
selectedName = (String) nameBox.getSelectedItem();

Note that the return value of the getSelectedItem method is an Object reference. In this code
we had to cast the return value to the String type to store it in the selectedName variable.

The getSelectedIndex method returns the index of the selected item. As with JList compo-
nents, the items that are stored in a combo box are numbered with indices that start at 0.
You can use the index of the selected item to retrieve the item from an array. For example,
assume that the following code was used to build the nameBox component shown in Figure
13-11:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JComboBox nameBox = new JComboBox(names);

Figure 13-11 A combo box

870 Chapter 13 Advanced GUI Applications

Because the names array holds the values displayed in the namesBox component, the follow-
ing code could be used to determine the selected item:

int index;
String selectedName;
index = nameList.getSelectedIndex();
selectedName = names[index];

The ComboBoxWindow class shown in Code Listing 13-4 demonstrates a combo box. It uses a
JComboBox component with an action listener. When an item is selected from the combo
box, it is displayed in a read-only text field. The main method creates an instance of the
class, which initially displays the window shown at the top left of Figure 13-12. When the
user clicks the combo box button, the drop-down list appears as shown in the top right of
the figure. After the user selects Espresso from the list, the window appears as shown at the
bottom of the figure.

Code Listing 13-4 (ComboBoxWindow.java)

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 /**
 6 This class demonstrates a combo box.
 7 */
 8
 9 public class ComboBoxWindow extends JFrame
 10 {

This is the window that initially appears.
When the user clicks on the combo box
button, the drop-down list appears.

The item selected by the user appears
in the read-only text field.

Figure 13-12 The window displayed by the ComboBoxWindow class (Oracle Corporate Counsel)

 13.4 Combo Boxes 871

 11 private JPanel coffeePanel; // To hold components
 12 private JPanel selectedCoffeePanel; // To hold components
 13 private JComboBox coffeeBox; // A list of coffees
 14 private JLabel label; // Displays a message
 15 private JTextField selectedCoffee; // Selected coffee
 16
 17 // The following array holds the values that will
 18 // be displayed in the coffeeBox combo box.
 19 private String[] coffee = { "Regular Coffee",
 20 "Dark Roast", "Cappuccino",
 21 "Espresso", "Decaf"};
 22
 23 /**
 24 Constructor
 25 */
 26
 27 public ComboBoxWindow()
 28 {
 29 // Set the title.
 30 setTitle("Combo Box Demo");
 31
 32 // Specify an action for the close button.
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 // Create a BorderLayout manager.
 36 setLayout(new BorderLayout());
 37
 38 // Build the panels.
 39 buildCoffeePanel();
 40 buildSelectedCoffeePanel();
 41
 42 // Add the panels to the content pane.
 43 add(coffeePanel, BorderLayout.CENTER);
 44 add(selectedCoffeePanel, BorderLayout.SOUTH);
 45
 46 // Pack and display the window.
 47 pack();
 48 setVisible(true);
 49 }
 50
 51 /**
 52 The buildCoffeePanel method adds a combo box
 53 with the types of coffee to a panel.
 54 */
 55
 56 private void buildCoffeePanel()
 57 {
 58 // Create a panel to hold the combo box.

872 Chapter 13 Advanced GUI Applications

 59 coffeePanel = new JPanel();
 60
 61 // Create the combo box.
 62 coffeeBox = new JComboBox(coffee);
 63
 64 // Register an action listener.
 65 coffeeBox.addActionListener(new ComboBoxListener());
 66
 67 // Add the combo box to the panel.
 68 coffeePanel.add(coffeeBox);
 69 }
 70
 71 /**
 72 The buildSelectedCoffeePanel method adds a
 73 read-only text field to a panel.
 74 */
 75
 76 private void buildSelectedCoffeePanel()
 77 {
 78 // Create a panel to hold the components.
 79 selectedCoffeePanel = new JPanel();
 80
 81 // Create the label.
 82 label = new JLabel("You selected: ");
 83
 84 // Create the uneditable text field.
 85 selectedCoffee = new JTextField(10);
 86 selectedCoffee.setEditable(false);
 87
 88 // Add the label and text field to the panel.
 89 selectedCoffeePanel.add(label);
 90 selectedCoffeePanel.add(selectedCoffee);
 91 }
 92
 93 /**
 94 Private inner class that handles the event when
 95 the user selects an item from the combo box.
 96 */
 97
 98 private class ComboBoxListener
 99 implements ActionListener
100 {
101 public void actionPerformed(ActionEvent e)
102 {
103 // Get the selected coffee.
104 String selection =
105 (String) coffeeBox.getSelectedItem();
106

 13.4 Combo Boxes 873

107 // Display the selected coffee in the text field.
108 selectedCoffee.setText(selection);
109 }
110 }
111
112 /**
113 The main method creates an instance of the
114 ComboBoxWindow class, which causes it to display
115 its window.
116 */
117
118 public static void main(String[] args)
119 {
120 new ComboBoxWindow();
121 }
122 }

editable Combo Boxes

There are two types of combo boxes: uneditable and editable. The default type of combo box
is uneditable. An uneditable combo box combines a button with a list and allows the user to
select items from its list only. This is the type of combo box used in the previous examples.

An editable combo box combines a text field and a list. In addition to selecting items
from the list, the user may also type input into the text field. You make a combo box
editable by calling the component’s setEditable method, passing true as the argument.
Here is an example:

String[] names = { "Bill", "Geri", "Greg", "Jean",
 "Kirk", "Phillip", "Susan" };
JComboBox nameBox = new JComboBox(names);
nameBox.setEditable(true);

When displayed, the combo box created by this code initially appears as shown on the left
of Figure 13-13. An editable combo box appears as a text field with a small button display-
ing an arrow joining it. The text field displays the item that is currently selected. When the
user clicks the button, the drop-down list appears, as shown in the center of the figure. The
user may select an item from the list. Alternatively, the user may type a value into the text
field, as shown on the right of the figure. The user is not restricted to the values that appear
in the list, and may type any input into the text field.

You can use the getSelectedItem method to retrieve a reference to the item that is currently
selected. This method returns the item that appears in the combo box’s text field, so it may
or may not be an item that appears in the combo box’s list.

The getSelectedIndex method returns the index of the selected item. However, if the
user has entered a value in the text field that does not appear in the list, this method will
return 21.

874 Chapter 13 Advanced GUI Applications

Checkpoint

www.myprogramminglab.com

13.1 How do you make a text field read-only? In code, how do you store text in a
text field?

13.2 What is the index of the first item stored in a JList or a JComboBox component? If
one of these components holds 12 items, what is the index of the 12th item?

13.3 How do you retrieve the selected item from a JList component? How do you get
the index of the selected item?

13.4 How do you cause a scroll bar to be displayed with a JList component?

13.5 How do you retrieve the selected item from a JComboBox component? How do you
get the index of the selected item?

13.6 What is the difference between an uneditable and an editable combo box? Which of
these is a combo box by default?

13.5 Displaying Images in Labels and Buttons

COnCePT: Images may be displayed in labels and buttons. You use the ImageIcon
class to get an image from a file.

In addition to displaying text in a label, you can also display an image. For example,
Figure 13-14 shows a window with two labels. The top label displays a smiley face image
and no text. The bottom label displays a smiley face image and text.

Figure 13-13 An editable combo box (Oracle Corporate Counsel)

Figure 13-14 Labels displaying an image icon (Oracle Corporate Counsel)

http://www.myprogramminglab.com

 13.5 Displaying Images in Labels and Buttons 875

To display an image, first you create an instance of the ImageIcon class, which can read
the contents of an image file. The ImageIcon class is part of the javax.swing package. The
constructor accepts a String argument that is the name of an image file. The supported
file types are JPEG, GIF, and PNG. The name can also contain path information. Here is
an example:

ImageIcon image = new ImageIcon("Smiley.gif");

This statement creates an ImageIcon object that reads the contents of the file Smiley.gif.
Because no path was given, it is assumed that the file is in the current directory or folder.
Here is an example that uses a path:

ImageIcon image = new ImageIcon("C:\\Chapter 13\\Images\\Smiley.gif");

Next, you can display the image in a label by passing the ImageIcon object as an argument
to the JLabel constructor. Here is the general format of the constructor:

JLabel(Icon image)

The argument passed to the image parameter can be an ImageIcon object or any object that
implements the Icon interface. Here is an example:

ImageIcon image = new ImageIcon("Smiley.gif");
JLabel label = new JLabel(image);

This creates a label with an image, but no text. You can also create a label with both an
image and text. An easy way to do this is to create the label with text, as usual, and then use
the JLabel class’s setIcon method to add an image to the label. The setIcon method accepts
an ImageIcon object as its argument. Here is an example:

JLabel label = new JLabel("Have a nice day!");
label.setIcon(image);

The text will be displayed to the right of the image. The JLabel class also has the fol-
lowing constructor:

JLabel(String text, Icon image, int horizontalAlignment)

The first argument is the text to be displayed, the second argument is the image to be dis-
played, and the third argument is an int that specifies the horizontal alignment of the label
contents. You should use the constants SwingConstants.LEFT, SwingConstants.CENTER, or
SwingConstants.RIGHT to specify the horizontal alignment. Here is an example:

ImageIcon image = new ImageIcon("Smiley.gif");
JLabel label = new JLabel("Have a nice day!",
 image,
 SwingConstants.RIGHT);

You can also display images in buttons, as shown in Figure 13-15.

876 Chapter 13 Advanced GUI Applications

The process of creating a button with an image is similar to that of creating a label with an
image. You use an ImageIcon object to read the image file, then pass the ImageIcon object as
an argument to the JButton constructor. To create a button with an image and no text, pass
only the ImageIcon object to the constructor. Here is an example:

// Create a button with an image, but no text.
ImageIcon image = new ImageIcon("Smiley.gif");
JButton button = new JButton(image);

To create a button with an image and text, pass a String and an ImageIcon object to the
constructor. Here is an example:

// Create a button with an image and text.
ImageIcon image = new ImageIcon("Smiley.gif");
JButton button = new JButton("Have a nice day!", image);

To add an image to an existing button, pass an ImageIcon object to the button’s setIcon
method. Here is an example:

// Create a button with an image and text.
JButton button = new JButton("Have a nice day!");
ImageIcon image = new ImageIcon("Smiley.gif");
button.setIcon(image);

You are not limited to small graphical icons when placing images in labels or buttons. For
example, the MyCatImage class in Code Listing 13-5 displays a digital photograph in a label
when the user clicks a button. The main method creates an instance of the class, which dis-
plays the window shown at the left in Figure 13-16. When the user clicks the Get Image
button, the window displays the image shown at the right in the figure.

Code Listing 13-5 (MyCatImage.java)

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4
 5 /**
 6 This class demonstrates how to use an ImageIcon
 7 and a JLabel to display an image.
 8 */
 9

Figure 13-15 Buttons displaying an image icon (Oracle Corporate Counsel)

 13.5 Displaying Images in Labels and Buttons 877

 10 public class MyCatImage extends JFrame
 11 {
 12 private JPanel imagePanel; // To hold the label
 13 private JPanel buttonPanel; // To hold a button
 14 private JLabel imageLabel; // To show an image
 15 private JButton button; // To get an image
 16
 17
 18 /**
 19 Constructor
 20 */
 21
 22 public MyCatImage()
 23 {
 24 // Set the title.
 25 setTitle("My Cat");
 26
 27 // Specify an action for the close button.
 28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 29
 30 // Create a BorderLayout manager.
 31 setLayout(new BorderLayout());
 32
 33 // Build the panels.
 34 buildImagePanel();
 35 buildButtonPanel();
 36
 37 // Add the panels to the content pane.
 38 add(imagePanel, BorderLayout.CENTER);
 39 add(buttonPanel, BorderLayout.SOUTH);
 40
 41 // Pack and display the window.
 42 pack();
 43 setVisible(true);
 44 }
 45
 46 /**
 47 The buildImagePanel method adds a label to a panel.
 48 */
 49
 50 private void buildImagePanel()
 51 {
 52 // Create a panel.
 53 imagePanel = new JPanel();
 54
 55 // Create a label.
 56 imageLabel = new JLabel("Click the button to " +
 57 "see an image of my cat.");

878 Chapter 13 Advanced GUI Applications

 58
 59 // Add the label to the panel.
 60 imagePanel.add(imageLabel);
 61 }
 62
 63 /**
 64 The buildButtonPanel method adds a button
 65 to a panel.
 66 */
 67
 68 private void buildButtonPanel()
 69 {
 70 ImageIcon smileyImage;
 71
 72 // Create a panel.
 73 buttonPanel = new JPanel();
 74
 75 // Get the smiley face image.
 76 smileyImage = new ImageIcon("Smiley.gif");
 77
 78 // Create a button.
 79 button = new JButton("Get Image");
 80 button.setIcon(smileyImage);
 81
 82 // Register an action listener with the button.
 83 button.addActionListener(new ButtonListener());
 84
 85 // Add the button to the panel.
 86 buttonPanel.add(button);
 87 }
 88
 89 /**
 90 Private inner class that handles the event when
 91 the user clicks the button.
 92 */
 93
 94 private class ButtonListener implements ActionListener
 95 {
 96 public void actionPerformed(ActionEvent e)
 97 {
 98 // Read the image file into an ImageIcon object.
 99 ImageIcon catImage = new ImageIcon("Cat.jpg");
100
101 // Display the image in the label.
102 imageLabel.setIcon(catImage);
103
104 // Remove the text from the label.
105 imageLabel.setText(null);

 13.5 Displaying Images in Labels and Buttons 879

106
107 // Pack the frame again to accommodate the
108 // new size of the label.
109 pack();
110 }
111 }
112
113 /**
114 The main method creates an instance of the
115 MyCatImage class, which causes it to display
116 its window.
117 */
118 public static void main(String[] args)
119 {
120 new MyCatImage();
121 }
122 }

Let’s take a closer look at the MyCatImage class. After some initial setup, the constructor
calls the buildImagePanel method in line 34. Inside the buildImagePanel method, line 53
creates a JPanel component, referenced by the imagePanel variable, and then lines 56 and
57 create a JLabel component, referenced by the imageLabel variable. This is the label that
will display the image when the user clicks the button. The last statement in the method, in
line 60, adds the imageLabel component to the imagePanel panel.

Back in the constructor, line 35 calls the buildButtonPanel method, which creates the Get
Image button and adds it to a panel. An instance of the ButtonListener inner class is also
registered as the button’s action listener. Let’s look at the ButtonListener class’s
actionPerformed method. This method is executed when the user clicks the Get Image

This window initially appears.
When the user clicks the Get Image

button, this image appears.

Figure 13-16 Window displayed by the MyCatImage class

880 Chapter 13 Advanced GUI Applications

button. First, in line 99, an ImageIcon object is created from the file Cat.jpg. This file is in
the same directory as the class. Next, in line 102, the image is stored in the imageLabel com-
ponent. In line 105 the text that is currently displayed in the label is removed by passing
null to the imageLabel component’s setText method. The last statement, in line 109, calls
the JFrame class’s pack method. When the image was loaded into the JLabel component, the
component resized itself to accommodate its new contents. The JFrame that encloses the
window does not automatically resize itself, so we must call the pack method. This forces
the JFrame to resize itself.

Checkpoint

www.myprogramminglab.com

13.7 How do you store an image in a JLabel component? How do you store both an
image and text in a JLabel component?

13.8 How do you store an image in a JButton component? How do you store both an
image and text in a JButton component?

13.9 What method do you use to store an image in an existing JLabel or
JButton component?

13.6 Mnemonics and Tool Tips

COnCePT: A mnemonic is a key that you press while holding down the Alt key to
interact with a component. A tool tip is text that is displayed in a small
box when the user holds the mouse cursor over a component.

Mnemonics
A mnemonic is a key on the keyboard that you press in combination with the Alt key to
access a component such as a button quickly. These are sometimes referred to as shortcut
keys, or hot keys. When you assign a mnemonic to a button, the user can click the button by
holding down the Alt key and pressing the mnemonic key. Although users can interact with
components with either the mouse or their mnemonic keys, those who are quick with the
keyboard usually prefer to use mnemonic keys instead of the mouse.

You assign a mnemonic to a component through the component’s setMnemonic method, which
is inherited from the AbstractButton class. The method’s general format is as follows:

void setMnemonic(int key)

The argument that you pass to the method is an integer code that represents the key you
wish to assign as a mnemonic. The KeyEvent class, which is in the java.awt.event package,
has predefined constants that you can use. These constants take the form KeyEvent.VK_x,
where x is a key on the keyboard. For example, to assign the A key as a mnemonic, you
would use KeyEvent.VK_A. (The letters VK in the constants stand for “virtual key”.) Here is
an example of code that creates a button with the text “Exit” and assigns the X key as
the mnemonic:

JButton exitButton = new JButton("Exit");
exitButton.setMnemonic(KeyEvent.VK_X);

http://www.myprogramminglab.com

 13.6 Mnemonics and Tool Tips 881

The user may click this button by pressing +X on the keyboard. (This means holding
down the Alt key and pressing X.)

If the letter chosen as the mnemonic is in the component’s text, the first occurrence of that
letter will appear underlined when the component is displayed. For example, the button cre-
ated with the previous code has the text “Exit”. Because X was chosen as the mnemonic, the
letter x will appear underlined, as shown in Figure 13-17.

If the mnemonic is a letter that does not appear in the component’s text, then no letter will
appear underlined.

You can also assign mnemonics to radio buttons and check boxes, as shown in the follow-
ing code:

//Create three radio buttons and assign mnemonics.
JRadioButton rb1 = new JRadioButton("Breakfast");
rb1.setMnemonic(KeyEvent.VK_B);
JRadioButton rb2 = new JRadioButton("Lunch");
rb2.setMnemonic(KeyEvent.VK_L);
JRadioButton rb3 = new JRadioButton("Dinner");
rb3.setMnemonic(KeyEvent.VK_D);

// Create three check boxes and assign mnemonics.
JCheckBox cb1 = new JCheckBox("Monday");
cb1.setMnemonic(KeyEvent.VK_M);
JCheckBox cb2 = new JCheckBox("Wednesday");
cb2.setMnemonic(KeyEvent.VK_W);
JCheckBox cb3 = new JCheckBox("Friday");
cb3.setMnemonic(KeyEvent.VK_F);

This code will create the components shown in Figure 13-18.

Figure 13-17 Button with mnemonic X (Oracle Corporate Counsel)

nOTe: The KeyEvent class also has constants for symbols. For example, the constant
for the ! symbol is VK_EXCLAMATION_MARK, and the constant for the & symbol is
VK_AMPERSAND. See the Java API documentation for the KeyEvent class for a list of all
the constants.

882 Chapter 13 Advanced GUI Applications

You assign a tool tip to a component with the setToolTipText method, which is inherited
from the JComponent class. Here is the method’s general format:

void setToolTipText(String text)

The String that is passed as an argument is the text that will be displayed in the com-
ponent’s tool tip. For example, the following code creates the Exit button shown in
Figure 13-19 and its associated tool tip:

JButton exitButton = new JButton("Exit");
exitButton.setToolTipText("Click here to exit.");

Checkpoint

www.myprogramminglab.com

13.10 What is a mnemonic? How do you assign a mnemonic to a component?

13.11 What is a tool tip? How do you assign a tool tip to a component?

13.7 File Choosers and Color Choosers

COnCePT: Java provides components that equip your applications with standard
dialog boxes for opening files, saving files, and selecting colors.

Figure 13-18 Radio buttons and check boxes with mnemonics assigned (Oracle Corporate Counsel)

Figure 13-19 Button with tool tip displayed (Oracle Corporate Counsel)

Tool Tips
A tool tip is text that is displayed in a small box when the user holds the mouse cursor over
a	component.	The	box	usually	gives	a	short	description	of	what	the	component	does.	Most	
GUI applications use tool tips as a way of providing immediate and concise help to the user.
For example, Figure 13-19 shows a button with its tool tip displayed.

http://www.myprogramminglab.com

 13.7 File Choosers and Color Choosers 883

File Choosers
A file chooser is a specialized dialog box that allows the user to browse for a file and select
it. Figure 13-20 shows an example of a file chooser dialog box.

Figure 13-20 A file chooser dialog box for opening a file (Oracle Corporate Counsel)

You create an instance of the JFileChooser class, which is part of the javax.swing package,
to display a file chooser dialog box. The class has several constructors. We will focus on two
of them, which have the following general formats:

JFileChooser()
JFileChooser(String path)

The first constructor shown takes no arguments. This constructor uses the default directory
as the starting point for all of its dialog boxes. If you are using Windows, this will probably
be	the	“My	Documents”	folder	under	your	account.	If	you	are	using	UNIX,	this	will	be	your	
login directory. The second constructor takes a String argument containing a valid path.
This path will be the starting point for the object’s dialog boxes.

A JFileChooser object can display two types of predefined dialog boxes: an open file dialog
box and a save file dialog box. Figure 13-20 shows an example of an open file dialog box.
It lets the user browse for an existing file to open. A save file dialog box, as shown in Figure
13-21, is employed when the user needs to browse to a location to save a file. Both of these
dialog boxes appear the same, except the open file dialog box displays “Open” in its title
bar, and the save file dialog box displays “Save.” Also, the open file dialog box has an
Open button, and the save file dialog box has a Save button. There is no difference in the
way they operate.

Displaying a File Chooser Dialog Box

To display an open file dialog box, use the showOpenDialog method. The method’s general
format is as follows:

int showOpenDialog(Component parent)

884 Chapter 13 Advanced GUI Applications

The argument can be either null or a reference to a component. If you pass null, the dialog
box is normally centered in the screen. If you pass a reference to a component, such as
JFrame, the dialog box is displayed over the component.

To display a save file dialog box, use the showSaveDialog method. The method’s general
format is as follows:

int showSaveDialog(Component parent)

Once again, the argument can be either null or a reference to a component. Both the
showOpenDialog and showSaveDialog methods return an integer that indicates the action
taken by the user to close the dialog box. You can compare the return value to one of the
following constants:

•	 JFileChooser.CANCEL_OPTION. This return value indicates that the user clicked the
Cancel button.

•	 JFileChooser.APPROVE_OPTION. This return value indicates that the user clicked
the Open or Save button.

•	 JFileChooser.ERROR_OPTION. This return value indicates that an error occurred, or
the user clicked the standard close button on the window to dismiss it.

If the user selected a file, you can use the getSelectedFile method to determine the file that
was selected. The getSelectedFile method returns a File object, which contains data
about the selected file. The File class is part of the java.io package. You can use the File
object’s getPath method to get the path and file name as a String. Here is an example:

JFileChooser fileChooser = new JFileChooser();
int status = fileChooser.showOpenDialog(null);
if (status == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = fileChooser.getSelectedFile();
 String filename = selectedFile.getPath();
 JOptionPane.showMessageDialog(null, "You selected " + filename);
}

Figure 13-21 A save file dialog box (Oracle Corporate Counsel)

 13.7 File Choosers and Color Choosers 885

Color Choosers
A color chooser is a specialized dialog box that allows the user to select a color from a pre-
defined palette of colors. Figure 13-22 shows an example of a color chooser. By clicking the
HSB tab you can select a color by specifying its hue, saturation, and brightness. By clicking
the RGB tab you can select a color by specifying its red, green, and blue components.

You use the JColorChooser class, which is part of the javax.swing package, to display a
color chooser dialog box. You do not create an instance of the class, however. It has a static
method named showDialog, with the following general format:

Color showDialog(Component parent, String title, Color initial)

The first argument can be either null or a reference to a component. If you pass null, the
dialog box is normally centered in the screen. If you pass a reference to a component, such
as JFrame, the dialog box is displayed over the component. The second argument is text that
is displayed in the dialog box’s title bar. The third argument indicates the color that appears
initially selected in the dialog box. This method returns the color selected by the user. The
following code is an example. This code allows the user to select a color, and then that color
is assigned as a panel’s background color.

JPanel panel = new JPanel();
Color selectedColor;
selectedColor = JColorChooser.showDialog(null,
 "Select a Background Color", Color.BLUE);
panel.setBackground(selectedColor);

Figure 13-22 A color chooser dialog box (Oracle Corporate Counsel)

886 Chapter 13 Advanced GUI Applications

The menu system in the figure consists of the following items:

•	 Menu Bar. At the top of the window, just below the title bar, is a menu bar. The menu
bar lists the names of one or more menus. The menu bar in Figure 13-23 shows the
names of two menus: File and Edit.

•	 Menu. A menu is a drop-down list of menu items. The user may activate a menu by
clicking on its name on the menu bar. In the figure, the Edit menu has been activated.

•	 Menu Item. A menu item can be selected by the user. When a menu item is selected,
some type of action is usually performed.

•	 Check box menu item. A check box menu item appears with a small box beside it. The
item may be selected or deselected. When it is selected, a check mark appears in the
box. When it is deselected, the box appears empty. Check box menu items are nor-
mally used to turn an option on or off. The user toggles the state of a check box menu
item each time he or she selects it.

•	 Radio button menu item. A radio button menu item may be selected or deselected. A
small circle appears beside it that is filled in when the item is selected and empty when
the item is deselected. Like a check box menu item, a radio button menu item can be
used to turn an option on or off. When a set of radio button menu items are grouped

13.8 Menus

COnCePT: Java provides classes for creating systems of drop-down menus. Menus
can contain menu items, checked menu items, radio button menu items,
and other menus.

In the GUI applications you have studied so far, the user initiates actions by clicking compo-
nents such as buttons. When an application has several operations for the user to choose
from, a menu system is more commonly used than buttons. A menu system is a collection of
commands organized in one or more drop-down menus. Before learning how to construct a
menu system, you must learn about the basic items that are found in a typical menu system.
Look at the example menu system in Figure 13-23.

Menu Bar

Menu Items

} Submenu
Check Box Menu Item

Radio Button Menu Items

Menu

Separator Bar

Figure 13-23 Example menu system (Oracle Corporate Counsel)

 13.8 Menus 887

with a ButtonGroup object, only one of them can be selected at a time. When the user
selects a radio button menu item, the one that was previously selected is deselected.

•	 Submenu. A menu within a menu is called a submenu. Some of the commands on a
menu are actually the names of submenus. You can tell when a command is the name
of a submenu because a small right arrow appears to its right. Activating the name of
a submenu causes the submenu to appear. For example, in Figure 13-23, clicking on
the Sort command causes a submenu to appear.

•	 Separator bar. A separator bar is a horizontal bar that is used to separate groups of
items on a menu. Separator bars are only used as a visual aid and cannot be selected
by the user.

A menu system is constructed with the following classes:

•	 JMenuItem. Use this class to create a regular menu item. A JMenuItem component
generates an action event when the user selects it.

•	 JCheckBoxMenuItem. Use this class to create a check box menu item. The class’s
isSelected method returns true if the item is selected, or false otherwise. A
JCheckBoxMenuItem component generates an action event when the user selects it.

•	 JRadioButtonMenuItem. Use this class to create a radio button menu item.
JRadioButtonMenuItem components can be grouped in a ButtonGroup object so that
only one of them can be selected at a time. The class’s isSelected method returns true
if the item is selected, or false otherwise. A JRadioButtonMenuItem component gener-
ates an action event when the user selects it.

•	 JMenu. Use this class to create a menu. A JMenu component can contain JMenuItem,
JCheckBoxMenuItem, and JRadioButton components, as well as other JMenu compo-
nents. A submenu is a JMenu component that is inside another JMenu component.

•	 JMenuBar. Use this class to create a menu bar. A JMenuBar object can contain
JMenu components.

All of these classes are in the javax.swing package. A menu system is a JMenuBar com-
ponent that contains one or more JMenu components. Each JMenu component can con-
tain JMenuItem, JRadioButtonMenuItem, and JCheckBoxMenuItem components, as well as
other JMenu components. The classes contain all of the code necessary to operate the
menu system.

To see an example of an application that uses a menu system, we look at the MenuWindow
class shown in Code Listing 13-6. The class displays the window shown in Figure 13-24.

Figure 13-24 Window displayed by the MenuWindow class

888 Chapter 13 Advanced GUI Applications

The class demonstrates how a label appears in different colors. Notice that the window has
a menu bar with two menus: File and Text. Figure 13-25 shows a sketch of the menu sys-
tem. When the user opens the Text menu, he or she can select a color using the radio button
menu items and the label will change to the selected color. The Text menu also contains a
Visible item, which is a check box menu item. When this item is selected (checked), the label
is visible. When this item is deselected (unchecked), the label is invisible.

Code Listing 13-6 (MenuWindow.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The MenuWindow class demonstrates a menu system.
 7 */
 8
 9 public class MenuWindow extends JFrame
 10 {
 11 private JLabel messageLabel; // Displays a message
 12 private final int LABEL_WIDTH = 400; // Label's width
 13 private final int LABEL_HEIGHT = 200; // Label's height
 14
 15 // The following will reference menu components.
 16 private JMenuBar menuBar; // The menu bar
 17 private JMenu fileMenu; // The File menu
 18 private JMenu textMenu; // The Text menu
 19 private JMenuItem exitItem; // To exit
 20 private JRadioButtonMenuItem blackItem; // Makes text black
 21 private JRadioButtonMenuItem redItem; // Makes text red
 22 private JRadioButtonMenuItem blueItem; // Makes text blue
 23 private JCheckBoxMenuItem visibleItem; // Toggle visibility
 24
 25 /**
 26 Constructor
 27 */
 28

Figure 13-25 Sketch of the MenuWindow class’s menu system (Oracle Corporate Counsel)

 13.8 Menus 889

 29 public MenuWindow()
 30 {
 31 // Set the title.
 32 setTitle("Example Menu System");
 33
 34 // Specify an action for the close button.
 35 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 36
 37 // Create the messageLabel label.
 38 messageLabel = new JLabel("Use the Text menu to " +
 39 "change my color and make me invisible.",
 40 SwingConstants.CENTER);
 41
 42 // Set the label's preferred size.
 43 messageLabel.setPreferredSize(
 44 new Dimension(LABEL_WIDTH, LABEL_HEIGHT));
 45
 46 // Set the label's foreground color.
 47 messageLabel.setForeground(Color.BLACK);
 48
 49 // Add the label to the content pane.
 50 add(messageLabel);
 51
 52 // Build the menu bar.
 53 buildMenuBar();
 54
 55 // Pack and display the window.
 56 pack();
 57 setVisible(true);
 58 }
 59
 60 /**
 61 The buildMenuBar method builds the menu bar.
 62 */
 63
 64 private void buildMenuBar()
 65 {
 66 // Create the menu bar.
 67 menuBar = new JMenuBar();
 68
 69 // Create the file and text menus.
 70 buildFileMenu();
 71 buildTextMenu();
 72
 73 // Add the file and text menus to the menu bar.
 74 menuBar.add(fileMenu);
 75 menuBar.add(textMenu);
 76

890 Chapter 13 Advanced GUI Applications

 77 // Set the window's menu bar.
 78 setJMenuBar(menuBar);
 79 }
 80
 81 /**
 82 The buildFileMenu method builds the File menu
 83 and returns a reference to its JMenu object.
 84 */
 85
 86 private void buildFileMenu()
 87 {
 88 // Create an Exit menu item.
 89 exitItem = new JMenuItem("Exit");
 90 exitItem.setMnemonic(KeyEvent.VK_X);
 91 exitItem.addActionListener(new ExitListener());
 92
 93 // Create a JMenu object for the File menu.
 94 fileMenu = new JMenu("File");
 95 fileMenu.setMnemonic(KeyEvent.VK_F);
 96
 97 // Add the Exit menu item to the File menu.
 98 fileMenu.add(exitItem);
 99 }
100
101 /**
102 The buildTextMenu method builds the Text menu
103 and returns a reference to its JMenu object.
104 */
105
106 private void buildTextMenu()
107 {
108 // Create the radio button menu items to change
109 // the color of the text. Add an action listener
110 // to each one.
111 blackItem = new JRadioButtonMenuItem("Black", true);
112 blackItem.setMnemonic(KeyEvent.VK_B);
113 blackItem.addActionListener(new ColorListener());
114
115 redItem = new JRadioButtonMenuItem("Red");
116 redItem.setMnemonic(KeyEvent.VK_R);
117 redItem.addActionListener(new ColorListener());
118
119 blueItem = new JRadioButtonMenuItem("Blue");
120 blueItem.setMnemonic(KeyEvent.VK_U);
121 blueItem.addActionListener(new ColorListener());
122
123 // Create a button group for the radio button items.
124 ButtonGroup group = new ButtonGroup();

 13.8 Menus 891

125 group.add(blackItem);
126 group.add(redItem);
127 group.add(blueItem);
128
129 // Create a check box menu item to make the text
130 // visible or invisible.
131 visibleItem = new JCheckBoxMenuItem("Visible", true);
132 visibleItem.setMnemonic(KeyEvent.VK_V);
133 visibleItem.addActionListener(new VisibleListener());
134
135 // Create a JMenu object for the Text menu.
136 textMenu = new JMenu("Text");
137 textMenu.setMnemonic(KeyEvent.VK_T);
138
139 // Add the menu items to the Text menu.
140 textMenu.add(blackItem);
141 textMenu.add(redItem);
142 textMenu.add(blueItem);
143 textMenu.addSeparator(); // Add a separator bar.
144 textMenu.add(visibleItem);
145 }
146
147 /**
148 Private inner class that handles the event that
149 is generated when the user selects Exit from
150 the File menu.
151 */
152
153 private class ExitListener implements ActionListener
154 {
155 public void actionPerformed(ActionEvent e)
156 {
157 System.exit(0);
158 }
159 }
160
161 /**
162 Private inner class that handles the event that
163 is generated when the user selects a color from
164 the Text menu.
165 */
166
167 private class ColorListener implements ActionListener
168 {
169 public void actionPerformed(ActionEvent e)
170 {
171 if (blackItem.isSelected())
172 messageLabel.setForeground(Color.BLACK);

892 Chapter 13 Advanced GUI Applications

173 else if (redItem.isSelected())
174 messageLabel.setForeground(Color.RED);
175 else if (blueItem.isSelected())
176 messageLabel.setForeground(Color.BLUE);
177 }
178 }
179
180 /**
181 Private inner class that handles the event that
182 is generated when the user selects Visible from
183 the Text menu.
184 */
185
186 private class VisibleListener implements ActionListener
187 {
188 public void actionPerformed(ActionEvent e)
189 {
190 if (visibleItem.isSelected())
191 messageLabel.setVisible(true);
192 else
193 messageLabel.setVisible(false);
194 }
195 }
196
197 /**
198 The main method creates an instance of the
199 MenuWindow class, which causes it to display
200 its window.
201 */
202
203 public static void main(String[] args)
204 {
205 MenuWindow mw = new MenuWindow();
206 }
207 }

Let’s take a closer look at the MenuWindow class. Before we examine how the menu system is
constructed, we should explain the code in lines 38 through 44. Lines 38 through 40 create
the messageLabel component and align its text in the label’s center. Then, in lines 43 and
44, the setPreferredSize method is called. The setPreferredSize method is inherited
from the JComponent class, and it establishes a component’s preferred size. It is called the
preferred size because the layout manager adjusts the component’s size when necessary.
Normally, a label’s preferred size is determined automatically, depending on its contents.
We want to make this label larger, however, so the window will be larger when it is packed
around the label.

The setPreferredSize method accepts a Dimension object as its argument. A Dimension
object specifies a component’s width and height. The first argument to the Dimension class

 13.8 Menus 893

constructor is the component’s width, and the second argument is the component’s height.
In this class, the LABEL_WIDTH and LABEL_HEIGHT constants are defined with the values 400
and 200 respectively. So, this statement sets the label’s preferred size to 400 pixels wide
by 200 pixels high. (The Dimension class is part of the java.awt package.) Notice from
Figure 13-24 that this code does not affect the size of the text that is displayed in the label,
only the size of the label component.

To create the menu system, the constructor calls the buildMenuBar method in line 53. Inside
this method, the statement in line 67 creates a JMenuBar component and assigns its address
to the menuBar variable. The JMenuBar component acts as a container for JMenu components.
The menu bar in this application has two menus: File and Text.

Next, the statement in line 70 calls the buildFileMenu method. The buildFileMenu method
creates the File menu, which has only one item: Exit. The statement in line 89 creates a
JMenuItem component for the Exit item, which is referenced by the exitItem variable. The
String that is passed to the JMenuItem constructor is the text that will appear on a menu for
this menu item. The statement in line 90 assigns the x key as a mnemonic to the exitItem
component. Then, line 91 creates an action listener for the component (an instance of
ExitListener, a private inner class), which causes the application to end.

Next, line 94 creates a JMenu object for the File menu. Notice that the name of the menu is
passed as an argument to the JMenu constructor. Line 95 assigns the F key to the File menu
as a mnemonic. The last statement in the buildFileMenu method, in line 98, adds exitItem
to the fileMenu component.

Back in the buildMenuBar method, the statement in line 71 calls the buildTextMenu method.
The buildTextMenu method builds the Text menu, which has three radio button menu items
(Black, Red, and Blue), a separator bar, and a check box menu item (Visible). The code in
lines 111 through 121 creates the radio button menu items, assigns mnemonic keys to them,
and adds an action listener to each.

The JRadioButtonItem constructor accepts a String argument, which is the menu item’s
text. By default, a radio button menu item is not initially selected. The constructor can
also accept an optional second argument, which is a boolean value indicating whether
the item should be initially selected. Notice that in line 111, true is passed as the second
argument to the JRadioButtonItem constructor. This causes the Black menu item to be
initially selected.

Next, in lines 124 through 127, a button group is created and the radio button menu
items are added to it. As with JRadioButton components, JRadioButtonMenuItem compo-
nents may be grouped in a ButtonGroup object. As a result, only one of the grouped menu
items may be selected at a time. When one is selected, any other menu item in the group
is deselected.

Next, the Visible item, a check box menu item, is created in line 131. Notice that true is
passed as the second argument to the constructor. This causes the item to be initially selected.
A mnemonic key is assigned in line 132, and an action listener is added to the component in
line 133.

Line 136 creates a JMenu component for the Text menu, and line 137 assigns a mnemonic
key to it. Lines 140 through 142 add the blackItem, redItem, and blueItem radio button
menu items to the Text menu. In line 143, the addSeparator method is called to add a

894 Chapter 13 Advanced GUI Applications

separator bar to the menu. Because the addSeparator method is called just after the
blueItem component is added and just before the visibleItem component is added, it will
appear between the Blue and Visible items on the menu. Line 144 adds the Visible item to
the Text menu.

Back in the buildMenuBar method, in lines 74 and 75, the File menu and Text menu are
added to the menu bar. In line 78, the setJMenuBar method is called, passing menuBar as an
argument. The setJMenuBar method is a JFrame method that places a menu bar in a frame.
You pass a JMenuBar component as the argument. When the JFrame is displayed, the menu
bar will appear at its top.

Figure 13-26 shows how the class’s window appears with the File menu and the Text menu
opened. Selecting a color from the Text menu causes an instance of the ColorListener class
to execute its actionPerformed method, which changes the color of the text. Selecting the
Visible item causes an instance of the VisibleListener class to execute its actionPerformed
method, which toggles the label’s visibility.

The window with the File menu opened.

The window with the Text menu opened.

Figure 13-26 The window with the File menu and Text menu opened (Oracle Corporate Counsel)

 13.9 More about Text Components: Text Areas and Fonts 895

Checkpoint

www.myprogramminglab.com

13.12 Briefly describe each of the following menu system items:
a)	 Menu	bar
b)	 Menu	item
c) Check box menu item
d) Radio button menu item
e) Submenu
f) Separator bar

13.13 What class do you use to create a regular menu item? What do you pass to the
class constructor?

13.14 What class do you use to create a radio button menu item? What do you pass to
the class constructor? How do you cause it to be initially selected?

13.15 How do you create a relationship between radio button menu items so that only
one may be selected at a time?

13.16 What class do you use to create a check box menu item? What do you pass to the
class constructor? How do you cause it to be initially selected?

13.17 What class do you use to create a menu? What do you pass to the class constructor?

13.18 What class do you use to create a menu bar?

13.19 How do you place a menu bar in a JFrame?

13.20 What type of event do menu items generate when selected by the user?

13.21 How do you change the size of a component such as a JLabel after it has
been created?

13.22 What arguments do you pass to the Dimension class constructor?

13.9 More about Text Components:
Text Areas and Fonts

COnCePT: A text area is a multi-line text field that can accept several lines of text
input. Components that inherit from the JComponent class have a
setFont method that allows you to change the font and style of the
component’s text.

Text Areas
In Chapter 12, you were introduced to the JTextField class, which is used to create text
fields. A text field is a component that allows the user to enter a single line of text. A text
area is like a text field that can accept multiple lines of input. You use the JTextArea class to
create a text area. Here is the general format of two of the class’s constructors:

JTextArea(int rows, int columns)
JTextArea(String text, int rows, int columns)

http://www.myprogramminglab.com

896 Chapter 13 Advanced GUI Applications

In both constructors, rows is the number of rows or lines of text that the text area is to dis-
play, and columns is the number of columns or characters that are to be displayed per line.
In the second constructor, text is a string that the text area will initially display. For exam-
ple, the following statement creates a text area with 20 rows and 40 columns:

JTextArea textInput = new JTextArea(20, 40);

The following statement creates a text area with 20 rows and 40 columns that will initially
display the text stored in the String object info:

JTextArea textInput = new JTextArea(info, 20, 40);

As with the JTextField class, the JTextArea class provides the getText and setText meth-
ods for getting and setting the text contained in the component. For example, the following
statement gets the text stored in the textInput text area and stores it in the String object
userText:

String userText = textInput.getText();

The following statement stores the text that is in the String object info in the textInput
text area:

textInput.setText(info);

JTextArea components do not automatically display scroll bars. To display scroll bars on a
JTextArea component, you must add it to the scroll pane. As you already know, you create
a scroll pane with the JScrollPane class. Here is an example of code that creates a text area
and adds it to a scroll pane:

JTextArea textInput = new JTextArea(20, 40);
JScrollPane scrollPane = new JScrollPane(textInput);

The JScrollPane object displays both vertical and horizontal scroll bars on a text area. By
default, the scroll bars are not displayed until they are needed; however, you can alter this
behavior with two of the JScrollPane class’s methods. The setHorizontalScrollBarPolicy
method takes an int argument that specifies when a horizontal scroll bar should appear in
the scroll pane. You can pass one of the following constants as an argument:

•	 JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED. This is the default setting. A
horizontal scroll bar is displayed only when there is not enough horizontal space to
display the text contained in the text area.

•	 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER. This setting prevents a horizontal
scroll bar from being displayed in the text area.

•	 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS. With this setting, a horizontal
scroll bar is always displayed, even when it is not needed.

The setVerticalScrollBarPolicy method also takes an int argument, which specifies
when a vertical scroll bar should appear in the scroll pane. You can pass one of the follow-
ing constants as an argument:

•	 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED. This is the default setting. A ver-
tical scroll bar is displayed only when there is not enough vertical space to display the
text contained in the text area.

 13.9 More about Text Components: Text Areas and Fonts 897

By default, JTextArea components do not perform line wrapping. This means that when
text is entered into the component and the end of a line is reached, the text does not wrap
around to the next line. If you want line wrapping, you use the JTextArea class’s setLineWrap
method to turn it on. The method accepts a boolean argument. If you pass true, line wrap-
ping is turned on. If you pass false, line wrapping is turned off. Here is an example of a
statement that turns a text area’s line wrapping on:

textInput.setLineWrap(true);

There are two different styles of line wrapping: word wrapping and character wrapping.
When word wrapping is performed, the line breaks always occur between words, never in
the middle of a word. When character wrapping is performed, lines are broken between
characters. This means that lines can be broken in the middle of a word. You specify the
style of line wrapping that you prefer with the JTextArea class’s setWrapStyleWord method.
This method accepts a boolean argument. If you pass true, the text area will perform word
wrapping. If you pass false, the text area will perform character wrapping. The default
style is character wrapping.

•	 JScrollPane.VERTICAL_SCROLLBAR_NEVER. This setting prevents a vertical scroll
bar from being displayed in the text area.

•	 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS. With this setting, a vertical scroll bar
is always displayed, even when it is not needed.

For example, the following code specifies that a vertical scroll bar should always appear on
a scroll pane’s component, but a horizontal scroll bar should not appear:

scrollPane.setHorizontalScrollBarPolicy(
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
scrollPane.setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

Figure 13-27 shows a text area without scroll bars, a text area with a vertical scroll bar, and
a text area with both a horizontal and a vertical scroll bar.

A text area with a vertical and
a horizontal scroll bar.A text area with a vertical scroll bar.A text area with no scroll bars.

Figure 13-27 Text areas with and without scroll bars (Oracle Corporate Counsel)

898 Chapter 13 Advanced GUI Applications

Fonts
The appearance of a component’s text is determined by the text’s font, style, and size. The
font is the name of the typeface—the style can be plain, bold, and/or italic—and the size is
the size of the text in points. To change the appearance of a component’s text you use the
component’s setFont method, which is inherited from the JComponent class. The general
format of the method is as follows:

void setFont(Font appearance)

You pass a Font object as an argument to this method. The Font class constructor has the
following general format:

Font(String fontName, int style, int size);

The first argument is the name of a font. Although the fonts that are available vary from
system	to	system,	Java	guarantees	that	you	will	have	Dialog,	DialogInput,	Monospaced,	
SansSerif, and Serif. Figure 13-28 shows an example of each of these.

Figure 13-28 Examples of fonts (Oracle Corporate Counsel)

The second argument to the Font constructor is an int that represents the style of the text.
The Font class provides the following constants that you can use: Font.PLAIN, Font.BOLD,
and Font.ITALIC. The third argument is the size of the text in points. (There are 72 points
per inch, so a 72-point font has a height of one inch. Ten- and twelve-point fonts are nor-
mally used for most applications.) Here is an example of a statement that changes the text
of a label to a 24-point bold serif font:

label.setFont(new Font("Serif", Font.BOLD, 24));

You can combine styles by mathematically adding them. For example, the following state-
ment changes a label’s text to a 24-point bold and italic serif font:

label.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 24));

Figure 13-29 shows an example of the serif font in plain, bold, italic, and bold plus italic
styles. The following code was used to create the labels:

JLabel label1 = new JLabel("Serif Plain", SwingConstants.CENTER);
label1.setFont(new Font("Serif", Font.PLAIN, 24));

JLabel label2 = new JLabel("Serif Bold", SwingConstants.CENTER);
label2.setFont(new Font("Serif", Font.BOLD, 24));

 13.10 Sliders 899

Checkpoint

www.myprogramminglab.com

13.23 What arguments do you pass to the JTextArea constructor?

13.24 How do you retrieve the text that is stored in a JTextArea component?

13.25 Does	the	JTextArea component automatically display scroll bars? If not, how do
you accomplish this?

13.26 What is line wrapping? What are the two styles of line wrapping? How do you
turn a JTextArea component’s line wrapping on? How do you select a line wrap-
ping style?

13.27 What type of argument does a component’s setFont method accept?

13.28 What are the arguments that you pass to the Font class constructor?

JLabel label3 = new JLabel("Serif Italic", SwingConstants.CENTER);
label3.setFont(new Font("Serif", Font.ITALIC, 24));

JLabel label4 = new JLabel("Serif Bold + Italic",
 SwingConstants.CENTER);
label4.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 24));

Figure 13-29 Examples of serif plain, bold, italic, and bold plus italic (Oracle Corporate Counsel)

See the Simple Text Editor Application case study on this book’s companion Web site
(www.pearsonhighered.com/gaddis) for an in-depth example that uses menus and other
topics from this chapter.

13.10 Sliders

COnCePT: A slider is a component that allows the user to adjust a number
graphically within a range of values.

Sliders, which are created from the JSlider class, display an image of a “slider knob” that
can be dragged along a track. Sliders can be horizontally or vertically oriented, as shown in
Figure 13-30.

A slider is designed to represent a range of numeric values. At one end of the slider is the
range’s minimum value and at the other end is the range’s maximum value. Both of the

http://www.pearsonhighered.com/gaddis
http://www.myprogramminglab.com

900 Chapter 13 Advanced GUI Applications

sliders shown in Figure 13-30 represent a range of 0 through 50. Sliders hold a numeric
value in a field, and as the user moves the knob along the track, the numeric value is
adjusted accordingly. Notice that the sliders in Figure 13-30 have accompanying tick marks.
At every tenth value, a major tick mark is displayed along with a label indicating the value
at that tick mark. Between the major tick marks are minor tick marks, which in this exam-
ple are displayed at every second value. The appearance of tick marks, their spacing, and the
appearance of labels can be controlled through methods in the JSlider class. The JSlider
constructor has the following general format:

JSlider(int orientation, int minValue,
 int maxValue, int initialValue)

The first argument is an int specifying the slider’s orientation. You should use one of the
constants JSlider.HORIZONTAL or JSlider.VERTICAL. The second argument is the minimum
value of the slider’s range and the third argument is the maximum value of the slider’s
range. The fourth argument is the initial value of the slider, which determines the initial
position of the slider’s knob. For example, the following code could be used to create the
sliders shown in Figure 13-30:

JSlider slider1 = new JSlider(JSlider.HORIZONTAL, 0, 50, 25);
JSlider slider2 = new JSlider(JSlider.VERTICAL, 0, 50, 25);

You set the major and minor tick mark spacing with the methods setMajorTickSpacing and
setMinorTickSpacing. Each of these methods accepts an int argument that specifies the
intervals of the tick marks. For example, the following code sets the slider1 object’s major
tick mark spacing at 10, and its minor tick mark spacing at 2:

slider1.setMajorTickSpacing(10);
slider1.setMinorTickSpacing(2);

If the slider1 component’s range is 0 through 50, then these statements would cause major
tick	marks	to	be	displayed	at	values	0,	10,	20,	30,	40,	and	50.	Minor	tick	marks	would	be	
displayed at values 2, 4, 6, and 8, then at values 12, 14, 16, and 18, and so forth.

Horizontal Slider

Vertical Slider

Figure 13-30 A horizontal and a vertical slider (Oracle Corporate Counsel)

 13.10 Sliders 901

By default, tick marks are not displayed, and setting their spacing does not cause them to be
displayed. You display tick marks by calling the setPaintTicks method, which accepts a
boolean argument. If you pass true, then tick marks are displayed. If you pass false, they
are not displayed. Here is an example:

slider1.setPaintTicks(true);

By default, labels are not displayed either. You display numeric labels on the slider compo-
nent by calling the setPaintLabels method, which accepts a boolean argument. If you pass
true, then numeric labels are displayed at the major tick marks. If you pass false, labels are
not displayed. Here is an example:

slider1.setPaintLabels(true);

When the knob’s position is moved, the slider component generates a change event. To
handle the change event, you must write a change listener class. When you write a change
listener class, it must meet the following requirements:

•	 It	 must	 implement	 the	 ChangeListener interface. This interface is in the
javax.swing.event package.

•	 It	must	have	a	method	named	stateChanged. This method must take an argument of
the ChangeEvent type.

To retrieve the current value stored in a JSlider, use the getValue method. This method
returns the slider’s value as an int. Here is an example:

currentValue = slider1.getValue();

The TempConverter class shown in Code Listing 13-7 demonstrates the JSlider component.
This class displays the window shown in Figure 13-31. Two temperatures are initially
shown: 32.0 degrees Fahrenheit and 0.0 degrees Celsius. A slider, which has the range of 0
through 100, allows you to adjust the Celsius temperature and immediately see the
Fahrenheit conversion. The main method creates an instance of the class and displays
the window.

Figure 13-31 Window displayed by the TempConverterWindow class

902 Chapter 13 Advanced GUI Applications

Code Listing 13-7 (TempConverter.java)

 1 import javax.swing.*;
 2 import javax.swing.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This class displays a window with a slider component.
 7 The user can convert the Celsius temperatures from
 8 0 through 100 to Fahrenheit by moving the slider.
 9 */
 10
 11 public class TempConverter extends JFrame
 12 {
 13 private JLabel label1, label2; // Message labels
 14 private JTextField fahrenheitTemp; // Fahrenheit temp
 15 private JTextField celsiusTemp; // Celsius temp
 16 private JPanel fpanel; // Fahrenheit panel
 17 private JPanel cpanel; // Celsius panel
 18 private JPanel sliderPanel; // Slider panel
 19 private JSlider slider; // Temperature adjuster
 20
 21 /**
 22 Constructor
 23 */
 24
 25 public TempConverter()
 26 {
 27 // Set the title.
 28 setTitle("Temperatures");
 29
 30 // Specify an action for the close button.
 31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 32
 33 // Create the message labels.
 34 label1 = new JLabel("Fahrenheit: ");
 35 label2 = new JLabel("Celsius: ");
 36
 37 // Create the read-only text fields.
 38 fahrenheitTemp = new JTextField("32.0", 10);
 39 fahrenheitTemp.setEditable(false);
 40 celsiusTemp = new JTextField("0.0", 10);
 41 celsiusTemp.setEditable(false);
 42
 43 // Create the slider.
 44 slider = new JSlider(JSlider.HORIZONTAL, 0, 100, 0);
 45 slider.setMajorTickSpacing(20); // Major tick every 20

 13.10 Sliders 903

 46 slider.setMinorTickSpacing(5); // Minor tick every 5
 47 slider.setPaintTicks(true); // Display tick marks
 48 slider.setPaintLabels(true); // Display numbers
 49 slider.addChangeListener(new SliderListener());
 50
 51 // Create panels and place the components in them.
 52 fpanel = new JPanel();
 53 fpanel.add(label1);
 54 fpanel.add(fahrenheitTemp);
 55 cpanel = new JPanel();
 56 cpanel.add(label2);
 57 cpanel.add(celsiusTemp);
 58 sliderPanel = new JPanel();
 59 sliderPanel.add(slider);
 60
 61 // Create a GridLayout manager.
 62 setLayout(new GridLayout(3, 1));
 63
 64 // Add the panels to the content pane.
 65 add(fpanel);
 66 add(cpanel);
 67 add(sliderPanel);
 68
 69 // Pack and display the frame.
 70 pack();
 71 setVisible(true);
 72 }
 73
 74 /**
 75 Private inner class to handle the change events
 76 that are generated when the slider is moved.
 77 */
 78
 79 private class SliderListener implements ChangeListener
 80 {
 81 public void stateChanged(ChangeEvent e)
 82 {
 83 double fahrenheit, celsius;
 84
 85 // Get the slider value.
 86 celsius = slider.getValue();
 87
 88 // Convert the value to Fahrenheit.
 89 fahrenheit = (9.0 / 5.0) * celsius + 32.0;
 90
 91 // Store the celsius temp in its display field.
 92 celsiusTemp.setText(Double.toString(celsius));

904 Chapter 13 Advanced GUI Applications

 93
 94 // Store the Fahrenheit temp in its display field.
 95 fahrenheitTemp.setText(String.format("%.1f", fahrenheit));
 96 }
 97 }
 98
 99 /*
100 The main method creates an instance of the
101 class, which displays a window with a slider.
102 */
103
104 public static void main(String[] args)
105 {
106 new TempConverter();
107 }
108 }

Checkpoint

www.myprogramminglab.com

13.29 What type of event does a JSlider generate when its slider knob is moved?

13.30 What JSlider methods do you use to perform each of these operations?
a) Establish the spacing of major tick marks.
b) Establish the spacing of minor tick marks.
c) Cause tick marks to be displayed.
d) Cause labels to be displayed.

13.11 Look and Feel

COnCePT: A GUI application’s appearance is determined by its look and feel. Java
allows you to select an application’s look and feel.

Most	operating	systems’	GUIs	have	their	own	unique	appearance	and	style	conventions.	
For	example,	if	a	Windows	user	switches	to	a	Macintosh,	UNIX,	or	Linux	system,	the	first	
thing he or she is likely to notice is the difference in the way the GUIs on each system
appear. The appearance of a particular system’s GUI is known as its look and feel.

Java allows you to select the look and feel of a GUI application. The default look and feel
for Java is called Ocean. This is the look and feel that you have seen in all of the GUI appli-
cations	that	we	have	written	in	this	book.	Some	of	the	other	look	and	feel	choices	are	Metal,	
Motif,	and	Windows.	Metal	was	the	default	look	and	feel	for	previous	versions	of	Java.	
Motif	is	similar	to	a	UNIX	look	and	feel.	Windows	is	the	look	and	feel	of	the	Windows	
operating system. Figure 13-32 shows how the TempConverterWindow class window, pre-
sented earlier in this chapter, appears in each of these looks and feels.

http://www.myprogramminglab.com

When you call the UIManager.setLookAndFeel method, any components that have already been
created need to be updated. You do this by calling the SwingUtilities.updateComponentTreeUI
method, passing a reference to the component that you want to update as an argument.

The UIManager.setLookAndFeel method throws a number of exceptions. Specifically, it
throws ClassNotFoundException, InstantiationException, IllegalAccessException, and
UnsupportedLookAndFeelException. Unless you want to trap each of these types of excep-
tions, you can simply trap exceptions of type Exception. Here is an example of code that
can be run from a JFrame	object	that	changes	its	look	and	feel	to	Motif:

To change an application’s look and feel, you call the UIManager class’s static setLookAndFeel
method. Java has a class for each look and feel, and this method takes the fully qualified
class name for the desired look and feel as its argument. The class name must be passed as
a	string.	Table	13-1	lists	the	fully	qualified	class	names	for	the	Metal,	Motif,	and	Windows	
looks and feels.

Table 13-1 Look and feel class names

Class Name Look and Feel

"javax.swing.plaf.metal.MetalLookAndFeel" Metal

"com.sun.java.swing.plaf.motif.MotifLookAndFeel" Motif

"com.sun.java.swing.plaf.windows.WindowsLookAndFeel" Windows

 13.11 Look and Feel 905

nOTe: Ocean	is	actually	a	special	theme	of	the	Metal	look	and	feel.

nOTe: Currently the Windows look and feel is available only on computers running
the	Microsoft	Windows	operating	system.

Metal Look and Feel Motif Look and Feel Windows Look and Feel

Figure 13-32 Metal, Motif, and Windows looks and feels (Oracle Corporate Counsel)

906 Chapter 13 Advanced GUI Applications

try
{
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
}
catch (Exception e)
{
 JOptionPane.showMessageDialog(null, "Error setting " +
 "the look and feel.");
 System.exit(0);
}

And here is an example of code that can be run from a JFrame object that changes its look
and feel to Windows:

try
{
 UIManager.setLookAndFeel(
 "com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 SwingUtilities.updateComponentTreeUI(this);
}
catch (Exception e)
{
 JOptionPane.showMessageDialog(null, "Error setting " +
 "the look and feel.");
 System.exit(0);
}

13.12 Common errors to Avoid
•	 Only retrieving the first selected item from a list component in which multiple items

have been selected. If multiple items have been selected in a list component, the
getSelectedValue method returns only the first selected item. Likewise, the
getSelectedIndex method returns only the index of the first selected item. You should
use the getSelectedValues or getSelectedIndices methods instead.

•	 Using 1 as the beginning index for a list or combo box. The indices for a list or combo
box start at 0, not 1.

•	 Forgetting to add a list or text area to a scroll pane. The JList and JTextArea compo-
nents do not automatically display scroll bars. You must add these components to a
scroll pane object in order for them to display scroll bars.

•	 Using the add method instead of the constructor to add a component to a scroll pane.
To add a component to a scroll pane, you must pass a reference to the component as
an argument to the JScrollPane constructor.

•	 Adding a component to a scroll pane and then adding the component (not the scroll
pane) to another container, such as a panel. If you add a component to a scroll pane
and then intend to add that same component to a panel or other container, you must
add the scroll pane instead of the component. Otherwise, the scroll bars will not
appear on the component.

 Review Questions and Exercises 907

•	 Forgetting to call the setEditable method to give a combo box a text field. By
default, a combo box is the combination of a button and a list. To make it a combi-
nation of a text field and a list, you must call the setEditable method and pass true
as an argument.

•	 Trying to open an image file of an unsupported type. Currently, an ImageIcon object
can open image files that are stored in JPEG, GIF, or PNG formats.

•	 Loading an image into an existing JLabel component and clipping part of the image.
If you have not explicitly set the preferred size of a JLabel component, it resizes itself
automatically when you load an image into it. The JFrame that encloses the JLabel
does not automatically resize, however. You must call the JFrame object’s pack method
or setPreferredSize method to resize it.

•	 Assigning the same mnemonic to more than one component. If you assign the same
mnemonic to more than one component in a window, it works only for the first com-
ponent that you assigned it to.

•	 Forgetting to add menu items to a JMenu component, and JMenu components to a
JMenuBar component. After you create a menu item, you must add it to a JMenu com-
ponent in order for it to be displayed on the menu. Likewise, JMenu components must
be added to a JMenuBar component in order to be displayed on the menu bar.

•	 Not calling the JFrame object’s setJMenuBar method to place the menu bar. To dis-
play a menu bar, you must call the setJMenuBar method and pass it as an argument.

•	 Not grouping JRadioButtonMenuItems in a ButtonGroup object. Just like regular radio
button components, you must group radio button menu items in a button group in
order to create a mutually exclusive relationship among them.

Review Questions and exercises
Multiple Choice and True/False

 1. You can use this method to make a text field read-only.
a. setReadOnly
b. setChangeable
c. setUneditable
d. setEditable

 2. A JList component generates this type of event when the user selects an item.
a. action event
b. item event
c. list selection event
d. list change event

 3. To display a scroll bar with a JList component, you must __________.
a. do nothing; the JList automatically appears with scroll bars if necessary
b. add the JList component to a JScrollPane component
c. call the setScrollBar method
d. none of the above; you cannot display a scroll bar with a JList component

908 Chapter 13 Advanced GUI Applications

 4. This is the JList component’s default selection mode.
a. single selection
b. single interval selection
c. multiple selection
d. multiple interval selection

 5. A list selection listener must have this method.
a. valueChanged
b. selectionChanged
c. actionPerformed
d. itemSelected

 6. The ListSelectionListener interface is in this package.
a. java.awt
b. java.awt.event
c. javax.swing.event
d. javax.event

 7. This JList method returns 21 if no item in the list is selected.
a. getSelectedValue
b. getSelectedItem
c. getSelectedIndex
d. getSelection

 8. A JComboBox component generates this type of event when the user selects an item.
a. action event
b. item event
c. list selection event
d. list change event

 9. You can pass an instance of this class to the JLabel constructor if you want to display
an image in the label.
a. ImageFile
b. ImageIcon
c. JLabelImage
d. JImageFile

 10. This method can be used to store an image in a JLabel or a JButton component.
a. setImage
b. storeImage
c. getIcon
d. setIcon

 11. This is text that appears in a small box when the user holds the mouse cursor over a
component.
a. mnemonic
b. instant message
c. tool tip
d. pop-up mnemonic

 Review Questions and Exercises 909

 12. This is a key that activates a component just as if the user clicked it with the mouse.
a. mnemonic
b. key activator
c. tool tip
d. click simulator

 13. To display an open file or save file dialog box, you use this class.
a. JFileChooser
b. JOpenSaveDialog
c. JFileDialog
d. JFileOptionPane

 14. To display a dialog box that allows the user to select a color, you use this class.
a. JColor
b. JColorDialog
c. JColorChooser
d. JColorOptionPane

 15. You use this class to create a menu bar.
a. MenuBar
b. JMenuBar
c. JMenu
d. JBar

 16. You use this class to create a radio button menu item.
a. JMenuItem
b. JRadioButton
c. JRadioButtonItem
d. JRadioButtonMenuItem

 17. You use this method to place a menu bar on a JFrame.
a. setJMenuBar
b. setMenuBar
c. placeMenuBar
d. setJMenu

 18. The setPreferredSize method accepts this as its argument(s).
a. a Size object
b. two int values
c. a Dimension object
d. one int value

 19. Components of this class are multi-line text fields.
a. JMultiLineTextField
b. JTextArea
c. JTextField
d. JEditField

910 Chapter 13 Advanced GUI Applications

 20. This method is inherited from JComponent and changes the appearance of a compo-
nent’s text.
a. setAppearance
b. setTextAppearance
c. setFont
d. setText

 21. This method sets the intervals at which major tick marks are displayed on a JSlider
component.
a. setMajorTickSpacing
b. setMajorTickIntervals
c. setTickSpacing
d. setIntervals

 22. True or False: You can use code to change the contents of a read-only text field.

 23. True or False: A JList component automatically appears with a line border drawn
around it.

 24. True or False: In single interval selection mode, the user may select multiple items
from a JList component.

 25. True or False: With an editable combo box the user may only enter a value that
appears in the component’s list.

 26. True or False: You can store either text or an image in a JLabel object, but not both.

 27. True or False: You can store large images as well as small ones in a JLabel component.

 28. True or False:	Mnemonics	are	useful	for	users	who	are	good	with	the	keyboard.

 29. True or False: A JMenuBar object acts as a container for JMenu components.

 30. True or False: A JMenu object cannot contain other JMenu objects.

 31. True or False: A JTextArea component does not automatically display scroll bars.

 32. True or False: By default, a JTextArea component does not perform line wrapping.

 33. True or False: A JSlider component generates an action event when the slider knob
is moved.

 34. True or False: By default, a JSlider component displays labels and tick marks.

 35. True or False: When labels are displayed on a JSlider component, they are displayed
on the major tick marks.

Find the error

 1. // Create a read-only text field.
JTextField textField = new JTextField(10);
textField.setEditable(true);

 2. // Create a black 1-pixel border around list, a JList component.
list.setBorder(Color.BLACK, 1);

 3. // Create a JList and add it to a scroll pane.
// Assume that array already exists.
JList list = new JList(array);
JScrollPane scrollPane = new JScrollPane();
scrollPane.add(list);

 Review Questions and Exercises 911

 4. // Assume that nameBox is a combo box and is properly set up
// with a list of names to choose from.
// Get value of the selected item.
String selectedName = nameBox.getSelectedIndex();

 5. JLabel label = new JLabel("Have a nice day!");
label.setImage(image);

 6. // Add a menu to the menu bar.
JMenuBar menuBar = new JMenuBar(menuItem);

 7. // Create a text area with 20 columns and 5 rows.
JTextArea textArea = new JTextArea (20, 5);

Algorithm Workbench

 1. Give an example of code that creates a read-only text field.

	 2.	 Write	code	that	creates	a	list	with	the	following	items:	Monday,	Tuesday,	Wednesday,	
Thursday, Friday, Saturday, and Sunday.

 3. Write code that adds a scroll bar to the list you created in your answer to Algorithm
Workbench 2.

 4. Assume that the variable myList references a JList component, and selection is a
String variable. Write code that assigns the selected item in the myList component
to the selection variable.

 5. Assume that the variable myComboBox references an uneditable combo box, and
selectionIndex is an int variable. Write code that assigns the index of the selected
item in the myComboBox component to the selectionIndex variable.

 6. Write code that stores the image in the file dog.jpg in a label.

 7. Assume that label references an existing JLabel object. Write code that stores the
image in the file picture.gif in the label.

 8. Write code that creates a button with the text “Open File.” Assign the O key as a
mnemonic and assign “This button opens a file” as the component’s tool tip.

 9. Write code that displays a file open dialog box. If the user selects a file, the code
should store the file’s path and name in a String variable.

 10. Write code that creates a text area displaying 10 rows and 15 columns. The text area
should be capable of displaying scroll bars, when necessary. It should also perform
word style line wrapping.

 11. Write the code that creates a menu bar with one menu named File. The File menu
should have the F key assigned as a mnemonic. The File menu should have three menu
items: Open, Print, and Exit. Assign mnemonic keys of your choice to each of these
items. Register an instance of the OpenListener class as an action listener for the
Open menu item, an instance of the PrintListener class as an action listener for
the Print menu item, and an instance of the ExitListener class as an action listener
for the Exit menu item. Assume these classes have already been created.

 12. Write code that creates a JSlider component. The component should be horizontally
oriented and its range should be 0 through 1000. Labels and tick marks should be
displayed.	Major	 tick	marks	should	appear	at	every	100th	number,	and	minor	 tick	
marks should appear at every 25th number. The initial value of the slider should be
set at 500.

912 Chapter 13 Advanced GUI Applications

Short Answer

 1. What selection mode should you select if you want the user to select a single item only
in a list?

 2. You want to provide 20 items in a list for the user to select from. Which component
would take up less space, a JList or a JComboBox?

 3. What is the difference between an uneditable combo box and an editable combo box?
Which one is a combo box by default?

	 4.	 Describe	how	you	can	store	both	an	image	and	text	in	a	JLabel component.

 5. What is a mnemonic? How does the user use it?

 6. What happens when the mnemonic that you assign to a component is a letter that
appears in the component’s text?

 7. What is a tool tip? What is its purpose?

 8. What do you do to a group of radio button menu items so that only one of them can
be selected at a time?

 9. When a checked menu item shows a check mark next to it, what happens when the
user clicks on it?

 10. What fonts does Java guarantee you have?

 11. Why would a JSlider component be ideal when you want the user to enter a number,
but you want to make sure that the number is within a range?

 12. What are the standard GUI looks and feels that are available in Java?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Scrollable Tax Calculator

Create an application that allows you to enter the amount of a purchase and then displays
the amount of sales tax on that purchase. Use a slider to adjust the tax rate between 0 per-
cent and 10 percent.

2. Image Viewer

Write an application that allows the user to view image files. The application should use
either a button or a menu item that displays a file chooser. When the user selects an image
file, it should be loaded and displayed.

3. Dorm and Meal Plan Calculator

A university has the following dormitories:

Allen Hall: $1,500 per semester
Pike Hall: $1,600 per semester
Farthing Hall: $1,200 per semester
University Suites: $1,800 per semester

The Image
Viewer Problem

VideoNote

http://www.myprogramminglab.com

 Programming Challenges 913

In addition, the Skate Shop sells the following miscellaneous products and services:

Grip tape: $10
Bearings: $30
Riser pads: $2
Nuts & bolts kit: $3

Create an application that allows the user to select one deck, one truck assembly, and one
wheel set from either list components or combo boxes. The application should also have a
list component that allows the user to select multiple miscellaneous products. The application
should display the subtotal, the amount of sales tax (at 6 percent), and the total of the order.

5. Shopping Cart System

Create an application that works like a shopping cart system for a bookstore. In this chapter’s
source code folder (available on the book’s companion Web site at www.pearsonhighered.
com/gaddis), you will find a file named BookPrices.txt. This file contains the names and
prices of various books, formatted in the following fashion:

I	Did	It	Your	Way,	11.95
The History of Scotland, 14.50
Learn	Calculus	in	One	Day,	29.95
Feel the Stress, 18.50

Each line in the file contains the name of a book, followed by a comma, followed by the
book’s retail price. When your application begins execution, it should read the contents of
the file and store the book titles in a list component. The user should be able to select a title
from the list and add it to a shopping cart, which is simply another list component. The
application should have buttons or menu items that allow the user to remove items from
the shopping cart, clear the shopping cart of all selections, and check out. When the user

The university also offers the following meal plans:

7 meals per week: $560 per semester
14 meals per week: $1,095 per semester
Unlimited meals: $1,500 per semester

Create an application with two combo boxes. One should hold the names of the dormito-
ries, and the other should hold the meal plans. The user should select a dormitory and a
meal plan, and the application should show the total charges for the semester.

4. Skateboard Designer

The Skate Shop sells the skateboard products listed in Table 13-2.

Table 13-2 Skateboard products

Decks Truck Assemblies Wheels

The	Master	Thrasher	$60 7.75 inch axle $35 51 mm $20

The	Dictator	$45 8 inch axle $40 55 mm $22

The Street King $50 8.5 inch axle $45 58 mm $24
61 mm $28

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

914 Chapter 13 Advanced GUI Applications

checks out, the application should calculate and display the subtotal of all the books in the
shopping cart, the sales tax (which is 6 percent of the subtotal), and the total.

6. Cell Phone Packages

Cell Solutions, a cell phone provider, sells the following packages:

300 minutes per month: $45.00 per month
800 minutes per month: $65.00 per month
1500 minutes per month: $99.00 per month

The provider sells the following phones (a 6 percent sales tax applies to the sale of a phone):

Model	100:	$29.95
Model	110:	$49.95
Model	200:	$99.95

Customers may also select the following options:

Voice mail: $5.00 per month
Text messaging: $10.00 per month

Write an application that displays a menu system. The menu system should allow the user
to select one package, one phone, and any of the options desired. As the user selects items
from the menu, the application should show the prices of the items selected.

7. Shade Designer

A custom window shade designer charges a base fee of $50 per shade. In addition, charges
are added for certain styles, sizes, and colors as follows:

Styles:

Regular shades: Add $0
Folding shades: Add $10
Roman shades: Add $15

Sizes:

25 inches wide: Add $0
27 inches wide: Add $2
32 inches wide: Add $4
40 inches wide: Add $6

Colors:

Natural: Add $5
Blue: Add $0
Teal: Add $0
Red: Add $0
Green: Add $0

Create an application that allows the user to select the style, size, color, and number of
shades from lists or combo boxes. The total charges should be displayed.

 Programming Challenges 915

The application should allow the user to select the registration type, the optional opening
night dinner and keynote speech, and as many preconference workshops as desired. The
total cost should be displayed.

9. Dice Simulator

Write a GUI application that simulates a pair of dice, similar to that shown in Figure 13-33.
Each time the button is clicked, the application should roll the dice, using random numbers
to determine the value of each die. (This chapter’s source code folder contains images that
you can use to display the dice.)

8. Conference Registration System

Create an application that calculates the registration fees for a conference. The general con-
ference registration fee is $895 per person, and student registration is $495 per person.
There is also an optional opening night dinner with a keynote speech for $30 per person. In
addition, the optional preconference workshops listed in Table 13-3 are available.

Table 13-3 Optional preconference workshops

Workshop Fee

Introduction to E-commerce $295

The Future of the Web $295

Advanced Java Programming $395

Network Security $395

10. Card Dealer

This chapter’s source code folder contains images for a complete deck of poker cards. Write
a GUI application, similar to the one shown in Figure 13-34, that randomly selects a card
from the deck and displays it each time the user clicks the button. When a card has been
selected,	it	is	removed	from	the	deck	and	cannot	be	selected	again.	Display	a	message	when	
no more cards are left in the deck.

Figure 13-33 Dice simulator

916 Chapter 13 Advanced GUI Applications

11. Tic Tac Toe Simulator

Create a GUI application that simulates a game of tic tac toe. Figure 13-35 shows an exam-
ple of the application’s window. The window shown in the figure uses nine large JLabel
components to display the Xs and Os.

One approach in designing this application is to use a two-dimensional int array to simulate
the game board in memory. When the user clicks the New Game button, the application
should step through the array, storing a random number in the range of 0 through 1 in each
element. The number 0 represents the letter O, and the number 1 represents the letter X. The
JLabel components should then be updated to display the game board. The application should
display a message indicating whether player X won, player Y won, or the game was a tie.

Figure 13-34 Card dealer

Figure 13-35 The Tic Tac Toe application (Oracle Corporate Counsel)

917

Applets and More

C
H

A
P

T
E

R

14
Topics

 14.1 Introduction to Applets
 14.2 A Brief Introduction to HTML
 14.3 Creating Applets with Swing
 14.4 Using AWT for Portability
 14.5 Drawing Shapes

 14.6 Handling Mouse Events
 14.7 Timer Objects
 14.8 Playing Audio
 14.9 Common Errors to Avoid

14.1 introduction to Applets

concepT: An applet is a Java program that is associated with a Web page and is
executed in a Web browser as part of that Web page.

Recall from Chapter 1 that there are two types of programs you can create with Java: appli-
cations and applets. An application is a stand-alone program that runs on your computer.
So far in this book, we have concentrated exclusively on writing applications.

Applets are Java programs that are usually part of a Web site. If a user opens the Web site
with a Java-enabled browser, the applet is executed inside the browser window. It appears
to the user that the applet is part of the Web site. This is how it works: Applets are stored on
a Web server along with the site’s Web pages. When a user accesses a Web page on a server
with his or her browser, any applets associated with the Web page are transmitted over the
Internet from the server to the user’s system. This is illustrated in Figure 14-1. Once the
applets are transmitted, the user’s system executes them.

Applets are important because they can be used to extend the capabilities of a Web page.
Web pages are normally written in Hypertext Markup Language (HTML). HTML is lim-
ited, however, because it merely describes the content and layout of a Web page, and creates
links to other files and Web pages. HTML does not have sophisticated abilities such as per-
forming math calculations and interacting with the user. A programmer can write a Java
applet to perform these types of operations and associate it with a Web page. When some-
one visits the Web page, the applet is downloaded to the visitor’s browser and executed.

918 Chapter 14 Applets and More

Applet
Code Web

Page

Web Server User with a Web browser

Figure 14-1 Applets are transmitted along with Web pages

This part of the Web
page is generated by
an applet.

Figure 14-2 A Web page with an applet (Microsoft Corporation)

Figure 14-2 shows an example of a Web page that has an applet. In the figure, the Web page
is being viewed with Internet Explorer. This Web page briefly explains the Fahrenheit and
Celsius temperature scales. The area with the text boxes and the button at the bottom of the
page is generated by an applet. To see a Fahrenheit temperature converted to Celsius, the
user can enter the Fahrenheit temperature into the top text box and click the Convert but-
ton. The Celsius temperature will be displayed in the read-only text box.

An applet does not have to be on a Web server to be executed. The Web page shown in
Figure 14-2 is in the source code folder Chapter 14\TempConverter. Open the
TempConverter.html file in your Web browser to try it. Later in this chapter, we will take
a closer look at this Web page and its applet.

 14.2 A Brief Introduction to HTML 919

Most Web browsers have a special version of the JVM for running applets. For security
purposes, this version of the JVM greatly restricts what an applet can do. Here is a summary
of the restrictions placed on applets:

•	 Applets	cannot	delete	files,	read	the	contents	of	files,	or	create	files	on	the	user’s		system.
•	 Applets	cannot	run	any	other	program	on	the	user’s	system.
•	 Applets	cannot	execute	operating	system	procedures	on	the	user’s	system.
•	 Applets	cannot	retrieve	information	about	the	user’s	system,	or	the	user’s	identity.
•	 Applets	cannot	make	network	connections	with	any	system	except	the	server	from	

which the applet was transmitted.
•	 If	an	applet	displays	a	window,	it	will	automatically	have	a	message	such	as	“Warning:	

Applet Window” displayed in it. This lets the user know that the window was not
displayed by an application on his or her system.

These restrictions might seem severe, but they are necessary to prevent malicious code from
attacking or spying on unsuspecting users. If an applet attempts to violate one of these
restrictions, an exception is thrown.

checkpoint

www.myprogramminglab.com

14.1 How is an applet that is associated with a Web page executed on a user’s system?

14.2 Why do applets run in a restricted environment?

14.2 A Brief introduction to HTML

concepT: When creating a Web page, you use Hypertext Markup Language
(HTML) to create a file that can be read and processed by a Web
browser.

Hypertext Markup Language (HTML) is the language that Web pages are written in.
Although it is beyond the scope of this book to teach you everything about HTML, this
 section will give you enough of the fundamentals so that you can write simple Web pages.
You will need to know a little about HTML in order to run Java applets. If you are already
familiar with HTML, this section is optional.

Before we continue, let’s look at the meanings of the terms hypertext and markup language.

Hypertext
Web pages can contain regular text and hypertext, which are both displayed in the browser
window. In addition, hypertext can contain a link to another Web page, or perhaps another
location in the same Web page. When the user clicks on the hypertext, it loads the Web page
or the location that the hypertext is linked to.

http://www.myprogramminglab.com

920 Chapter 14 Applets and More

Markup Language
Although HTML is called a language, it is not a programming language like Java. Instead,
HTML is a markup language.	It	allows	you	to	“mark	up”	a	text	file	by	inserting	special	
instructions. These instructions tell the browser how to format the text and create any
hypertext links.

To make a Web page, you create a text file that contains HTML instructions, which are
known as tags, as well as the text that should be displayed on the Web page. The result-
ing file is known as an HTML document, and it is usually saved with the .html file
name extension. When a Web browser reads the HTML document, the tags instruct it
how to format the text, where to place images, what to do when the user clicks on a link,
and more.

Most HTML tags come in pairs. The first is known as the opening tag and the second is
known as the closing tag. The general format of a simple tag is as follows:

<tag_name>
Text
</tag_name>

In this general format, tag_name is the name of the tag. The opening tag is <tag_name>
and the closing tag is </tag_name>. Both the opening and closing tags are enclosed in angle
brackets (< >). Notice that in the closing tag, the tag name is preceded by a forward slash
(/). The Text that appears between the opening and closing tags is text that is formatted or
modified by the tags.

Document structure Tags
Some of the HTML tags are used to establish the structure of an HTML document. The first
of the structure tags that you should learn is the <html></html> tag. This tag marks the
beginning and ending of an HTML document. Everything that appears between these tags,
including other tags, is the content of the Web page. When you are writing an HTML docu-
ment, place an <html> tag at the very beginning, and an </html> tag at the very end.

The next tag is <head></head>. Everything that appears between <head> and </head> is
 considered part of the document head. The document head is a section of the HTML file
that contains information about the document. For example, key words that search
engines use to identify a document are often placed in the document’s head. The only
thing that we will use the document head for is to display a title in the Web browser’s title
bar. You do this with the <title></title> tag. Any text that you place between <title>
and </title> becomes the title of the page and is displayed in the browser’s title bar.
Code	Listing	14-1	shows	the	contents	of	an	HTML	document	with	the	title	“My	First	
Web Page”.

Notice that the <title></title> tag is inside of the <head></head> tag. The only output
displayed by this Web page is the title. Figure 14-3 shows how this Web page appears when
opened in a browser.

 14.2 A Brief Introduction to HTML 921

code Listing 14-1 (BasicWebPage1.html)

<html>
<head>
 <title>My First Web Page</title>
</head>
</html>

Figure 14-3 Web page with a title only (Microsoft Corporation)

After the document head comes the document body, which is enclosed in the <body></body>
tag. The document body contains all of the tags and text that produce output in the browser
window. Code Listing 14-2 shows an HTML document with text placed in its body. Figure
14-4 shows the document when opened in a browser.

code Listing 14-2 (BasicWebPage2.html)

<html>
<head>
 <title>Java Applications and Applets</title>
</head>
<body>
 There are two types of programs you can create with Java: applications
 and applets. An application is a stand-alone program that runs on your
 computer. Applets are Java programs that are usually part of a Web site.
 They are stored on a Web server along with the site's Web pages. When a
 remote user accesses a Web page with his or her browser, any applets

922 Chapter 14 Applets and More

 associated with the Web page are transmitted over the Internet from the
 server to the remote user's system.
</body>
</html>

Figure 14-4 Web page produced by BasicWebPage2.html (Microsoft Corporation)

Text Formatting Tags
The text displayed in the Web page in Figure 14-4 is unformatted, which means it appears
as plain text. There are many HTML tags that you can use to change the appearance of text.
For example, there are six different header tags that you can use to format text as a heading
of some type. The <h1></h1> tag creates a level one header. A level one header appears in
boldface, and is much larger than regular text. The <h2></h2> tag creates a level two header.
A level two header also appears in boldface, but is smaller than a level one header. This pat-
tern continues with the <h3></h3>, <h4></h4>, <h5></h5>, and <h6></h6> tags. The higher a
header tag’s level number is, the smaller the text that it formats appears. For example, look
at the following HTML:

<h1>This is an h1 Header</h1>
<h2>This is an h2 Header</h2>
<h3>This is an h3 Header</h3>
<h4>This is an h4 Header</h4>
<h5>This is an h5 Header</h5>
<h6>This is an h6 Header</h6>
This is regular unformatted text.

When this appears in the body of an HTML document, it produces the Web page shown in
Figure 14-5.

You can use the <center></center> tag to center a line of text in the browser window. To
demonstrate, we will add the following line to the document that was previously shown in
Code Listing 14-2:

<center><h1>Java</h1></center>

 14.2 A Brief Introduction to HTML 923

This	will	cause	the	word	“Java”	to	appear	centered	and	as	a	level	one	header.	The	modified	docu-
ment is shown in Code Listing 14-3, and the Web page it produces is shown in Figure 14-6.

code Listing 14-3 (BasicWebPage3.html)

<html>
<head>
 <title>Java Applications and Applets</title>
</head>
<body>
 <center>
 <h1>Java</h1>
 </center>
 There are two types of programs you can create with Java: applications
 and applets. An application is a stand-alone program that runs
 on your computer. Applets are Java programs that are usually
 part of a Web site. They are stored on a Web server along with
 the site's Web pages. When a remote user accesses a Web page
 with his or her browser, any applets associated with the Web
 page are transmitted over the Internet from the server to the
 remote user's system.
</body>
</html>

Figure 14-5 Header levels (Microsoft Corporation)

924 Chapter 14 Applets and More

Notice	that	in	the	HTML	document,	the	word	“Java”	is	enclosed	in	two	sets	of	tags:	the	
<center> tags and the <h1> tags. It doesn’t matter which set of tags is used first. If we had
written the line as follows, we would have gotten the same result:

<h1><center>Java</center></h1>

You can display text in boldface by using the tag, and in italics by using the
<i></i>	tag.	For	example,	the	following	will	cause	the	text	“Hello	World”	to	be	displayed	
in boldface:

Hello World

The	following	will	cause	“Hello	World”	to	be	displayed	in	italics:

<i>Hello World</i>

The	following	will	display	“Hello	World”	in	boldface	and	italics:

<i>Hello World</i>

creating Breaks in Text
We will look at three HTML tags that are used to create breaks in a document’s text. These
three tags are unique from the ones we previously studied because they do not occur in
pairs. When you use one of these tags, you only insert an opening tag.

The
 tag causes a line break to appear at the point in the text where it is inserted. It
is often necessary to insert
 tags in an HTML document because the browser usually
ignores the newline characters that are created when you press the Enter key. For example, if
the following line appears in the body of an HTML document, it will cause the output shown
in Figure 14-7.

First line
Second line
Third line

Figure 14-6 Web page produced by BasicWebPage3.html (Microsoft Corporation)

 14.2 A Brief Introduction to HTML 925

The <p /> tag causes a paragraph break to appear at the point in the text where it is inserted.
A paragraph break typically inserts more space into the text than a line break. For example,
if the following line appears in the body of an HTML document, it will cause the output
shown in Figure 14-8.

First paragraph<p />Second paragraph<p />Third paragraph

Figure 14-7 Line breaks in an HTML document (Microsoft Corporation)

Figure 14-8 Paragraph breaks in an HTML document (Microsoft Corporation)

The <hr /> tag causes a horizontal rule to appear at the point in the text where it is inserted.
A horizontal rule is a thin, horizontal line that is drawn across the Web page. For example,
if the following text appears in the body of an HTML document, it will cause the output
shown in Figure 14-9.

This is the first line of text.
<hr />
This is the second line of text.
<hr />
This is the third line of text.

926 Chapter 14 Applets and More

The HTML document shown in Code Listing 14-4 demonstrates each of the tags we have
discussed. The Web page it produces is shown in Figure 14-10.

code Listing 14-4 (BasicWebPage4.html)

<html>
<head>
 <title>Java Applications and Applets</title>
</head>
<body>
 <center>
 <h1>Java</h1>
 </center>
 There are two types of programs you can create with Java: applications
 and applets.
 <p />
 Applications

 An <i>application</i> is a stand-alone program that runs on
 your computer.
 <p />
 Applets

 <i>Applets</i> are Java programs that are usually part of a
 Web site. They are stored on a Web server along with the site's
 Web pages. When a remote user accesses a Web page with his or
 her browser, any applets associated with the Web page are
 transmitted over the Internet from the server to the remote
 user's system.
 <hr />
</body>
</html>

Figure 14-9 Horizontal rules in a Web page (Microsoft Corporation)

 14.2 A Brief Introduction to HTML 927

inserting Links
As previously mentioned, a link is some element in a Web page that can be clicked on by the
user. When the user clicks the link, another Web page is displayed, or some sort of action is
initiated. We now look at how to insert a simple link that causes another Web page to be
displayed. The tag that is used to insert a link has the following general format:

Text

The Text that appears between the opening and closing tags is the text that will be displayed
in the Web page. When the user clicks on this text, the Web page that is located at Address
will be displayed in the browser. This address is often referred to as a uniform resource
locator (URL). Notice that the address is enclosed in quotation marks. Here is an example:

Click here to go to
the textbook's web site.

The HTML document shown in Code Listing 14-5 uses this link, and Figure 14-11 shows
how the page appears in the browser.

code Listing 14-5 (LinkDemo.html)

<html>
<head>
 <title>Link Demonstration</title>
</head>
<body>
 This demonstrates a link.

 Click here to go to
 the textbook's web site.
</body>
</html>

Figure 14-10 Web page produced by BasicWebPage4.html (Microsoft Corporation)

http://www.aw.com/gaddis
http://www.pearsonhighered.com/gaddis

928 Chapter 14 Applets and More

The text that is displayed by a link is usually highlighted in some way to let the user know
that it is not ordinary text. In Figure 14-11, the link text is underlined. When the user clicks
on this text, the browser displays the Web page at www.aw.com/gaddis

Figure 14-11 Web page produced by LinkDemo.html (Microsoft Corporation)

checkpoint

www.myprogramminglab.com

14.3 What tag marks the beginning and end of an HTML document?

14.4 What tag marks the beginning and end of an HTML document’s head section?

14.5 What	statement	would	you	use	in	an	HTML	document	to	display	the	text	“My	
Web Page” in the browser’s title bar? What section of the HTML document would
this statement be written in?

14.6 What tag marks the beginning and end of an HTML document’s body section?

14.7 What statement would you write in an HTML document to display the text
“Student	Roster”	as	a	level	one	header?

14.8 What	statement	would	you	write	in	an	HTML	document	to	display	the	text	“My	
Resume” in bold and centered on the page?

14.9 What	statement	would	you	write	in	an	HTML	document	to	display	the	text	“Hello	
World” in bold and italic?

14.10 What tag causes a line break? What tag causes a paragraph break? What tag
displays a horizontal rule?

14.11 Suppose	you	wanted	to	display	the	text	“Click	Here”	as	a	link	to	the	Web	site	
http://java.sun.com. What statement would you write to create the text?

14.3 creating Applets with swing

concepT: You extend a class from JApplet to create an applet, just as you extend a
class from JFrame to create a GUI application.

By now you know almost everything necessary to create an applet. That is because applets
are very similar to GUI applications. You can think of an applet as a GUI application that
runs under the control of a Web browser. Instead of displaying its own window, an applet

http://java.sun.com
http://www.myprogramminglab.com
http://www.aw.com/gaddis

 14.3 Creating Applets with Swing 929

appears in the browser’s window. The differences between GUI application code and applet
code are summarized here:

•	 A	GUI	application	class	inherits	from	JFrame. An applet class inherits from JApplet.
The JApplet class is part of the javax.swing package.

•	 A	GUI	application	class	has	a	constructor	that	creates	other	components	and	sets	up	
the GUI. An applet class does not normally have a constructor. Instead, it has a method
named init that performs the same operations as a constructor. The init method
accepts no arguments and has a void return type.

•	 The	following	methods,	which	are	commonly	called	in	a	GUI	application’s	construc-
tor, are not called in an applet:

setTitle
setSize
setDefaultCloseOperation
pack
setVisible

The methods listed here are used in a GUI application to affect the application’s window in
some way. They are not usually applicable to an applet because the applet does not have a
window of its own.

•	 There	is	no	static	main method needed to create an instance of the applet class. The
browser creates an instance of the class automatically.

Let’s look at a simple applet. Code Listing 14-6 shows an applet that displays a label.

code Listing 14-6 (SimpleApplet.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This is a simple applet.
 6 */
 7
 8 public class SimpleApplet extends JApplet
 9 {
10 /**
11 The init method sets up the applet, much
12 like a constructor.
13 */
14
15 public void init()
16 {
17 // Create a label.
18 JLabel label =
19 new JLabel("This is my very first applet.");
20

Creating
an Applet

VideoNote

930 Chapter 14 Applets and More

21 // Set the layout manager.
22 setLayout(new FlowLayout());
23
24 // Add the label to the content pane.
25 add(label);
26 }
27 }

This code is very much like a regular GUI application. Although this class extends JApplet
instead of JFrame, you still add components to the content pane and use layout managers in
the same way.

Running an Applet
The process of running an applet is different from that of running an application. To run
an applet, you create an HTML document with an applet tag, which has the following
general format:

<applet code="Filename.class" width=Wide height=High></applet>

In the general format, Filename.class is the name of the applet’s .class file. This is the file
that contains the compiled byte code. Note that you do not specify the .java file, which con-
tains the Java source code. You can optionally specify a path along with the file name. If
you specify only the file name, it is assumed that the file is in the same directory as the
HTML document. Wide is the width of the applet in pixels, and High is the height of the
applet in pixels. When a browser processes an applet tag, it loads specified byte code and
executes it in an area that is the size specified by the Wide and High values.

The HTML document shown in Code Listing 14-7 uses an applet tag to load the applet
shown in Code Listing 14-6. This document specifies that the applet should be displayed in
an area that is 200 pixels wide by 50 pixels high. Figure 14-12 shows this document when
it is displayed in a Web browser.

code Listing 14-7 (SimpleApplet.html)

<html>
<head>
 <title>A Simple Applet</title>
</head>
<body>
 <applet code="SimpleApplet.class" width="200" height="50">
 </applet>
</body>
</html>

 14.3 Creating Applets with Swing 931

Running an Applet with appletviewer

The Sun JDK comes with an applet viewer program that loads and executes an applet with-
out the need for a Web browser. This program can be run from a command prompt with the
appletviewer command. When you run the program, you specify the name of an HTML
document as a command line argument. For example, the following command passes
SimpleApplet.html as the command line argument:

appletviewer SimpleApplet.html

This command executes any applet that is referenced by an applet tag in the file
SimpleApplet.html. The window shown in Figure 14-14 will be displayed.

Figure 14-12 The Web page produced by SimpleApplet.html (Microsoft Corporation)

noTe: When you load a Web page that uses an applet into your browser, you will most
likely get a security warning. For example, Figure 14-13 shows the warning you get from
Internet Explorer. To run the applet, click the warning message and then select Allow
Blocked Content . . . from the pop-up menu that appears.

Figure 14-13 Security warning in Internet Explorer (Microsoft Corporation)

932 Chapter 14 Applets and More

Handling events in an Applet
In an applet, events are handled with event listeners exactly as they are in GUI applications. To
demonstrate, we will examine the TempConverter class, which is shown in Code Listing 14-8.
This class is the applet displayed in the Web page we examined at the beginning of this chapter.
It has a text field where the user can enter a Fahrenheit temperature and a Convert button that
converts the temperature to Celsius and displays it in a read-only text field. The temperature
conversion is performed in an action listener class that handles the button’s action events.

code Listing 14-8 (TempConverter.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The TempConverter class is an applet that converts
 7 Fahrenheit temperatures to Celsius.
 8 */
 9
 10 public class TempConverter extends JApplet
 11 {
 12 private JPanel fPanel; // To hold a text field
 13 private JPanel cPanel; // To hold a text field
 14 private JPanel buttonPanel; // To hold a button
 15 private JTextField fahrenheit; // Fahrenheit temperature
 16 private JTextField celsius; // Celsius temperature
 17
 18 /**
 19 init method
 20 */
 21
 22 public void init()
 23 {
 24 // Build the panels.
 25 buildFpanel();

Figure 14-14 Applet executed by appletviewer

noTe: The applet viewer does not display any output generated by text or tags in the
HTML document. It only executes applets. If the applet viewer opens an HTML docu-
ment with more than one applet tag, it will execute each applet in a separate window.

 14.3 Creating Applets with Swing 933

 26 buildCpanel();
 27 buildButtonPanel();
 28
 29 // Create a layout manager.
 30 setLayout(new GridLayout(3, 1));
 31
 32 // Add the panels to the content pane.
 33 add(fPanel);
 34 add(cPanel);
 35 add(buttonPanel);
 36 }
 37
 38 /**
 39 The buildFpanel method creates a panel with a text
 40 field in which the user can enter a Fahrenheit
 41 temperature.
 42 */
 43
 44 private void buildFpanel()
 45 {
 46 // Create the panel.
 47 fPanel = new JPanel();
 48
 49 // Create a label to display a message.
 50 JLabel message1 =
 51 new JLabel("Fahrenheit Temperature:");
 52
 53 // Create a text field for the Fahrenheit temp.
 54 fahrenheit = new JTextField(10);
 55
 56 // Create a layout manager for the panel.
 57 fPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 58
 59 // Add the label and text field to the panel.
 60 fPanel.add(message1);
 61 fPanel.add(fahrenheit);
 62 }
 63
 64 /**
 65 The buildCpanel method creates a panel that
 66 displays the Celsius temperature in a
 67 read-only text field.
 68 */
 69
 70 private void buildCpanel()
 71 {
 72 // Create the panel.
 73 cPanel = new JPanel();

934 Chapter 14 Applets and More

 74
 75 // Create a label to display a message.
 76 JLabel message2 =
 77 new JLabel("Celsius Temperature:");
 78
 79 // Create a text field for the celsius temp.
 80 celsius = new JTextField(10);
 81
 82 // Make the text field read-only.
 83 celsius.setEditable(false);
 84
 85 // Create a layout manager for the panel.
 86 cPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 87
 88 // Add the label and text field to the panel.
 89 cPanel.add(message2);
 90 cPanel.add(celsius);
 91 }
 92
 93 /**
 94 The buildButtonPanel method creates a panel with
 95 a button that converts the Fahrenheit temperature
 96 to Celsius.
 97 */
 98
 99 private void buildButtonPanel()
100 {
101 // Create the panel.
102 buttonPanel = new JPanel();
103
104 // Create a button with the text "Convert".
105 JButton convButton = new JButton("Convert");
106
107 // Add an action listener to the button.
108 convButton.addActionListener(new ButtonListener());
109
110 // Add the button to the panel.
111 buttonPanel.add(convButton);
112 }
113
114 /**
115 Private inner class that handles the action event
116 that is generated when the user clicks the convert
117 button.
118 */
119
120 private class ButtonListener implements ActionListener

 14.3 Creating Applets with Swing 935

121 {
122 public void actionPerformed(ActionEvent e)
123 {
124 double ftemp, ctemp; // To hold the temperatures
125
126 // Get the Fahrenheit temperature and convert it
127 // to a double.
128 ftemp = Double.parseDouble(fahrenheit.getText());
129
130 // Calculate the Celsius temperature.
131 ctemp = (5.0 / 9.0) * (ftemp - 32);
132
133 // Display the Celsius temperature.
134 celsius.setText(String.format("%.1f", ctemp));
135 }
136 }
137 }

Code Listing 14-9 shows the contents of TempConverter.html, an HTML document that
uses this applet. Figure 14-15 shows the Web page produced by this document. In the figure,
the user has entered a Fahrenheit temperature and converted it to Celsius.

code Listing 14-9 (TempConverter.html)

<html>
<head>
 <title>Fahrenheit and Celsius Temperatures</title>
</head>
<body>
 <center>
 <h1>Fahrenheit and Celsius Temperatures</h1>
 </center>
 Fahrenheit and Celsius are two temperature scales in use today.
 The Fahrenheit scale was developed by the German physicist
 Daniel Gabriel Fahrenheit (1686 - 1736). In the Fahrenheit scale,
 water freezes at 32 degrees and boils at 212 degrees. The
 Celsius scale was developed by Swedish astronomer Andres Celsius
 (1701 - 1744). In the Celsius scale, water freezes at 0 degrees and
 boils at 100 degrees. The Celsius to Fahrenheit conversion formula
 is:
 <p />
 <i>C</i> = (5/9) * (<i>F</i> - 32)
 <p />
 where <i>F</i> is the Fahrenheit temperature. You can also use
 this Web page to convert Fahrenheit temperatures to Celsius.
 Just enter a Fahrenheit temperature in the text box below, then

936 Chapter 14 Applets and More

 click on the Convert button.
 <p />
 <applet code="TempConverter.class" width="300" height="150">
 </applet>
 <hr />
</body>
</html>

Figure 14-15 Web page produced by TempConverter.html (Microsoft Corporation)

checkpoint

www.myprogramminglab.com

14.12 Instead of JFrame, an applet class is extended from what class?

14.13 Instead of a constructor, an applet class uses what method?

14.14 Why is there no need for a static main method to create an instance of an
applet class?

14.15 Suppose the file MyApplet.java contains the Java source code for an applet. What
tag would you write in an HTML document to run the applet in an area that is
400 pixels wide by 200 pixels high?

http://www.myprogramminglab.com

 14.4 Using AWT for Portability 937

14.4 Using AWT for portability

concepT: Applets that use Swing components may be incompatible with some
browsers. If you want to make sure that an applet is compatible with all
Java-enabled browsers, use AWT components instead of Swing.

Java provides two libraries of classes that GUI components may be created from. Recall
from Chapter 12 that these libraries are AWT and Swing. AWT is the original library that
has been part of Java since its earliest version. Swing is an improved library that was intro-
duced with Java 2. All of the GUI applications in Chapters 12 and 13, as well as the applets
we have studied so far in this chapter, use Swing classes for their components.

Some browsers, do not directly support the Swing classes in applets. These browsers require
a plug-in, which is software that extends or enhances another program, in order to run
applets that use Swing components. Fortunately, this plug-in is automatically installed on a
computer when the Sun JDK is installed. If you have installed the JDK, you should be able
to write applets that use Swing and run them with no problems.

If you are writing an applet for other people to run on their computers, however, there is no
guarantee that they will have the required plug-in. If this is the case, you should use the
AWT classes instead of the Swing classes for the components in your applet. Fortunately,
the AWT component classes are very similar to the Swing classes, so learning to use them is
simple if you already know how to use Swing.

There is a corresponding AWT class for each of the Swing classes that you have learned so
far. The names of the AWT classes are the same as those of the Swing classes, except the
AWT class names do not start with the letter J. For example, the AWT class to create a
frame is named Frame, and the AWT class to create a panel is named Panel. Table 14-1 lists
several of the AWT classes. All of these classes are in the java.awt package.

Table 14-1 Several AWT classes

AWT Class

Description

Corresponding
Swing Class

Applet Used as a superclass for all applets. Unlike JApplet objects,
Applet objects do not have a content pane.

JApplet

Frame Creates a frame container that may be displayed as a win-
dow. Unlike JFrame objects, Frame objects do not have a
content pane.

JFrame

Panel Creates a panel container. JPanel

Button Creates a button that may be clicked. JButton

Label Creates a label that displays text. JLabel

TextField Creates a single line text field, which the user may type into. JTextField

Checkbox Creates a check box that may be selected or deselected. JCheckBox

938 Chapter 14 Applets and More

The Swing classes were intentionally designed with constructors and methods that are
similar to those of their AWT counterparts. In addition, events are handled in the same way
for each set of classes. This makes it easy for you to use either set of classes without learning
a completely different syntax for each. For example, Code Listing 14-10 shows a version
of the TempConverter applet that has been rewritten to use AWT components instead of
Swing components.

code Listing 14-10 (AWTTempConverter.java)

 1 import java.applet.Applet;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The AWTTempConverter class is an applet that converts
 7 Fahrenheit temperatures to Celsius.
 8 */
 9
 10 public class AWTTempConverter extends Applet
 11 {
 12 private Panel fPanel; // To hold a text field
 13 private Panel cPanel; // To hold a text field
 14 private Panel buttonPanel; // To hold a button
 15 private TextField fahrenheit; // Fahrenheit temperature
 16 private TextField celsius; // Celsius temperature
 17
 18 /**
 19 init method
 20 */
 21
 22 public void init()
 23 {
 24 // Build the panels.
 25 buildFpanel();
 26 buildCpanel();
 27 buildButtonPanel();
 28
 29 // Create a layout manager.
 30 setLayout(new GridLayout(3, 1));
 31
 32 // Add the panels to the applet.
 33 add(fPanel);
 34 add(cPanel);
 35 add(buttonPanel);
 36 }

 14.4 Using AWT for Portability 939

 37
 38 /**
 39 The buildFpanel method creates a panel with a text
 40 field in which the user can enter a Fahrenheit
 41 temperature.
 42 */
 43
 44 private void buildFpanel()
 45 {
 46 // Create the panel.
 47 fPanel = new Panel();
 48
 49 // Create a label to display a message.
 50 Label message1 = new Label("Fahrenheit Temperature:");
 51
 52 // Create a text field for the Fahrenheit temp.
 53 fahrenheit = new TextField(10);
 54
 55 // Create a layout manager for the panel.
 56 fPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 57
 58 // Add the label and text field to the panel.
 59 fPanel.add(message1);
 60 fPanel.add(fahrenheit);
 61 }
 62
 63 /**
 64 The buildCpanel method creates a panel that
 65 displays the Celsius temperature in a
 66 read-only text field.
 67 */
 68
 69 private void buildCpanel()
 70 {
 71 // Create the panel.
 72 cPanel = new Panel();
 73
 74 // Create a label to display a message.
 75 Label message2 = new Label("Celsius Temperature:");
 76
 77 // Create a text field for the Celsius temp.
 78 celsius = new TextField(10);
 79
 80 // Make the text field read-only.
 81 celsius.setEditable(false);
 82

940 Chapter 14 Applets and More

 83 // Create a layout manager for the panel.
 84 cPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));
 85
 86 // Add the label and text field to the panel.
 87 cPanel.add(message2);
 88 cPanel.add(celsius);
 89 }
 90
 91 /**
 92 The buildButtonPanel method creates a panel with
 93 a button that converts the Fahrenheit temperature
 94 to Celsius.
 95 */
 96
 97
 98 private void buildButtonPanel()
 99 {
100 // Create the panel.
101 buttonPanel = new Panel();
102
103 // Create a button with the text "Convert".
104 Button convButton = new Button("Convert");
105
106 // Add an action listener to the button.
107 convButton.addActionListener(new ButtonListener());
108
109 // Add the button to the panel.
110 buttonPanel.add(convButton);
111 }
112
113 /**
114 Private inner class that handles the action event
115 that is generated when the user clicks the convert
116 button.
117 */
118
119 private class ButtonListener implements ActionListener
120 {
121 public void actionPerformed(ActionEvent e)
122 {
123 double ftemp, ctemp; // To hold the temperatures
124
125 // Get the Fahrenheit temperature and convert it
126 // to a double.
127 ftemp = Double.parseDouble(fahrenheit.getText());
128

 14.4 Using AWT for Portability 941

129 // Calculate the Celsius temperature.
130 ctemp = (5.0 / 9.0) * (ftemp - 32);
131
132 // Display the Celsius temperature.
133 celsius.setText(String.format("%.1f", ctemp));
134 }
135 }
136 }

The only modifications that were made were as follows:

•	 The	JApplet, JPanel, JLabel, JTextField, and JButton classes were replaced with the
Applet, Panel, Label, TextField, and Button classes.

•	 The	import javax.swing.*; statement was removed.

To run the applet in a browser, the APPLET tag in the TempConverter.html file must be
modified to read as follows:

<applet code="AWTTempConverter.class" width=300 height=150>
</applet>

Once this change is made, the TempConverter.html file produces the Web page shown in
Figure 14-16.

Figure 14-16 Web page running the AWTTempConverter applet (Microsoft Corporation)

checkpoint

www.myprogramminglab.com

14.16 To create an applet using AWT, what class do you inherit your applet class from?

14.17 In Swing, if an object’s class extends JFrame or JApplet, you add components to its
content pane. How do you add components to an object if its class extends Frame
or Applet?

http://www.myprogramminglab.com

942 Chapter 14 Applets and More

14.5 Drawing shapes

concepT: Components have an associated Graphics object that may be used to
draw lines and shapes.

In addition to displaying standard components such as buttons and labels, Java allows you
to draw lines and graphical shapes such as rectangles, ovals, and arcs. These lines and shapes
are drawn directly on components. This allows a frame or a panel to become a canvas for
your drawings. Before we examine how to draw graphics on a component, however, we
must discuss the XY coordinate system. You use the XY coordinate system to specify the
location of your graphics.

The XY coordinate system
The location of each pixel in a component is identified with an X coordinate and a Y coor-
dinate. The coordinates are usually written in the form (X, Y). The X coordinate identifies a
pixel’s horizontal location, and the Y coordinate identifies its vertical location. The coordi-
nates of the pixel in the upper-left corner of a component are usually (0, 0). The X coordi-
nates increase from left to right, and the Y coordinates increase from top to bottom. For
example, Figure 14-17 illustrates a component such as a frame or a panel that is 300 pixels
wide by 200 pixels high. The X and Y coordinates of the pixels in each corner, as well as the
pixel in the center of the component are shown. The pixel in the center of the component
has an X coordinate of 149 and a Y component of 99.

Figure 14-17 X and Y coordinates on a 300 pixel wide by 200 pixel high component

When you draw a line or shape on a component, you must indicate its position using X and
Y coordinates.

Graphics objects
Each component has an internal object that inherits from the Graphics class, which is part
of the java.awt package. This object has numerous methods for drawing graphical shapes
on the surface of the component. Table 14-2 lists some of these methods.

 14.5 Drawing Shapes 943

Table 14-2 Some of the Graphics class methods

Method Description

void setColor(Color c) Sets the drawing color for this object to that specified
by the argument.

Color getColor() Returns the current drawing color for this object.
void drawLine(int x1, int y1,

 int x2, int y2)

Draws a line on the component starting at the coordi-
nate (x1, y1) and ending at the coordinate (x2, y2).
The line will be drawn in the current drawing color.

void drawRect(int x, int y,

 int width, int height)

Draws the outline of a rectangle on the component.
The upper-left corner of the rectangle will be at the
coordinate (x, y). The width parameter specifies the
rectangle’s width in pixels, and height specifies the
rectangle’s height in pixels. The rectangle will be
drawn in the current drawing color.

void fillRect(int x, int y,

 int width, int height)

Draws a filled rectangle. The parameters are the same
as those used by the drawRect method. The rectangle
will be filled with the current drawing color.

void drawOval(int x, int y,

 int width, int height)

Draws the outline of an oval on the component. The
shape and size of the oval is determined by an invisi-
ble rectangle that encloses it. The upper-left corner of
the rectangle will be at the coordinate (x, y). The
width parameter specifies the rectangle’s width in
 pixels, and height specifies the rectangle’s height
in pixels. The oval will be drawn in the current
 drawing color.

void fillOval(int x, int y,

 int width, int height)

Draws a filled oval. The parameters are the same as
those used by the drawOval method. The oval will be
filled in the current drawing color.

void drawArc(int x, int y,

 int width, int height,

 int startAngle,

 int arcAngle)

This method draws an arc, which is considered to be
part of an oval. The shape and size of the oval are
determined by an invisible rectangle that encloses it.
The upper-left corner of the rectangle will be at the
coordinate (x, y). The width parameter specifies the
rectangle’s width in pixels, and height specifies the
rectangle’s height in pixels. The arc begins at the angle
startAngle, and ends at the angle arcAngle. The arc
will be drawn in the current drawing color.

void fillArc(int x, int y,

 int width, int height,

 int startAngle,

 int arcAngle)

This method draws a filled arc. The parameters are
the same as those used by the drawArc method. The
arc will be filled with the current drawing color.

(table continues next page)

944 Chapter 14 Applets and More

In order to call any of these methods, you must get a reference to a component’s Graphics
object. One way to do this is to override the paint method. You can override the paint
method in any class that extends as follows:

•	 JApplet
•	 JFrame
•	 Any	AWT	class,	including	Applet and Frame

The paint	method	is	responsible	for	displaying,	or	“painting,”	a	component	on	the	screen.	
This method is automatically called when the component is first displayed and is called
again any time the component needs to be redisplayed. For example, when the component
is completely or partially obscured by another window, and the obscuring window is moved,
then the component’s paint method is called to redisplay it. The header for the paint
method is:

public void paint(Graphics g)

Notice that the method’s argument is a Graphics object. When this method is called for a
particular component, the Graphics object that belongs to that component is automatically
passed as an argument. By overriding the paint method, you can use the Graphics object
argument to draw your own graphics on the component. For example, look at the applet
class in Code Listing 14-11.

This class inherits from JApplet, and it overrides the paint method. The Graphics object
that is passed into the paint method’s g parameter is the object that is responsible for draw-
ing the entire applet window. Notice that in line 29 the method first calls the superclass
version of the paint method, passing the object g as an argument. When overriding the
paint method, you should always call the superclass’s paint method before doing anything
else. This ensures that the component will be displayed properly on the screen.

Method Description
void drawPolygon(int[] xPoints,

 int[] yPoints,

 int numPoints)

This method draws the outline of a closed polygon on
the component. The xPoints array contains the
X-coordinates for each vertex, and the yPoints array
contains the Y coordinates for each vertex. The argu-
ment passed into numPoints is the number of vertices
in the polygon.

void fillPolygon(int[] xPoints,

 int[] yPoints,

 int numPoints)

This method draws a filled polygon. The parameters
are the same as those used by the drawPolygon
method. The polygon will be filled with the current
drawing color.

void drawstring(String str,

 int x, int y)

Draws the string passed into str using the current
font. The bottom left of the string is drawn at the
coordinates passed into x and y.

void setFont(Font f) Sets the current font, which is used by the
drawString method.

Table 14-2 Some of the Graphics class methods (continued)

 14.5 Drawing Shapes 945

code Listing 14-11 (LineDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how lines
 6 can be drawn.
 7 */
 8
 9 public class LineDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a red line from (20, 20) to (280, 280).
32 g.setColor(Color.red);
33 g.drawLine(20, 20, 280, 280);
34
35 // Draw a blue line from (280, 20) to (20, 280).
36 g.setColor(Color.blue);
37 g.drawLine(280, 20, 20, 280);
38 }
39 }

946 Chapter 14 Applets and More

In line 32 the method sets the drawing color to red. In line 33 a line is drawn from the coor-
dinates (20, 20) to (280, 280). This is a diagonal line drawn from the top-left area of the
applet window to the bottom-right area. Next, in line 36, the drawing color is set to blue. In
line 37 a line is drawn from (280, 20) to (20, 280). This is also a diagonal line. It is drawn
from the top-right area of the applet window to the bottom-left area.

We can use the LineDemo.html file, which is in the same folder as the applet class, to
execute the applet. The following line in the file runs the applet in an area that is
300 pixels wide by 300 pixels high:

<applet code="LineDemo.class" width=300 height=300>
</applet>

Figure 14-18 shows the applet running in the applet viewer.

Figure 14-18 LineDemo applet

Notice that the paint method is not explicitly called by the applet. It is automatically called
when the applet first executes. As previously mentioned, it is also called any time the applet
window needs to be redisplayed.

Code Listing 14-12 shows the RectangleDemo class, an applet that draws two rectangles:
one as a black outline and one filled with red. Each rectangle is 120 pixels wide and 120
pixels high. The file RectangleDemo.html, which is in the same folder as the applet class,
executes the applet with the following tag:

<applet code="RectangleDemo.class" width=300 height=300>
</applet>

 14.5 Drawing Shapes 947

Figure 14-19 shows the applet running in the applet viewer.

code Listing 14-12 (RectangleDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how
 6 rectangles can be drawn.
 7 */
 8
 9 public class RectangleDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a black unfilled rectangle.
32 g.setColor(Color.black);
33 g.drawRect(20, 20, 120, 120);
34
35 // Draw a red filled rectangle.
36 g.setColor(Color.red);
37 g.fillRect(160, 160, 120, 120);
38 }
39 }

948 Chapter 14 Applets and More

Code Listing 14-13 shows the OvalDemo class, an applet that draws two ovals. An oval is
enclosed in an invisible rectangle that establishes the boundaries of the oval. The width and
height of the enclosing rectangle defines the shape and size of the oval. This is illustrated in
Figure 14-20.

When you call the drawOval or fillOval method, you pass the X and Y coordinates of the
enclosing rectangle’s upper-left corner, and the width and height of the enclosing rectangle
as arguments.

code Listing 14-13 (OvalDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how
 6 ovals can be drawn.
 7 */
 8
 9 public class OvalDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {

Figure 14-19 RectangleDemo applet

 14.5 Drawing Shapes 949

17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a black unfilled oval.
32 g.setColor(Color.black);
33 g.drawOval(20, 20, 120, 75);
34
35 // Draw a green filled oval.
36 g.setColor(Color.green);
37 g.fillOval(80, 160, 180, 75);
38 }
39 }

Figure 14-20 An oval and its enclosing rectangle

The file OvalDemo.html, which is in the same folder as the applet class, executes the
applet with the following tag:

<applet code="OvalDemo.class" width=300 height=255>
</applet>

Figure 14-21 shows the applet running in the applet viewer.

950 Chapter 14 Applets and More

The drawArc method draws an arc, which is part of an oval. You pass the same arguments
to drawArc as you do to drawOval, plus two additional arguments: the arc’s starting angle
and ending angle. The angles are measured in degrees, with 0 degrees being at the 3 o’clock
position. For example, look at the following statement:

g.drawArc(20, 20, 100, 100, 0, 90);

This statement creates an enclosing rectangle with its upper-left corner at (20, 20) and with
a width and height of 100 pixels each. The oval constructed from this enclosing rectangle
is a circle. The arc that is drawn is the part of the oval that starts at 0 degrees and ends at
90 degrees. Figure 14-22 illustrates this arc. The dashed lines show the enclosing rectangle
and the oval. The thick black line shows the arc that will be drawn.

Figure 14-21 OvalDemo applet

Tip: To draw a circle, simply draw an oval with an enclosing rectangle that is square. In
other words, the enclosing rectangle’s width and height should be the same.

Figure 14-22 An arc

Code Listing 14-14 shows the ArcDemo class, which is an applet that draws four arcs: two
unfilled and two filled. The filled arcs are drawn with the fillArc method.

 14.5 Drawing Shapes 951

The file ArcDemo.html, which is in the same folder as the applet class, executes the applet
with the following tag:

<applet code="ArcDemo.class" width=300 height=220>
</applet>

Figure 14-23 shows the applet running in the applet viewer.

code Listing 14-14 (ArcDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how
 6 arcs can be drawn.
 7 */
 8
 9 public class ArcDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 // Call the superclass paint method.
29 super.paint(g);
30
31 // Draw a black unfilled arc from 0 degrees
32 // to 90 degrees.
33 g.setColor(Color.black);
34 g.drawArc(0, 20, 120, 120, 0, 90);
35
36 // Draw a red filled arc from 0 degrees
37 // to 90 degrees.

952 Chapter 14 Applets and More

38 g.setColor(Color.red);
39 g.fillArc(140, 20, 120, 120, 0, 90);
40
41 // Draw a green unfilled arc from 0 degrees
42 // to 45 degrees.
43 g.setColor(Color.green);
44 g.drawArc(0, 120, 120, 120, 0, 45);
45
46 // Draw a blue filled arc from 0 degrees
47 // to 45 degrees.
48 g.setColor(Color.blue);
49 g.fillArc(140, 120, 120, 120, 0, 45);
50 }
51 }

Figure 14-23 ArcDemo applet

The drawPolygon method draws an outline of a closed polygon and the fillPolygon method
draws a closed polygon filled with the current drawing color. A polygon is constructed of
multiple line segments that are connected. The point where two line segments are connected
is called a vertex. These methods accept two int arrays as arguments. The first array con-
tains the X coordinates of each vertex, and the second array contains the Y coordinates of
each vertex. The third argument is an int that specifies the number of vertices, or connect-
ing points.

For example, suppose we use the following arrays as arguments for the X and Y coordinates
of a polygon:

int[] xCoords = {60, 100, 140, 140, 100, 60, 20, 20 };
int[] yCoords = {20, 20, 60, 100, 140, 140, 100, 60 };

The first point specified by these arrays is (60, 20), the second point is (100, 20), and so
forth. There are a total of eight points specified by these arrays, and if we connect each of
these points we get the octagon shown in Figure 14-24.

 14.5 Drawing Shapes 953

If the last point specified in the arrays is different from the first point, as in this example,
then the two points are automatically connected to close the polygon. The PolygonDemo
class in Code Listing 14-15 draws a filled polygon using these arrays as arguments.

code Listing 14-15 (PolygonDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how a
 6 polygon can be drawn.
 7 */
 8
 9 public class PolygonDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)

Figure 14-24 Points of each vertex in an octagon

954 Chapter 14 Applets and More

27 {
28 int[] xCoords = {60, 100, 140, 140,
29 100, 60, 20, 20 };
30 int[] yCoords = {20, 20, 60, 100,
31 140, 140, 100, 60 };
32
33 // Call the superclass paint method.
34 super.paint(g);
35
36 // Set the drawing color.
37 g.setColor(Color.red);
38
39 // Draw the polygon.
40 g.fillPolygon(xCoords, yCoords, 8);
41 }
42 }

The file PolygonDemo.html, which is in the same folder as the applet class, executes the
applet with the following tag:

<applet code="PolygonDemo.class" width=160 height=160>
</applet>

Figure 14-25 shows the applet running in the applet viewer.

Figure 14-25 PolygonDemo applet

The drawString method draws a string as a graphic. The string is specified by its first argu-
ment, a String object. The X and Y coordinates of the lower-left point of the string are
specified by the second and third arguments. For example, assuming that g references a
Graphics object, the following statement draws the string "Hello World", starting at the
coordinates 100, 50:

g.drawstring("Hello World", 100, 50);

 14.5 Drawing Shapes 955

You can set the font for the string with the setFont method. This method accepts a Font
object as its argument. Here is an example:

g.setFont(new Font("Serif", Font.ITALIC, 20));

The Font class was covered in Chapter 13. Recall that the Font constructor’s arguments are
the name of a font, the font’s style, and the font’s size in points. You can combine font styles
with the + operator, as follows:

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 24));

The GraphicStringDemo class in Code Listing 14-16 demonstrates the drawString method.
It draws the same octagon that the PolygonDemo class drew, and then draws the string
"STOP" over it to create a stop sign. The string is drawn in a bold 35-point sanserif font.

code Listing 14-16 (GraphicStringDemo.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class is an applet that demonstrates how a
 6 string can be drawn.
 7 */
 8
 9 public class GraphicStringDemo extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 // Set the background color to white.
18 getContentPane().setBackground(Color.white);
19 }
20
21 /**
22 paint method
23 @param g The applet's Graphics object.
24 */
25
26 public void paint(Graphics g)
27 {
28 int[] xCoords = {60, 100, 140, 140,
29 100, 60, 20, 20 };
30 int[] yCoords = {20, 20, 60, 100,
31 140, 140, 100, 60 };
32

956 Chapter 14 Applets and More

33 // Call the superclass paint method.
34 super.paint(g);
35
36 // Set the drawing color.
37 g.setColor(Color.red);
38
39 // Draw the polygon.
40 g.fillPolygon(xCoords, yCoords, 8);
41
42 // Set the drawing color to white.
43 g.setColor(Color.white);
44
45 // Set the font and draw "STOP".
46 g.setFont(new Font("SansSerif", Font.BOLD, 35));
47 g.drawString("STOP", 35, 95);
48 }
49 }

The file GraphicStringDemo.html, which is in the same folder as the applet class, executes
the applet with the following tag:

<applet code="GraphicStringDemo.class" width=160 height=160>
</applet>

Figure 14-26 shows the applet running in the applet viewer.

Figure 14-26 GraphicStringDemo applet

The repaint Method
As previously mentioned, you do not call a component’s paint method. It is automatically
called when the component must be redisplayed. Sometimes, however, you might want to
force the application or applet to call the paint method. You do this by calling the repaint
method, which has the following header:

public void repaint()

 14.5 Drawing Shapes 957

The repaint method clears the surface of the component and then calls the paint method.
You will see an applet that uses this method in a moment.

Drawing on panels
Each of the preceding examples uses the entire JApplet window as a canvas for drawing.
Sometimes, however, you might want to confine your drawing space to a smaller region
within the window, such as a panel. To draw on a panel, you simply get a reference to the
panel’s Graphics object and then use that object’s methods to draw. The resulting graphics
are drawn only on the panel.

Getting a reference to a JPanel component’s Graphics object is similar to the technique
you saw in the previous examples. Instead of overriding the JPanel object’s paint
method, however, you should override its paintComponent method. This is true not only
for JPanel objects, but also for all Swing components except JApplet and JFrame. The
paintComponent method serves for JPanel and most other Swing objects the same pur-
pose as the paint method: It is automatically called when the component needs to be
redisplayed. When it is called, the component’s Graphics object is passed as an argument. Here
is the method’s header:

public void paintComponent(Graphics g)

When you override this method, first you should call the superclass’s paintComponent
method to ensure that the component is properly displayed. Here is an example call to the
superclass’s version of the method:

super.paintComponent(g);

After this you can call any of the Graphics object’s methods to draw on the component. As
an example, we look at the GraphicsWindow class in Code Listing 14-17. When this applet is
run (via the GraphicsWindow.html file, which is in the same folder as the applet class), the
window shown in Figure 14-27 is displayed. A set of check boxes is displayed in a JPanel
component on the right side of the window. The white area that occupies the majority of the
window is a DrawingPanel object. The DrawingPanel class inherits from JPanel, and its code
is shown in Code Listing-14-18. When one of the check boxes is selected, a shape appears
in the DrawingPanel object. Figure 14-28 shows how the applet window appears when all of
the check boxes are selected.

Figure 14-27 GraphicsWindow applet

958 Chapter 14 Applets and More

code Listing 14-17 (GraphicsWindow.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 This class displays a drawing panel and a set of
 7 check boxes that allow the user to select shapes.
 8 The selected shapes are drawn on the drawing panel.
 9 */
10
11 public class GraphicsWindow extends JApplet
12 {
13 // Declare an array of check box components
14 private JCheckBox[] checkBoxes;
15
16 // The following titles array contains the
17 // titles of the check boxes.
18 private String[] titles = { "Line", "Rectangle",
19 "Filled Rectangle",
20 "Oval", "Filled Oval",
21 "Arc", "Filled Arc" };
22
23 // The following will reference a panel to contain
24 // the check boxes.
25 private JPanel checkBoxPanel;
26
27 // The following will reference an instance of the
28 // DrawingPanel class. This will be a panel to draw on.
29 private DrawingPanel drawingPanel;

Figure 14-28 GraphicsWindow applet with all graphics selected

 14.5 Drawing Shapes 959

30
31 /**
32 init method
33 */
34
35 public void init()
36 {
37 // Build the check box panel.
38 buildCheckBoxPanel();
39
40 // Create the drawing panel.
41 drawingPanel = new DrawingPanel(checkBoxes);
42
43 // Add the check box panel to the east region
44 // and the drawing panel to the center region.
45 add(checkBoxPanel, BorderLayout.EAST);
46 add(drawingPanel, BorderLayout.CENTER);
47 }
48
49 /**
50 The buildCheckBoxPanel method creates the array of
51 check box components and adds them to a panel.
52 */
53
54 private void buildCheckBoxPanel()
55 {
56 // Create the panel.
57 checkBoxPanel = new JPanel();
58 checkBoxPanel.setLayout(new GridLayout(7, 1));
59
60 // Create the check box array.
61 checkBoxes = new JCheckBox[7];
62
63 // Create the check boxes and add them to the panel.
64 for (int i = 0; i < checkBoxes.length; i++)
65 {
66 checkBoxes[i] = new JCheckBox(titles[i]);
67 checkBoxes[i].addItemListener(
68 new CheckBoxListener());
69 checkBoxPanel.add(checkBoxes[i]);
70 }
71 }
72
73 /**
74 A private inner class to respond to changes in the
75 state of the check boxes.
76 */
77

960 Chapter 14 Applets and More

78 private class CheckBoxListener implements ItemListener
79 {
80 public void itemStateChanged(ItemEvent e)
81 {
82 drawingPanel.repaint();
83 }
84 }
85 }

code Listing 14-18 (DrawingPanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This class creates a panel that example shapes are
 6 drawn on.
 7 */
 8
 9 public class DrawingPanel extends JPanel
10 {
11 // Declare a check box array.
12 private JCheckBox[] checkBoxArray;
13
14 /**
15 Constructor
16 */
17
18 public DrawingPanel(JCheckBox[] cbArray)
19 {
20 // Reference the check box array.
21 checkBoxArray = cbArray;
22
23 // Set the background color to white.
24 setBackground(Color.white);
25
26 // Set the preferred size of the panel.
27 setPreferredSize(new Dimension(300, 200));
28 }
29
30 /**
31 paintComponent method
32 @param g The panel's Graphics object.
33 */
34
35 public void paintComponent(Graphics g)

 14.5 Drawing Shapes 961

36 {
37 // Call the superclass paintComponent method.
38 super.paintComponent(g);
39
40 // Draw the selected shapes.
41 if (checkBoxArray[0].isSelected())
42 {
43 g.setColor(Color.black);
44 g.drawLine(10, 10, 290, 190);
45 }
46 if (checkBoxArray[1].isSelected())
47 {
48 g.setColor(Color.black);
49 g.drawRect(20, 20, 50, 50);
50 }
51 if (checkBoxArray[2].isSelected())
52 {
53 g.setColor(Color.red);
54 g.fillRect(50, 30, 120, 120);
55 }
56 if (checkBoxArray[3].isSelected())
57 {
58 g.setColor(Color.black);
59 g.drawOval(40, 155, 75, 50);
60 }
61 if (checkBoxArray[4].isSelected())
62 {
63 g.setColor(Color.blue);
64 g.fillOval(200, 125, 75, 50);
65 }
66 if (checkBoxArray[5].isSelected())
67 {
68 g.setColor(Color.black);
69 g.drawArc(200, 40, 75, 50, 0, 90);
70 }
71 if (checkBoxArray[6].isSelected())
72 {
73 g.setColor(Color.green);
74 g.fillArc(100, 155, 75, 50, 0, 90);
75 }
76 }
77 }

Let’s take a closer look at the applet’s code. First, notice in lines 14 through 21 of the
GraphicsWindow class (in Code Listing 14-17) that two of the class’s fields are array refer-
ence variables. The checkBoxes variable references an array of JCheckBox components, and
the titles variable references an array of strings. The strings in the titles array are the
titles that the check boxes will display.

962 Chapter 14 Applets and More

The first statement in the init method, line 38, is a call to the buildCheckBoxPanel
method, which creates a panel for the check boxes, creates the array of check boxes, adds
an item listener to each element of the array, and adds each element to the panel.

After the buildCheckBoxPanel method executes, the init method creates a DrawingPanel
object with the statement in line 41. Notice that the checkBoxes variable is passed to the
DrawingPanel constructor. The drawingPanel object needs a reference to the array so its
paintComponent method can determine which check boxes are selected and draw the cor-
responding shape.

The only times that the paintComponent method is automatically called is when the com-
ponent is initially displayed and when the component needs to be redisplayed. In order to
display a shape immediately when the user selects a check box, we need the check box item
listener to force the paintComponent method to be called. This is accomplished by the state-
ment in line 82, in the CheckBoxListener class’s itemStateChanged method. This state-
ment calls the drawingPanel object’s repaint method, which causes the drawingPanel
object’s surface to be cleared, and then causes the object’s paintComponent method to
 execute. Because it is in the item listener, it is executed each time the user clicks on a check box.

checkpoint

www.myprogramminglab.com

14.18 In an AWT component, or a class that extends JApplet or JFrame, if you want to
get a reference to the Graphics object, do you override the paint or paintComponent
method?

14.19 In a JPanel object, do you override the paint or paintComponent method to get a
reference to the Graphics object?

14.20 When are the paint and paintComponent method called?

14.21 In the paint or paintComponent method, what should be done before
anything else?

14.22 How do you force the paint or paintComponent method to be called?

14.23 When using a Graphics object to draw an oval, what invisible shape is the oval
enclosed in?

14.24 What values are contained in the two arrays that are passed to a Graphics object’s
drawPolygon method?

14.25 What Graphics class methods do you use to perform the following tasks?
a) Draw a line.
b) Draw a filled rectangle.
c) Draw a filled oval.
d) Draw a filled arc.
e) Set the drawing color.
f) Draw a rectangle.
g) Draw an oval.
h) Draw an arc.
i) Draw a string.
j) Set the font.

http://www.myprogramminglab.com

 14.6 Handling Mouse Events 963

14.6 Handling Mouse events

concepT: Java allows you to create listener classes that handle events generated by
the mouse.

Handling Mouse events
The mouse generates two types of events: mouse events and mouse motion events. To han-
dle mouse events you create a mouse listener class and/or a mouse motion listener class. A
mouse listener class can respond to any of the follow events:

•	 The	mouse	button	is	pressed.
•	 The	mouse	button	is	released.
•	 The	mouse	button	is	clicked	(pressed,	then	released	without	moving	the	mouse).
•	 The	mouse	cursor	enters	a	component’s	screen	space.
•	 The	mouse	cursor	exits	a	component’s	screen	space.

A mouse listener class must implement the MouseListener interface, which is in the
java.awt.event package. The class must also have the methods listed in Table 14-3.

Table 14-3 Methods required by the MouseListener interface

Method Description

public void mousePressed(MouseEvent e) If the mouse cursor is over the component
and the mouse button is pressed, this
method is called.

public void mouseClicked(MouseEvent e) A mouse click is defined as pressing the
mouse button and releasing it without
moving the mouse. If the mouse cursor is
over the component and the mouse is
clicked on, this method is called.

public void mouseReleased(MouseEvent e) This method is called when the mouse
button is released after it has been pressed.
The mousePressed method is always called
before this method.

public void mouseEntered(MouseEvent e) This method is called when the mouse
cursor enters the screen area belonging to
the component.

public void mouseExited(MouseEvent e) This method is called when the mouse
cursor leaves the screen area belonging to
the component.

Notice that each of the methods listed in Table 14-3 accepts a MouseEvent object as its
 argument. The MouseEvent object contains data about the mouse event. We will use two

964 Chapter 14 Applets and More

of the MouseEvent object’s methods: getX and getY. These methods return the X and Y
 coordinates of the mouse cursor when the event occurs.

Once you create a mouse listener class, you can register it with a component using the
addMouseListener method, which is inherited from the Component class. The appropriate
methods in the mouse listener class are automatically called when their corresponding mouse
events occur.

A mouse motion listener class can respond to the following events:

•	 The	mouse	is	dragged	(the	button	is	pressed	and	the	mouse	is	moved	while	the	button	
is held down).

•	 The	mouse	is	moved.

A mouse motion listener class must implement the MouseMotionListener interface, which is
in the java.awt.event package. The class must also have the methods listed in Table 14-4.
Notice that each of these methods also accepts a MouseEvent object as an argument.

Table 14-4 Methods required by the MouseMotionListener interface

Method Description

public void mouseDragged(MouseEvent e) The mouse is dragged when its button is pressed
and the mouse is moved while the button is held
down. This method is called when a dragging
operation begins over the component. The
mousePressed method is always called just before
this method.

public void mouseMoved(MouseEvent e) This method is called when the mouse cursor is
over the component and it is moved.

Once you create a mouse motion listener class, you can register it with a component using
the addMouseMotionListener method, which is inherited from the Component class. The
appropriate methods in the mouse motion listener class are automatically called when their
corresponding mouse events occur.

The MouseEvents class, shown in Code Listing 14-19, is an applet that demonstrates both a
mouse listener and a mouse motion listener. The file MouseEvents.html, which is in the
same folder as the applet class, can be used to start the applet. Figure 14-29 shows the
applet running. The window displays a group of read-only text fields that represent the dif-
ferent mouse and mouse motion events. When an event occurs, the corresponding text field
turns yellow. The last two text fields constantly display the mouse cursor’s X and Y coordi-
nates. Run this applet and experiment by clicking the mouse inside the window, dragging
the mouse, moving the mouse cursor in and out of the window, and moving the mouse
 cursor over the text fields.

 14.6 Handling Mouse Events 965

code Listing 14-19 (MouseEvents.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet shows the mouse events as they occur.
 7 */
 8
 9 public class MouseEvents extends JApplet
 10 {
 11 private JTextField[] mouseStates;
 12 private String[] text = {
 13 "Pressed", "Clicked", "Released",
 14 "Entered", "Exited", "Dragged",
 15 "X:", "Y:" };
 16
 17 /**
 18 init method
 19 */
 20
 21 public void init()
 22 {
 23 // Create a layout manager.
 24 setLayout(new FlowLayout());
 25
 26 // Create the array of text fields.
 27 mouseStates = new JTextField[8];
 28 for (int i = 0; i < mouseStates.length; i++)
 29 {
 30 mouseStates[i] = new JTextField(text[i], 10);
 31 mouseStates[i].setEditable(false);
 32 add(mouseStates[i]);
 33 }
 34
 35 // Add a mouse listener to this applet.
 36 addMouseListener(new MyMouseListener());
 37
 38 // Add a mouse motion listener to this applet.
 39 addMouseMotionListener(new MyMouseMotionListener());
 40 }
 41
 42 /**
 43 The clearTextFields method sets all of the text
 44 backgrounds to light gray.
 45 */

966 Chapter 14 Applets and More

 46
 47 public void clearTextFields()
 48 {
 49 for (int i = 0; i < 6; i++)
 50 mouseStates[i].setBackground(Color.lightGray);
 51 }
 52
 53 /**
 54 Private inner class that handles mouse events.
 55 When an event occurs, the text field for that
 56 event is given a yellow background.
 57 */
 58
 59 private class MyMouseListener
 60 implements MouseListener
 61 {
 62 public void mousePressed(MouseEvent e)
 63 {
 64 clearTextFields();
 65 mouseStates[0].setBackground(Color.yellow);
 66 }
 67
 68 public void mouseClicked(MouseEvent e)
 69 {
 70 clearTextFields();
 71 mouseStates[1].setBackground(Color.yellow);
 72 }
 73
 74 public void mouseReleased(MouseEvent e)
 75 {
 76 clearTextFields();
 77 mouseStates[2].setBackground(Color.yellow);
 78 }
 79
 80 public void mouseEntered(MouseEvent e)
 81 {
 82 clearTextFields();
 83 mouseStates[3].setBackground(Color.yellow);
 84 }
 85
 86 public void mouseExited(MouseEvent e)
 87 {
 88 clearTextFields();
 89 mouseStates[4].setBackground(Color.yellow);
 90 }
 91 }
 92

 14.6 Handling Mouse Events 967

 93 /**
 94 Private inner class to handle mouse motion events.
 95 */
 96
 97 private class MyMouseMotionListener
 98 implements MouseMotionListener
 99 {
100 public void mouseDragged(MouseEvent e)
101 {
102 clearTextFields();
103 mouseStates[5].setBackground(Color.yellow);
104 }
105
106 public void mouseMoved(MouseEvent e)
107 {
108 mouseStates[6].setText("X: " + e.getX());
109 mouseStates[7].setText("Y: " + e.getY());
110 }
111 }
112 }

Figure 14-29 MouseEvents applet

Using Adapter classes

Many times when you handle mouse events, you will not be interested in handling every
event that the mouse generates. This is the case with the DrawBoxes applet, which handles
only mouse pressed and mouse dragged events.

This applet lets you draw rectangles by pressing the mouse button and dragging the mouse
inside the applet window. When you initially press the mouse button, the position of the

968 Chapter 14 Applets and More

mouse cursor becomes the upper-left corner of a rectangle. As you drag the mouse, the
lower-right corner of the rectangle follows the mouse cursor. When you release the mouse
cursor, the rectangle stops following the mouse. Figure 14-30 shows an example of the applet’s
window. You can run the applet with the DrawBoxes.html file, which is in the same folder
as the applet class. Code Listing 14-20 shows the code for the DrawBoxes class.

noTe: To draw the rectangle, you must drag the mouse cursor to the right and below
the position where you initially pressed the mouse button.

Figure 14-30 DrawBoxes applet

code Listing 14-20 (DrawBoxes.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet demonstrates how mouse events and mouse
 7 motion events can be handled. It lets the user draw
 8 boxes by dragging the mouse.
 9 */
 10
 11 public class DrawBoxes extends JApplet
 12 {
 13 private int currentX = 0; // Mouse cursor's X position
 14 private int currentY = 0; // Mouse cursor's Y position
 15 private int width = 0; // The rectangle's width

 14.6 Handling Mouse Events 969

 16 private int height = 0; // The rectangle's height
 17
 18 /**
 19 init method
 20 */
 21
 22 public void init()
 23 {
 24 // Add a mouse listener and a mouse motion listener.
 25 addMouseListener(new MyMouseListener());
 26 addMouseMotionListener(new MyMouseMotionListener());
 27 }
 28
 29 /**
 30 paint method
 31 @param g The applet's Graphics object.
 32 */
 33
 34 public void paint(Graphics g)
 35 {
 36 // Call the superclass's paint method.
 37 super.paint(g);
 38
 39 // Draw a rectangle.
 40 g.drawRect(currentX, currentY, width, height);
 41 }
 42
 43 /**
 44 Mouse listener class
 45 */
 46
 47 private class MyMouseListener
 48 implements MouseListener
 49 {
 50 public void mousePressed(MouseEvent e)
 51 {
 52 // Get the mouse cursor coordinates.
 53 currentX = e.getX();
 54 currentY = e.getY();
 55 }
 56
 57 //
 58 // The following methods are unused, but still
 59 // required by the MouseListener interface.
 60 //
 61
 62 public void mouseClicked(MouseEvent e)
 63 {

970 Chapter 14 Applets and More

 64 }
 65
 66 public void mouseReleased(MouseEvent e)
 67 {
 68 }
 69
 70 public void mouseEntered(MouseEvent e)
 71 {
 72 }
 73
 74 public void mouseExited(MouseEvent e)
 75 {
 76 }
 77 }
 78
 79 /**
 80 Mouse Motion listener class
 81 */
 82
 83 private class MyMouseMotionListener
 84 implements MouseMotionListener
 85 {
 86 public void mouseDragged(MouseEvent e)
 87 {
 88 // Calculate the size of the rectangle.
 89 width = e.getX() - currentX;
 90 height = e.getY() - currentY;
 91
 92 // Repaint the window.
 93 repaint();
 94 }
 95
 96 /**
 97 The mouseMoved method is unused, but still
 98 required by the MouseMotionListener interface.
 99 */
100
101 public void mouseMoved(MouseEvent e)
102 {
103 }
104 }
105 }

Notice in the mouse listener and mouse motion listener classes that several of the methods
are empty. Even though the applet handles only two mouse events, the MyMouseListener
and MyMouseMotionListener classes must have all of the methods required by the interfaces
they implement. If any of these methods are omitted, a compiler error results.

 14.6 Handling Mouse Events 971

The Java API provides an alternative technique for creating these listener classes, which
eliminates the need to define empty methods for the events you are not interested in. Instead
of implementing the MouseListener or MouseMotionListener interfaces, you can extend
your classes from the MouseAdapter or MouseMotionAdapter classes. These classes implement
the MouseListener and MouseMotionListener interfaces and provide empty definitions for
all of the required methods. When you extend a class from one of these adapter classes, it
inherits the empty methods. In your extended class, you can override the methods you want
and forget about the others. Both the MouseAdapter and MouseMotionAdapter classes are in
the java.awt.event package.

The DrawBoxes2 class shown in Code Listing 14-21 is a modification of the DrawBoxes class
previously shown. In this version, the MyMouseListener class extends MouseAdapter and the
MyMouseMotionListener class extends MouseMotionAdapter. This applet operates exactly the
same as the DrawBoxes applet. The only difference is that this class does not have the empty
methods in the listener classes.

noTe: Java provides an adapter class for all of the interfaces in the API that have more
than one method.

code Listing 14-21 (DrawBoxes2.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet demonstrates how the mouse adapter
 7 classes can be used.
 8 */
 9
10 public class DrawBoxes2 extends JApplet
11 {
12 private int currentX = 0; // Mouse cursor's X position
13 private int currentY = 0; // Mouse cursor's Y position
14 private int width = 0; // The rectangle's width
15 private int height = 0; // The rectangle's height
16
17 /**
18 init method
19 */
20
21 public void init()
22 {
23 // Add a mouse listener and a mouse motion listener.
24 addMouseListener(new MyMouseListener());
25 addMouseMotionListener(new MyMouseMotionListener());
26 }

972 Chapter 14 Applets and More

27
28 /**
29 paint method
30 @param g The applet's Graphics object.
31 */
32
33 public void paint(Graphics g)
34 {
35 // Call the superclass's paint method.
36 super.paint(g);
37
38 // Draw a rectangle.
39 g.drawRect(currentX, currentY, width, height);
40 }
41
42 /**
43 Mouse listener class
44 */
45
46 private class MyMouseListener extends MouseAdapter
47 {
48 public void mousePressed(MouseEvent e)
49 {
50 // Get the coordinates of the mouse cursor.
51 currentX = e.getX();
52 currentY = e.getY();
53 }
54 }
55
56 /**
57 Mouse Motion listener class
58 */
59
60 private class MyMouseMotionListener
61 extends MouseMotionAdapter
62 {
63 public void mouseDragged(MouseEvent e)
64 {
65 // Calculate the size of the rectangle.
66 width = e.getX() - currentX;
67 height = e.getY() - currentY;
68
69 // Repaint the window.
70 repaint();
71 }
72 }
73 }

 14.7 Timer Objects 973

checkpoint

www.myprogramminglab.com

14.26 What is the difference between a mouse press event and a mouse click event?

14.27 What interface would a listener class implement to handle a mouse click event?
A mouse press event? A mouse dragged event? A mouse release event? A mouse
move event?

14.28 What type of object do mouse listener and mouse motion listener methods
accept? What methods do these types of objects provide for determining a mouse
cursor’s location?

14.29 If a class implements the MouseListener interface but does not need to use all of the
methods specified by the interface, can the definitions for those methods be left
out? If not, how are these methods dealt with?

14.30 What is an adapter class, and how does it make some programming tasks easier?

14.7 Timer objects

concepT: A Timer object regularly generates action events at programmer-specified
time intervals.

Timer objects automatically generate action events at regular time intervals. This is useful
when you want a program to perform an operation at certain times or after an amount of
time has passed.

Timer objects are created from the Timer class, which is in the javax.swing package. Here is
the general format of the Timer class’s constructor:

Timer(int delay, ActionListener listener)

The argument passed into the delay parameter is the amount of time between action events,
measured in milliseconds. A millisecond is a thousandth of a second, so a delay value of
1000 causes an action event to be generated every second. The argument passed into the
listener parameter is a reference to an action listener that is to be registered with the
Timer object. If you want to add an action listener at a later time, you can pass null as this
argument, then use the Timer object’s addActionListener method to register an action
 listener. Table 14-5 lists the Timer class’s methods.

An application can use a Timer object to execute code automatically at regular time inter-
vals. For example, a Timer object can be used to perform simple animation by moving a
graphic image across the screen by a certain amount at regular time intervals. This is dem-
onstrated in the BouncingBall class, shown in Code Listing 14-22. This class is an applet
that displays a bouncing ball, as shown in Figure 14-31.

http://www.myprogramminglab.com

974 Chapter 14 Applets and More

Figure 14-31 BouncingBall applet

Table 14-5 Timer class methods

Method Description

void addActionListener

 (ActionListener listener)

Registers the object referenced by listener as an
action listener.

int getDelay() Returns the current time delay in milliseconds.

Boolean isRunning() Returns true if the Timer object is running. Otherwise,
it returns false.

void setDelay(int delay) Sets the time delay. The argument is the amount of the
delay in milliseconds.

void start() Starts the Timer object, which causes it to generate
action events.

void stop() Stops the Timer object, which causes it to stop generating
action events.

 14.7 Timer Objects 975

code Listing 14-22 (BouncingBall.java)

 1 import javax.swing.*;
 2 import java.awt.event.*;
 3 import java.awt.*;
 4
 5 /**
 6 This applet uses a Timer object to animate
 7 a bouncing ball.
 8 */
 9
10 public class BouncingBall extends JApplet
11 {
12 private final int X = 109; // Ball's X coordinate
13 private final int WIDTH = 40; // Ball's width
14 private final int HEIGHT = 40; // Ball's height
15 private final int TIME_DELAY = 30; // Time delay
16 private final int MOVE = 20; // Pixels to move ball
17 private final int MINIMUM_Y = 50; // Max height of ball
18 private final int MAXIMUM_Y = 400; // Min height of ball
19 private int y = 400; // Ball's Y coordinate
20 private boolean goingUp = true; // Direction indicator
21 private Timer timer; // Timer object
22
23
24 /**
25 init method
26 */
27
28 public void init()
29 {
30 timer = new Timer(TIME_DELAY, new TimerListener());
31 timer.start();
32 }
33
34 /**
35 paint method
36 @param g The applet's Graphics object.
37 */
38
39 public void paint(Graphics g)
40 {
41 // Call the superclass paint method.
42 super.paint(g);
43
44 // Set the drawing color to red.
45 g.setColor(Color.red);
46

976 Chapter 14 Applets and More

47 // Draw the ball.
48 g.fillOval(X, y, WIDTH, HEIGHT);
49 }
50
51 /**
52 Private inner class that handles the Timer object's
53 action events.
54 */
55
56 private class TimerListener implements ActionListener
57 {
58 public void actionPerformed(ActionEvent e)
59 {
60 // Update the ball's Y coordinate.
61 if (goingUp)
62 {
63 if (y > MINIMUM_Y)
64 y -= MOVE;
65 else
66 goingUp = false;
67 }
68 else
69 {
70 if (y < MAXIMUM_Y)
71 y += MOVE;
72 else
73 goingUp = true;
74 }
75
76 // Force a call to the paint method.
77 repaint();
78 }
79 }
80 }

The BouncingBall class’s init method creates a Timer object with the following statement
in line 30:

timer = new Timer(TIME_DELAY, new TimerListener());

This initializes the object with a time delay of 30 milliseconds (the value of TIME_DELAY) and
registers an instance of the TimerListener class as an action listener. This means that once
the object is started, every 30 milliseconds it generates an action event, causing the action
listener’s actionPerformed method to execute. The next statement in the init method, in
line 31, starts the Timer object as follows:

timer.start();

 14.8 Playing Audio 977

This causes the Timer object to commence generating action events. The TimerListener
class’s actionPerformed method calculates the new position of the bouncing ball and
repaints the screen.

checkpoint

www.myprogramminglab.com

14.31 What type of events do Timer objects generate?

14.32 How are the time intervals between a Timer object’s action events measured?

14.33 How do you cause a Timer object to begin generating action events?

14.34 How to you cause a Timer object to cease generating action events?

14.8 playing Audio

concepT: Sounds that have been stored in an audio file may be played from a Java
program.

Java applets can play audio that is stored in a variety of popular sound file formats. The file
formats directly supported are as follows:

•	 .aif or .aiff (Macintosh Audio File)
•	 .au (Sun Audio File)
•	 .mid or .rmi (MIDI File)
•	 .wav (Windows Wave File)

To play audio files, your computer must be equipped with a sound card and speakers. One
way to play an audio file is to use the play method, which the JApplet class inherits from
the Applet class. The version of the method that we will use is as follows:

void play(URL baseLocation, String fileName)

The argument passed to baseLocation is a URL object that specifies the location of the file.
The argument passed to fileName is the name of the file. The sound that is recorded in the
file is played one time.

When calling the play method, it is common to use either the getDocumentBase or
getCodeBase method (both of which the JApplet class inherits from the Applet class) to
get a URL object for the first argument. The getDocumentBase method returns a URL object
containing the location of the HTML file that invoked the applet. Here is an example of a
call to the play method, using a call to getDocumentBase for the first argument:

play(getDocumentBase(), "mysound.wav");

This statement will load and play the mysound.wav sound file, stored at the same location
as the HTML file that invoked the applet.

The getCodeBase method returns a URL object containing the location of the applet’s
.class file. Here is an example of its use:

play(getCodeBase(), "mysound.wav");

http://www.myprogramminglab.com

978 Chapter 14 Applets and More

This statement will load and play the mysound.wav sound file, stored at the same location
as the applet’s .class file. The AudioDemo1 folder contains an example applet that plays
a sound file using the play method.

noTe: If the sound file specified by the arguments to the play method cannot be found,
no sound will be played.

Using an AudioClip object
The Applet class’s play method loads a sound file, plays it one time, and then releases it for
garbage collection. If you need to load a sound file to be played multiple times, you should
use an AudioClip object.

An AudioClip object is an object that implements the AudioClip interface. The AudioClip
interface is in the java.applet package, and it specifies the following three methods: play,
loop, and stop. The play method plays a sound one time. The loop method repeatedly plays
a sound, and the stop method causes a sound to stop playing.

The Applet class’s getAudioClip method can be used to create an AudioClip object for a
given sound file as follows:

AudioClip getAudioClip(URL baseLocation, String fileName)

The argument passed to baseLocation is a URL object that specifies the location of a sound
file, and the argument passed to fileName is the name of the file. The method returns an
AudioClip object that can be used to play the sound file.

As before, we can use the getDocumentBase or getCodeBase method to get a URL object for
the first argument. Here is an example of a statement that uses the getAudioClip method:

AudioClip clip = getAudioClip(getDocumentBase(), "mysound.wav");

This statement declares clip as an AudioClip reference variable. The object returned by the
getAudioClip method will load the mysound.wav file, stored at the same location as
the HTML file that invoked the applet. The address of the object will be assigned to clip.
The following statement can then be used to play the sound file:

clip.play();

The sound file can be played repeatedly with the following statement:

clip.loop();

Any time the sound file is being played, the following statement can be used to stop it:

clip.stop();

The AudioDemo2 class shown in Code Listing 14-23 is an applet that uses an AudioClip
object to play a sound file. The file AudioDemo2.html can be used to start the applet.
Figure 14-32 shows the applet running. The Play button calls the AudioClip object’s play
method, causing the sound file to play once. The Loop button calls the loop method, causing

 14.8 Playing Audio 979

the sound file to be played repeatedly. The Stop button stops the sound file from playing.
The sound file that is played is a famous NASA transmission from the Moon. NASA pro-
vides a wealth of public domain audio, video, and image files. You can find such items by
going	to	www.nasa.gov,	and	then	search	the	site	using	search	terms	such	as	“audio	clips”,	
“video	clips”,	etc.

code Listing 14-23 (AudioDemo2.java)

 1 import java.awt.*;
 2 import java.applet.*;
 3 import java.awt.event.*;
 4 import javax.swing.*;
 5
 6 /**
 7 This applet uses the AudioClip class to play a
 8 sound. Sound source: NASA
 9 */
10
11 public class AudioDemo2 extends JApplet
12 {
13 private JLabel credit; // Displays NASA credit
14 private JButton playButton; // Plays the sound clip
15 private JButton loopButton; // Loops the clip
16 private JButton stopButton; // Stops the clip
17 private AudioClip sound; // Holds the sound clip
18
19 /**
20 init method
21 */
22
23 public void init()
24 {
25 // Create a layout manager.
26 setLayout(new FlowLayout());
27
28 // Make the credit label and add it.
29 credit = new JLabel("Audio source: NASA");
30 add(credit);
31
32 // Make the buttons and add them.
33 makeButtons();
34
35 // Get an AudioClip object for the sound file.
36 sound = getAudioClip(getDocumentBase(), "step.wav");
37 }
38

http://www.nasa.gov

980 Chapter 14 Applets and More

39 /**
40 The makeButtons method creates the Play, Loop, and
41 Stop buttons, and adds them to the content pane.
42 */
43
44 private void makeButtons()
45 {
46 // Create the Play, Loop, and Stop buttons.
47 playButton = new JButton("Play");
48 loopButton = new JButton("Loop");
49 stopButton = new JButton("Stop");
50
51 // Register an action listener with each button.
52 playButton.addActionListener(new ButtonListener());
53 loopButton.addActionListener(new ButtonListener());
54 stopButton.addActionListener(new ButtonListener());
55
56 // Add the buttons to the content pane.
57 add(playButton);
58 add(loopButton);
59 add(stopButton);
60 }
61
62 /**
63 Private inner class that handles the action event
64 that is generated when the user clicks one of the
65 buttons.
66 */
67
68 private class ButtonListener implements ActionListener
69 {
70 public void actionPerformed(ActionEvent e)
71 {
72 // Determine which button was clicked and
73 // perform the selected action.
74 if (e.getSource() == playButton)
75 sound.play();
76 else if (e.getSource() == loopButton)
77 sound.loop();
78 else if (e.getSource() == stopButton)
79 sound.stop();
80 }
81 }
82 }

 14.8 Playing Audio 981

playing Audio in an Application
The previous examples show how to play an audio file in an applet. You can play audio in
an application as well. The process of getting a reference to an AudioClip object is different,
however, in a class that does not extend JApplet. In the Chapter 14\AudioDemo3 source
code folder you will find a Swing application named AudioFrame.java that demonstrates
how to do it. The following code segment is from the application.

43 // Create a file object for the step.wav file.
44 File file = new File("step.wav");
45
46 // Get a URI object for the audio file.
47 URI uri = file.toURI();
48
49 // Get a URL for the audio file.
50 URL url = uri.toURL();
51
52 // Get an AudioClip object for the sound
53 // file using the Applet class's static
54 // newAudioClip method.
55 sound = Applet.newAudioClip(url);

In line 44, we create a File object representing the audio file. Then, in line 47 we call the
File class’s toURI method to create a URI object representing the audio file. The URI class is
in the java.net package. (URI stands for Uniform Resource Identifier.)

Then, in line 50, we call the URI class’s toURL method to create a URL object represent-
ing the audio file. Note that if this method cannot construct a URL it throws a checked
exception—MalformedURLException. The MalformedURLException class is in the
java.net package.

Last, in line 55, we call the Applet class’s static newAudioClip method, passing the URL
object as an argument. The method returns a reference to an AudioClip object which can be
used as previously demonstrated to play the audio file.

Figure 14-32 AudioDemo2 applet

982 Chapter 14 Applets and More

checkpoint

www.myprogramminglab.com

14.35 What Applet method can you use to play a sound file?

14.36 What is the difference between using the Applet method asked for in Checkpoint
14.35, and using an AudioClip object to play a sound file?

14.37 What methods does an AudioClip object have? What do they do?

14.38 What is the difference between the Applet class’s getDocumentBase and getCodeBase
methods?

14.9 common errors to Avoid
•	 Forgetting a closing tag in an HTML document. Most HTML tags have an opening

tag and a closing tag. The page will not appear properly if you forget a closing tag.
•	 Confusing the <head></head> tag with <h1></h1> or another header tag. The

<head></head> tag marks a document’s head section, whereas the <h1></h1> tag marks
a header, which is large bold text.

•	 Using X and/or Y coordinates that are outside of the component when drawing a
shape. If you use coordinates that are outside the component to draw a shape, the
shape will not appear.

•	 Not calling the superclass’s paint or paintComponent method. When you override the
paint or paintComponent method, the overriding method should call the superclass’s
version of the method before doing anything else.

•	 Overriding the paint method with a component extended from JComponent. You
should override the paint method only with AWT components, JFrame components,
or JApplet components.

•	 Not calling the repaint method to redisplay a window. When you update the data
used to draw shapes on a component, you must call the repaint method to force a call
to the paint or paintComponent method.

•	 Not providing empty definitions for the unneeded methods in a mouse listener or
mouse motion listener class. When writing mouse listeners or mouse motion listeners,
you must provide definitions for all the methods specified by the listener interfaces. To
avoid this you can write a listener as a class that inherits from an adapter class.

•	 Forgetting to start a Timer object. A Timer object does not begin generating action
events until it is started with a call to its start method.

Review Questions and exercises
Multiple choice and True/False

 1. This section of an HTML document contains all of the tags and text that produce
output in the browser window.
a. head
b. content
c. body
d. output

http://www.myprogramminglab.com

 Review Questions and Exercises 983

 2. You place the <title></title> tag in this section of an HTML document.
a. head
b. content
c. body
d. output

 3. Everything that appears between these tags in an HTML document is the content of
the Web page.
a. <content></content>
b. <html></html>
c. <head></head>
d. <page></page>

 4. To create a level one header you use this tag.
a. <level1></level1>
b. <header1></header1>
c. <h1></h1>
d. <head></head>

 5. When using Swing to write an applet, you extend the applet’s class from this class.
a. Applet
b. JApplet
c. JFrame
d. JAppletFrame

 6. When using AWT to write an applet, you extend the applet’s class from this class.
a. Applet
b. JApplet
c. JFrame
d. JAppletFrame

 7. This applet method is invoked instead of a constructor.
a. startUp
b. beginApplet
c. invoke
d. init

 8. The Sun JDK comes with this program, which loads and executes an applet without
the need for a Web browser.
a. applettest
b. appletload
c. appletviewer
d. viewapplet

 9. A class that inherits from Applet or Frame does not have one of these.
a. an add method
b. an init method
c. a content pane
d. a layout manager

984 Chapter 14 Applets and More

 10. What location on a component usually has the coordinates (0, 0)?
a. upper-right corner
b. upper-left corner
c. center
d. lower-right corner

 11. In a class that extends JApplet or JFrame you override this method to get a reference
to the Graphics object.
a. paint
b. paintComponent
c. getGraphics
d. graphics

 12. In a class that extends JPanel you override this method to get a reference to the
Graphics object.
a. paint
b. paintComponent
c. getGraphics
d. graphics

 13. The drawLine method is a member of this class.
a. JApplet
b. Applet
c. JFrame
d. Graphics

 14. To force the paint method to be called to update a component’s display, you
__________.
a. call the paint method
b. call the repaint method
c. call the paintAgain method
d. do nothing; you cannot force the paint method to be called

 15. A class that implements this interface can handle mouse dragged events.
a. MouseListener
b. ActionListener
c. MouseMotionListener
d. MouseDragListener

 16. A class that implements this interface can handle mouse click events.
a. MouseListener
b. ActionListener
c. MouseMotionListener
d. MouseDragListener

 17. This MouseEvent method returns the X coordinate of the mouse cursor at the moment
the mouse event is generated.
a. getXCoord
b. getMouseX
c. getPosition
d. getX

 Review Questions and Exercises 985

 18. If a class implements a standard API interface that specifies more than one method but
does not need many of the methods, this should be used instead of the interface.
a. your own detailed versions of the needed methods
b. an adapter class
c. a different interface
d. there is no other choice

 19. A Timer object’s time delay between events is specified in this unit of time.
a. seconds
b. microseconds
c. milliseconds
d. minutes

 20. A Timer object generates this type of event.
a. action events
b. timer events
c. item events
d. interval events

 21. The following Applet class method returns a URL object with the location of the
HTML file that invoked the applet.
a. getHTMLlocation
b. getDocumentBase
c. getAppletBase
d. getCodeBase

 22. The following Applet class method returns a URL object with the location of the
applet’s .class file.
a. getHTMLlocation
b. getDocumentBase
c. getAppletBase
d. getCodeBase

 23. True or False: Applets cannot create files on the user’s system.

 24. True or False: Applets can read files on the user’s system.

 25. True or False: Applets cannot make network connections with any system except the
server from which the applet was transmitted.

 26. True or False: Applets can retrieve information about the user’s system or the user’s identity.

 27. True or False: The <h6> tag produces larger text than the <h1> tag.

 28. True or False: You use a static main method to create an instance of an applet class.

 29. True or False: In a class that extends JApplet, you add components to the content pane.

 30. True or False: In an applet, events are handled differently than in a GUI application.

 31. True or False: An object of the Frame class does not have a content pane.

 32. True or False: In an overriding paint method, you should never call the superclass’s
version of the paint method.

986 Chapter 14 Applets and More

 33. True or False: Once a Timer object has been started, it cannot be stopped without
shutting down the program.

 34. True or False: The Applet class’s play method loads and plays an audio file once and
then releases the memory it occupies for garbage collection.

 35. True or False: The loop and stop methods, for use with audio files, are part of the
Applet class.

Find the error

Find the errors in the following code:

 1. <applet code="MyApplet.java" width=100 height=50>
</applet>

 2. public void paint(Graphics g)
{
 drawLine(0, 0, 100, 100);
}

 3. // Force a call to the paint method.
paint();

 4. public class MyPanel extends JPanel
{
 public MyPanel()
 {
 // Constructor code...
 }

 public void paint(Graphics g)
 {
 //paint method code...
 {
}

 5. private class MyMouseListener implements MouseListener
{
 public void mouseClicked(MouseEvent e)
 {
 mouseClicks += 1;
 }
}

 6. private class MyMouseListener implements MouseAdapter
{
 public void mouseClicked(MouseEvent e)
 {
 mouseClicks += 1;
 }
}

 Review Questions and Exercises 987

Algorithm Workbench

	 1.	 Write	the	text	and	HTML	tags	necessary	to	display	“My	Home	Page”	as	a	level	one	
header, centered in the browser window.

 2. You have written an applet and saved the source code in a file named MyApplet.java.
Write the HTML tag needed to execute the applet in an area that is 300 pixels wide
by 200 pixels high. Assume that the compiled applet code is stored in the same direc-
tory as the HTML document.

 3. Look at the following GUI application class and indicate by line number the changes
that should be made to convert this to an applet using Swing:

 1 public class SimpleWindow extends JFrame
 2 {
 3 public SimpleWindow()
 4 {
 5 // Set the title.
 6 setTitle("A Simple Window");
 7
 8 // Specify what happens when the close button is clicked.
 9 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
10
11 // Add a label.
12 JLabel label = new JLabel("This is a simple window.");
13 add(label);
14
15 // Pack and display the window.
16 pack();
17 setVisible(true);
18 }
19 }

 4. Assume that g references a Graphics object. Write code that performs the following:
a. Draws an outline of a rectangle that is 100 pixels wide by 200 pixels high, with its

upper-left corner at (50, 75).
b. Draws a filled rectangle that is 300 pixels wide by 100 pixels high, with its upper-

left corner at (10, 90).
c. Draws a blue outline of an oval with an enclosing rectangle that is 100 pixels wide

by 50 pixels high, with its upper-left corner at (10, 25).
d. Draws a red line from (0, 5) to (150, 175).
e.	 Draws	the	string	“Greetings	Earthling”.	The	lower-left	point	of	the	string	should	be	

at (80, 99). Use a bold, 20-point serif font.
f. Draws a polygon with vertices at the following points: (10, 10), (10, 25), (50, 25),

and (50, 10). What shape does this code result in?

 5. Rewrite the following mouse motion listener so it uses an adapter class:

private class MyMouseMotionListener implements MouseMotionListener
{
 public void mouseDragged(MouseEvent e)
 {
 }

988 Chapter 14 Applets and More

 public void mouseMoved(MouseEvent e)
 {
 mouseMovements += 1;
 }
}

 6. Assume that a class has an inner class named MyTimerListener that can be used to
handle the events generated by a Timer object. Write code that creates a Timer object
with a time delay of one half second. Register an instance of MyTimerListener with
the class.

short Answer

 1. When a user accesses a Web page on a remote server with his or her browser, and that
Web page has an applet associated with it, is the applet executed by the server or by
the user’s system?

 2. List at least three security restrictions imposed on applets.

 3. Why are applets sometimes necessary in Web page development?

 4. Why isn’t it necessary to call the setVisible method to display an applet?

 5. Why would you ever need to use the older AWT library instead of Swing to develop
an applet?

 6. A panel is 600 pixels wide by 400 pixels high. What are the X and Y coordinates of
the pixel in the upper-left corner? The upper-right corner? The lower-left corner? The
lower-right corner? The center of the panel?

 7. When is a component’s paint or paintComponent method called?

 8. What is an adapter class? How does it make some programming tasks more conve-
nient? Under what circumstances does the Java API provide an adapter class?

 9. Under what circumstances would you want to use an AudioClip object to play a
sound file, rather than the Applet class’s play method?

programming challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. FollowMe Applet

Write	an	applet	that	initially	displays	the	word	“Hello”	in	the	center	of	a	window.	The	word	
should follow the mouse cursor when it is moved inside the window.

2. House Applet

Write an applet that draws the house shown on the left in Figure 14-33. When the user
clicks on the door or windows, they should close. The figure on the right shows the house
with its door and windows closed.

The House
Applet

Problem

VideoNote

http://www.myprogramminglab.com

 Programming Challenges 989

3. WatchMe Applet

Write an applet that displays a drawing of two eyes in the center of its window. When the
mouse cursor is not inside the window, the eyes should look ahead. When the mouse cursor
is inside the window, the eyes should follow the cursor. This is illustrated in Figure 14-34.

4. Thermometer Applet

Write an applet that displays a thermometer. The user should be able to control the tem-
perature with a slider component. When the user moves the slider, the thermometer should
show the corresponding temperature.

5. polygon Drawer

Write an applet that lets the user click on six points. After the sixth point is clicked, the
applet should draw a polygon with a vertex at each point the user clicked.

Figure 14-33 House drawing

Figure 14-34 Eyes following the mouse cursor

990 Chapter 14 Applets and More

6. GridFiller Applet

Write an applet that displays a 4 3 4 grid. When the user clicks on a square in the grid, the
applet should draw a filled circle in it. If the square already has a circle, clicking on it should
cause the circle to disappear.

7. DrinkMachine Applet

Write an applet that simulates a soft drink vending machine. The simulated machine dis-
penses the following soft drinks: cola, lemon-lime soda, grape soda, root beer, and bottled
water. These drinks cost $0.75 each to purchase.

When the applet starts, the drink machine should have a supply of 20 of each of the drinks.
The applet should have a text field where the user can enter the amount of money he or
she is giving the machine. The user can then click on a button to select a drink to dispense.
The applet should also display the amount of change it is giving back to the user. The applet
should keep track of its inventory of drinks and inform the user whether he or she has
selected a drink that is out of stock. Be sure to handle operator errors such as selecting a drink
with no money entered and selecting a drink with an inadequate amount of money entered.

8. Stopwatch Applet

Write an applet that simulates a stopwatch. It should have a Start button and a Stop button.
When the Start button is clicked the applet should count the seconds that pass. When the
Stop button is clicked, the applet should stop counting seconds.

9. slideshow Application

Write an application that displays a slideshow of images, one after the other, with a time
delay between each image. The user should be able to select up to 10 images for the slide
show and specify the time delay in seconds.

991

TOPICS

C
H

A
P

T
E

R

15 Creating GUI Applications
with JavaFX and Scene Builder

 15.1 Introduction
 15.2 Scene Graphs
 15.3 Using Scene Builder to Create JavaFX

Applications

 15.4 Writing the Application Code
 15.5 RadioButtons and CheckBoxes
 15.6 Displaying Images
 15.7 Common Errors to Avoid

15.1 Introduction

CONCEPT: In Java, you can use the JavaFX library to create GUI and graphical
applications. JavaFX is the next generation GUI toolkit for Java developers.

In this chapter, we discuss the basics of creating a Java application with a graphical user interface
or GUI (pronounced “gooey”) using JavaFX. JavaFX is a standard Java library for developing
rich applications that employ graphics. It is fully integrated into Java, beginning with Java 7.
You can use it to create GUI applications, as well as applications that display 2D and 3D graph-
ics. You can use JavaFX to create standalone graphics applications that run on your local com-
puter, applications that run from a remote server, or applications that are embedded in a Web
page. This chapter introduces you to JavaFX as a tool for creating standalone GUI applications.

Compared with Swing (which is covered in Chapters 12 and 13), JavaFX is a relatively new
part of the Java library. Although JavaFX does not replace Swing, it is the next generation
of GUI toolkit for Java.

NOTE: It is not required that you read Chapters 12 and 13 before reading this chap-
ter. This book is designed so you can choose either approach: Swing or JavaFX. If you
have already read Chapter 12, you can skip the rest of this section, and jump directly to
Section 15.2.

A GUI is a graphical window or a system of graphical windows presented by an applica-
tion for interaction with the user. In addition to accepting input from the keyboard, GUIs
typically accept input from a mouse, or a touch screen.

992 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

A window in a GUI commonly consists of several components that present data to the user
and/or allow interaction with the application. Some of the common GUI components are
Buttons, Labels, TextFields, CheckBoxes, and RadioButtons. Figure 15-1 shows an example
of a window with a variety of components. Table 15-1 describes the components that
appear in the window.

Table 15-1 Some GUI components

Component Description

AnchorPane A container for other components. The components that are contained inside an
AnchorPane can be “anchored” at a certain distance from one or more of the
AnchorPane’s edges.

Button A button that can cause an action to occur when it is clicked.

CheckBox A component that has a box that may be checked or unchecked.

ComboBox A component that displays a drop-down list of items from which the user may select.
A ComboBox also provides a TextField in which the user may type input. It is called
a ComboBox because it can behave as the combination of a list and a TextField.

Label An area that can display text.

List A list from which the user may select an item.

RadioButton A component that can be either selected or deselected. RadioButtons usually
appear in groups and allow the user to select one of several options.

Slider A component that allows the user to select a value by moving a slider along a track.

TextField An area in which the user may type a single line of input from the keyboard.

TitledPane A container for other components. A TitledPane has a title bar at its top, in
which a title can be displayed. A TitledPane may also be closed or opened.

Figure 15-1 Various GUI components

 15.2 Scene Graphs 993

Event-Driven Programming
Programs that operate in a GUI environment must be event-driven. An event is an action
that takes place within a program, such as the clicking of a button. Part of writing a GUI
application is creating event listeners. An event listener is a method that automatically
executes when a specific event occurs. If you wish for an application to perform an opera-
tion when a particular event occurs, you must create an event listener that responds when
that event takes place.

Checkpoint

15.1 What is a GUI?

15.2 What is JavaFX?

15.3 What is a component?

15.4 What is an event? What is an event listener?

15.2 Scene Graphs

CONCEPT: A scene graph is a tree-like hierarchical data structure that is used to
organize the components in a JavaFX GUI.

In JavaFX, the components that are in a GUI are organized as a scene graph. A scene graph
is a tree-like, hierarchical data structure that contains nodes. Figure 15-2 shows an example.

Root Node

Branch Node

Leaf Node

Leaf Node

Leaf Node

Leaf Node

Figure 15-2 Nodes in a scene graph

A scene graph can have three types of nodes:

•	 Root Node: The scene graph can have only one root node, which is the parent of all
the other nodes in the scene graph. It is the first node in the structure.

•	 Branch Node: A branch node can have other nodes as children.
•	 Leaf Node: A leaf node cannot have children.

In a nutshell, the root node and branch nodes can have children, but leaf nodes cannot. But,
how does that relate to components in a GUI? In JavaFX, a node that can have children
is a container. It is a component that can hold other components inside of it. The JavaFX

994 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

library provides several different types of containers. The AnchorPane container (which was
described in Table 15-1) is commonly used as a GUI’s root node.

A branch node is a container that is placed inside the root node, or inside another branch
node. For example, you might have a Pane (one of the simplest JavaFX containers) inside
of an AnchorPane. A leaf node is a component that is not a container. For example, Button
components and Label components are leaf nodes.

For example, look at the GUI shown in Figure 15-3. The outermost container is an
AnchorPane. Inside the AnchorPane are a Pane and a Button. Inside the Pane are a Label
and two RadioButton components. The scene graph that describes this GUI appears in
Figure 15-4. Notice the following characteristics of the scene graph:

● The AnchorPane is the root node.
● The Pane is a branch node, and the Button is a leaf node.
● The Label and RadioButton components are leaf nodes, inside the Pane.

AnchorPane

Pane

Figure 15-3 Example GUI

AnchorPane

Pane

Label

RadioButton

Button

RadioButton

Figure 15-4 Example scene graph

Figure 15-5 shows a more complex GUI in the left image and has the following components:

● an AnchorPane, which is the root node
● a TitledPane, which is a child of the AnchorPane (it is contained inside the AnchorPane)
● another AnchorPane, which is a child of the TitledPane (it is contained inside the

TitledPane)
● three RadioButtons, which are children of the innermost AnchorPane
● a Button that is a child of the root node AnchorPane

The image on the right shows how the GUI’s scene graph is organized. The AnchorPane is
the root node. It has two children: the TitledPane and the Button.

 15.3 Using Scene Builder to Create JavaFX Applications 995

Checkpoint

15.5 What is a scene graph?

15.6 What are the three types of nodes in a scene graph?

15.7 What type of scene graph node can have children? What type cannot?

15.3 Using Scene Builder to Create JavaFX Applications

CONCEPT: Scene Builder is a free design tool from Oracle for visually creating GUIs.

You can write a JavaFX GUI application using nothing but Java code. The process is similar
to the way you write Swing applications. As an alternative, Oracle provides a free design
tool named Scene Builder that you can use to visually create a GUI. It works like this: You
use Scene Builder to construct a GUI by dragging and dropping the components that you
need onto a blank window. You visually arrange the components on the window, and set
various component properties to create the appearance that you want for the GUI. Then,
you save the GUI to an FXML file.

FXML is a markup language that describes the components in a JavaFX scene graph.
FXML uses tags to organize data, in a manner similar to the way that HTML uses tags to
format text in a Web browser. If you know anything about HTML (there is a brief introduc-
tion to HTML in Chapter 14), you can probably look at the contents of an FXML file and
understand how it describes a scene graph. For example, the following FXML describes the
GUI shown in Figure 15-6:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.paint.*?>

Button

AnchorPane
AnchorPane

TitledPane

Button

Graphical User Interface Scene Graph

RadioButton
RadioButton
RadioButton

AnchorPane
TitledPane

AnchorPane

RadioButton
RadioButton

RadioButton

Figure 15-5 A more complex GUI and its scene graph

996 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

<AnchorPane id="AnchorPane" maxHeight="-Infinity" maxWidth="-Infinity"
 minHeight="-Infinity" minWidth="-Infinity" prefHeight="130.0"
 prefWidth="173.0" xmlns:fx="http://javafx.com/fxml/1"
 xmlns="http://javafx.com/javafx/2.2">
 <children>
 <Label fx:id="myLabel" layoutX="53.0" layoutY="31.0"
 text="Hello World!" />
 <Button fx:id="myButton" layoutX="53.0" layoutY="80.0"
 mnemonicParsing="false" text="Click Me" />
 </children>
</AnchorPane>

Figure 15-6 Simple GUI

In this book, we will not modify the FXML files that Scene Builder creates. However, once
you understand the contents of an FXML file, you can open it in a text editor and make
changes to it to tweak the appearance of your GUI.

Visually creating a GUI with Scene Builder is only part of the process. Once you save a
GUI’s scene graph to an FXML file, the next step is to write Java code that reads the FXML
file and displays the GUI on the screen, and handles any events that occur while the appli-
cation is running. In this section, we will introduce Scene Builder. In the next section, we
discuss the Java code that you need to write to make a JavaFX application work.

Starting Scene Builder
You can download Scene Builder from the following location:

www.oracle.com/technetwork/java/javafx/downloads/

When you install Scene Builder in Windows, a shortcut is automatically created on the
desktop. You can launch Scene Builder either by double-clicking the shortcut, or by going
to All Programs > JavaFX Scene Builder and clicking JavaFX Scene Builder x.x (where x.x
will be a version number such as 2.0).

If you installed Scene Builder on a Mac, go to the Applications folder and double-click the
shortcut for JavaFX Scene Builder x.x (where x.x will be a version number such as 2.0).

http://www.oracle.com/technetwork/java/javafx/downloads
http://javafx.com/javafx/2.2
http://javafx.com/fxml/1

 15.3 Using Scene Builder to Create JavaFX Applications 997

The Scene Builder Main Window
The Scene Builder main window consists of a number of screen elements that you will use
on a regular basis. Figure 15-7 shows the main window, with the locations of its panels.

Library
Panel

Document
Panel

Menu Bar

Selection Bar

Content Panel

Inspector
Panel

Figure 15-7 The Scene Builder main window (Oracle Corporate Counsel)

Here is a brief summary of each part of the main window:

•	 Menu Bar: Scene Builder’s commands are located on the menus that access the
menu bar at the top of the main window.

•	 Library Panel: The Library Panel provides a list of JavaFX components that
you can use in an application. To place a component in a GUI,
you simply drag it from the Library Panel, and drop it into the
Content Panel.

•	 Content Panel: The Content Panel is where you visually design an application’s
GUI. You create components in the GUI by dragging them from
the Library Panel and dropping them into the Content Panel.

•	 Document Panel: The Document Panel has two sections: Hierarchy and Controller.
The Hierarchy section shows the GUI’s scene graph as you build
it. The Controller section allows you to connect the GUI to a Java
class containing the application’s event listeners.

•	 Selection Bar: This area of the screen shows the hierarchical path of the currently
selected node in the scene graph.

998 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Tutorial 15-1:
Using Scene Builder to Create the Kilometer Converter GUI
In this tutorial, and the next two, you will create the Kilometer Converter application.
When the application is complete, it will present a window in which the user will be able to
enter a distance in kilometers, and then click on a button to see that distance converted to
miles. The conversion formula is:

Miles 5 Kilometers 3 0.6214

Figure 15-8 shows how the completed Kilometer Converter application will work. The im-
age on the left shows the application’s window after the user has entered 1000 as the dis-
tance in kilometers. The image on the right shows the window after the user has clicked the
Convert to Miles button, and the distance is displayed, converted to miles.

Figure 15-8 The Kilometer Converter application

In this tutorial you will use Scene Builder to create the application’s GUI. As shown in
 Figure 15-9, you will use the following components:

● an AnchorPane, as the root node
● a Label to display the prompt Enter a distance in kilometers:
● a TextField in which the user will enter a distance
● a Label to display a message showing the distance converted to miles
● a Button that performs the conversion

•	 Inspector Panel: The Inspector Panel is divided into three sections: Properties,
Layout, and Code. The Properties section allows you to view and
edit the values of the selected component’s properties, which are
values that determine the component’s appearance. The Layout
section lets you specify values that control the way the component
is displayed when the GUI’s window is resized. The Code section
allows you to assign an fx:id to a component, which is similar to
assigning a variable name to the component. The Code section also
allows you to designate event handlers to execute when specific
events happen to the selected component.

To get started with Scene Builder, perform the steps in the following tutorial.

Using Scene
Builder to Create

the Kilometer
Converter GUI

VideoNote

Step 1: Start Scene Builder.

Step 2: As shown in Figure 15-10, drag an AnchorPane component from the Containers
section of the Library panel, and drop it into the Content panel. This creates an
AnchorPane as the root node in your scene graph.

TextField

Label

Label

Button

AnchorPane

Figure 15-9 The GUI components

Figure 15-10 Drag an AnchorPane from the Library panel to the Content panel

 After doing this, your screen should appear as Figure 15-11. Notice that
an AnchorPane now appears in the Content panel, and an entry for the
AnchorPane appears in the Hierarchy section of the Document panel.

Step 3: The AnchorPane’s default size is 600 pixels wide by 400 pixels high, which is
too large for the application. You want to make the AnchorPane much smaller
than it currently is. There are two ways to resize a component in Scene Builder:
● The first way to resize a component is with the component’s sizing handles.

When a component is selected in the Content panel, sizing handles appear

 15.3 Using Scene Builder to Create JavaFX Applications 999

along the component’s edges. Figure 15-12 shows an example. When you po-
sition the mouse cursor over a sizing handle, the cursor changes to a two-
headed arrow (). When the mouse cursor becomes a two-headed arrow,
you can click and drag the mouse to resize the component.

● The second way to resize a component is with the Layout section of the
Inspector panel. Make sure the Inspector panel’s sections are displayed by
clicking the dropdown arrow shown in Figure 15-13 and confirming that
View Sections is selected. Then, click the Layout section to open it, and as
shown in Figure 15-14, change the Pref Width and Pref Height fields to the
desired width and height.

Sizing Handles

Figure 15-12 Sizing handles (Oracle Corporate Counsel)

1000 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

An entry for the
AnchorPane appears here.

The AnchorPane appears in the Content panel.

Figure 15-11 An AnchorPane created (Oracle Corporate Counsel)

Open the Layout section.

Change the preferred width
and preferred height to the
desired values.

Figure 15-14 Changing a component’s width and height in the Layout section (Oracle Corporate

Counsel)

 15.3 Using Scene Builder to Create JavaFX Applications 1001

Figure 15-13 Make sure View Sections is selected (Oracle Corporate Counsel)

 Use one of these techniques to resize the AnchorPane to 280 pixels wide by 135
pixels high, as shown in Figure 15-15.

Step 4: Now you will create the Label that prompts the user to enter a distance in
kilometers. The Library panel is divided into several different sections. Open
the Controls section, and then find the Label component. As shown in Figure
15-16, drag the Label component onto the AnchorPane.

Step 5: The text that is displayed by a Label component is determined by the Label’s
Text property. When you change the value of the component’s Text property,
you change the text that it displays. The Label component that you created in
Step 4 currently displays the word Label. You need to change this to Enter a
distance in kilometers:. With the component selected in the Content panel (as
shown in Figure 15-17) open the Properties section of the Inspector panel
and locate the Text property. Change the value of the Text property to Enter
a distance in kilometers: as shown in Figure 15-18. Notice that when you
change the Label’s Text property, the text that it displays on the AnchorPane
changes accordingly.

1002 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Figure 15-15 The resized AnchorPane (Oracle Corporate Counsel)

TIP: A quick way to change a Label’s Text property is to double-click the component
in the Content panel, and edit the text.

Step 6: Now you will assign an fx:id to the Label component. An fx:id is a name that
identifies a component in the FXML file that you will generate when you save

The Label is selected.

Properties section

Text property

Figure 15-17 Locating the Label’s Text property (Oracle Corporate Counsel)

 15.3 Using Scene Builder to Create JavaFX Applications 1003

Figure 15-16 Dragging a Label component to the AnchorPane (Oracle Corporate Counsel)

your GUI. The component’s fx:id will also become a variable name that you
can use later in the Java code that you will write to run the application.

 With the Label component selected in the Content panel (as shown in Figure
15-19) open the Code section of the Inspector panel, and locate the fx:id field.
Change the value of the fx:id field to promptLabel as shown in Figure 15-19.

The Label is selected.

Code section

fx:id field

Figure 15-19 The Label’s fx:id changed (Oracle Corporate Counsel)

1004 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Figure 15-18 The Label’s Text property changed

Step 7: If necessary, reposition the Label component so it is in the upper-left area of the
AnchorPane, as shown in Figure 15-20. (To move the component, simply click
and drag it with the mouse.)

Step 8: Now you will create the TextField component in which the user will enter a
distance in kilometers. In the Library panel you will find Text Field listed in

the Controls section. As shown in Figure 15-21, drag the Text Field component
onto the AnchorPane. (Drop the Text Field anywhere on the AnchorPane. You
will resize it and move it in the next step.)

Step 9: With the TextField component selected, use its sizing handles to resize it, and
then drag the component approximately to the position shown in Figure 15-22.

Step 10: Now you will assign an fx:id to the TextField component. With the TextField
component selected in the Content panel (as shown in Figure 15-23) open the
Code section of the Inspector panel, and locate the fx:id field. Change the
value of the fx:id field to kilometerTextField as shown in Figure 15-23.

Figure 15-21 Dragging a Text Field to the AnchorPane (Oracle Corporate Counsel)

 15.3 Using Scene Builder to Create JavaFX Applications 1005

Figure 15-20 The Label repositioned (Oracle Corporate Counsel)

Step 11: Now you will create the Label component that will display the output message
when the user clicks the Convert to Miles button. Perform the following:
● Drag a Label component from the Library panel (in the Controls section)

onto the AnchorPane.
● With the Label selected, open the Properties section of the Inspector panel, and

delete the contents of the Text property. (This causes the Label to display no text.)
● Resize and reposition the Label component similar to that shown in Figure 15-24.
● With the Label selected, open the Code section of the Inspector panel, and

change the fx:id field to outputLabel.

Step 12: Now you will create the Button component that will convert the user’s input to
miles. Perform the following:
● Drag a Button component from the Library panel (in the Controls section)

onto the AnchorPane.
● With the Button selected, open the Properties section of the Inspector panel,

and change the Text property to Convert to Miles.
● Reposition the Button component similar to that shown in Figure 15-25.

The TextField is selected.

Code section

fx:id field

Figure 15-23 The Label’s fx:id changed (Oracle Corporate Counsel)

1006 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Figure 15-22 The TextField component resized and repositioned (Oracle Corporate Counsel)

Figure 15-25 The Button created, resized, and repositioned (Oracle Corporate Counsel)

 15.3 Using Scene Builder to Create JavaFX Applications 1007

Figure 15-24 The Label created, resized, and repositioned (Oracle Corporate Counsel)

● With the Button selected, open the Code section of the Inspector panel, and
change the fx:id field to convertButton.

Step 13: Notice that the Hierarchy section of the Document panel, shown in Figure
15-26, displays the components that you have added to the GUI’s scene graph.
Clicking on a component in the Hierarchy panel selects that component in the
Content panel.

Figure 15-26 The Hierarchy section of the Document panel (Oracle Corporate Counsel)

Figure 15-27 Showing component fx:ids in the Document panel (Oracle Corporate Counsel)

1008 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

 If you want to see each component’s fx:id in the Document panel, click the
down-arrow that appears at the top of the panel, select Hierarchy displays, and
then select Show fx:id. The image on the left in Figure 15-27 shows an exam-
ple. The image on the right in Figure 15-27 shows the Document panel with the
fx:ids displayed.

Step 14: Now you will save the GUI as an FXML file. On the menu bar, click File, then
click Save As . . . Select a location on your system, and save the file as Kilom-
eterConverter.fxml. (Remember where you save the file. You will need to save
some Java files in the same location in the next two tutorials.)

Checkpoint

15.8 What is FXML?

15.9 What type of file does Scene Builder save a GUI to?

15.10 Which Scene Builder panel provides a list of JavaFX components?

15.11 Which Scene Builder panel do you use to visually design an application’s GUI?

15.12 Which Scene Builder panel shows the scene graph?

15.13 Which Scene Builder panel allows you to work with a component’s properties,
 layout, and code?

15.14 What is an fx:id?

15.4 Writing the Application Code

CONCEPT: Once you have saved an application’s GUI to an FXML file, you
can write the Java code that runs the application. A simple JavaFX
application uses a main application class, and a controller class.

Figure 15-28 The GUI displayed in a preview window

 15.4 Writing the Application Code 1009

Step 15: Although you haven’t written the application’s Java code yet, you can preview
the way the GUI will appear. On the menu bar, click Preview, then click Show
Preview in Window. You will see the preview window appear, as shown in
Figure 15-28. Close the preview window. You will resume building the appli-
cation in the next tutorial.

1010 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

The Main Application Class
Once you have created a GUI with Scene Builder, and saved it to an FXML file, you need
to write a Java class that performs the following:

● Loads the FXML file
● Builds the scene graph in memory
● Displays the GUI

We will refer to this class as the main application class. Code Listing 15-1 shows the main
application class for the Kilometer Converter application.

Code Listing 15-1 (KilometerConverter.java)

 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6
 7 public class KilometerConverter extends Application
 8 {
 9 public void start(Stage stage) throws Exception
10 {
11 // Load the FXML file.
12 Parent parent = FXMLLoader.load(
13 getClass().getResource("KilometerConverter.fxml"));
14
15 // Build the scene graph.
16 Scene scene = new Scene(parent);
17
18 // Display our window, using the scene graph.
19 stage.setTitle("Kilometer Converter");
20 stage.setScene(scene);
21 stage.show();
22 }
23
24 public static void main(String[] args)
25 {
26 // Launch the application.
27 launch(args);
28 }
29 }

Let’s take a closer look at the code:

● Lines 1 through 5 import the necessary JavaFX classes.
● The class declaration begins in line 7. The name of the class is KilometerConverter,

and it extends the Application class. (The Application class is an abstract class in the
JavaFX library. It is in the javafx.application package.)

Learning More
About the Main

Application Class

VideoNote

 15.4 Writing the Application Code 1011

● The start method appears in lines 9 through 22. This is the main entry point for the
application. The start method is an abstract method in the Application class, and
we must override it. Notice that the method has a parameter named stage. The stage
variable will reference the window that the GUI will be displayed in.
● Lines 12 through 13 load the KilometerConverter.fxml file.
● Line 16 creates the scene graph in memory. The root node is referenced by the

scene variable.
● Line 19 sets the text that will be displayed in the window’s title bar.
● Line 20 specifies the scene graph that is to be displayed in the window.
● Line 21 displays the application’s window.

● The main method appears in lines 24 through 28. Line 27 calls the launch method
(which is inherited from the Application class) to launch the application.

All of the main application classes that you will see in this chapter will look like Code
Listing 15-1, except the name of the class (in line 7), the name of the FXML file (in line 13),
and the text that is displayed in the window’s title bar (line 19) will be different.

In the following tutorial you will write and test the main application class for the Kilometer
Converter application.

Tutorial 15-2:
Writing the Main Application Class For the Kilometer
Converter GUI

Step 1: Open your Java editor and create a new source code file named KilometerCon-
verter.java.

Step 2: Type the code for the KilometerConverter class exactly as it is shown in Code
Listing 15-1.

Step 3: Save the KilometerConverter.java file in the same location as the Kilometer-
Converter.fxml file that you created in the previous tutorial.

Step 4: Compile the KilometerConverter.java file, and run it. You should see the win-
dow shown in Figure 15-29. At this point the application only displays the
GUI. Although you can type input into the TextField, the application does
nothing when you click the Convert to Miles button. That is because you have
not written an event handler that will execute when the button is clicked. You
will write an event handler for the Button component in the next tutorial.

Figure 15-29 The Kilometer Converter application (Oracle Corporate Counsel)

Writing the Main
Application Class
For the Kilometer

Converter GUI

VideoNote

1012 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

The Controller Class
The main application class is responsible for building the scene graph and displaying the
GUI. The controller class is responsible for handling events that occur while the application
is running. The controller class contains the following items:

● The necessary import statements
● Private variables to reference the components that have an fx:id in the scene graph
● An optional initialize method that is automatically called after the FXML file is loaded
● Event listener methods

Code Listing 15-2 shows the controller class for the Kilometer Converter application.

Code Listing 15-2 (KilometerConverterController.java)

 1 import javafx.fxml.FXML;
 2 import javafx.scene.control.Button;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.TextField;
 5
 6 public class KilometerConverterController
 7 {
 8 @FXML
 9 private Button convertButton;
10
11 @FXML
12 private TextField kilometerTextField;
13
14 @FXML
15 private Label outputLabel;
16
17 @FXML
18 private Label promptLabel;
19
20 // This optional method is called when the FXML file is loaded.
21 public void initialize()
22 {
23 // Perform any necessary initialization here.
24 }
25
26 // Event listener for the convertButton
27 public void convertButtonListener()
28 {
29 final double CONVERSION_FACTOR = 0.6214;
30
31 // Get the kilometers from the TextField.
32 String str = kilometerTextField.getText();
33

 15.4 Writing the Application Code 1013

34 // Convert kilometers to miles.
35 double miles = Double.parseDouble(str) * CONVERSION_FACTOR;
36
37 // Display the converted distance.
38 outputLabel.setText(str + " kilometers is " + miles + " miles.");
39 }
40 }

Let’s take a closer look at the code:

● Lines 1 through 4 import the necessary JavaFX classes:
● Line 1 imports javafx.fxml.FXML, which is necessary to make the connection

between the controller class and the application’s FXML file.
● Line 2 imports the javafx.scene.control.Button class. This is the class for the

Button component.
● Line 3 imports the javafx.scene.control.Label class. This is the class for the

Label component.
● Line 4 imports the javafx.scene.control.TextField class. This is the class for the

TextField component.
● The class declaration begins in line 6. The name of the class is

KilometerConvertercontroller.
● Lines 8 through 18 declare private field variables for the GUI components. The names

of the variables are the same as the components’ fx:ids. Specifically:
● Line 9 declares the convertButton variable to reference the Button component.

Recall that you assigned convertButton as the component’s fx:id in Scene Builder.
● Line 12 declares the kilometerTextField variable to reference the TextField com-

ponent. Recall that you assigned kilometerTextField as the component’s fx:id in
Scene Builder.

● Line 15 declares the outputLabel variable to reference the Label component that
will display the converted distance. Recall that you assigned outputLabel as the
component’s fx:id in Scene Builder.

● Line 18 declares the promptLabel variable to reference the Label component that
will prompt the user to enter a distance. Recall that you assigned promptLabel as
the component’s fx:id in Scene Builder.

 Notice that each of the field declarations is preceded with a line that reads @FXML. (See
lines 8, 11, 14, and 17.) This is a special annotation that must precede any nonpublic
field declaration or nonpublic method definition that is used by the FXML file.

● The initialize method that appears in lines 21 through 24 is optional. If you include
this method, it is automatically called after the FXML file is loaded. If you have any
initialization code to write, you write it in the initialize method.

● The convertButtonListener method appears in lines 27 through 39. This method is
the event listener for the Button component. Here are some details about the method:
● Line 29 declares a constant named CONVERSION_FACTOR that we will use in the cal-

culation to convert kilometers to miles.
● Line 32 calls the kilometerTextField.getText() method to get text that the user

has entered into TextField. The text is assigned to a String variable named kiloStr.
● Line 35 converts the kilometers to miles, and assigns the results to a double vari-

able named miles.

Learning More
About the

Controller Class

VideoNote

1014 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

● Line 38 calls the outputLabel.setText method to display a message in the
outputLabel component. The message is the concatenated string that is passed as
an argument to the method.

Tutorial 15-3:
Registering the Controller Class with the Application’s GUI

Step 1: Open your Java editor and create a new source code file named KilometerCon-
verterController.java.

Step 2: Type the code for the KilometerConverterController class exactly as it is
shown in Code Listing 15-2. (If you wish, you can leave out the code for the
initialize method shown in lines 20 through 24.)

Step 3: Save the KilometerConverterController.java file in the same location as the
KilometerConverter.fxml file that you created in Tutorial 15-1.

Step 4: Compile the KilometerConverterController.java file.
Step 5: Open the KilometerConverter.fxml file in Scene Builder.
Step 6: Select the root node by clicking its entry in the Hierarchy panel (as shown in

Figure 15-30).

Figure 15-30 Select the AnchorPane (Oracle Corporate Counsel)

Registering the
Controller

Class with the
Application’s

GUI

VideoNote

NOTE: The initialize method is optional. Although we have included an initialize
method in Code Listing 15-2, it doesn’t do anything. We included it so we can dis-
cuss the purpose of the method. In future source code listings we will not include an
initialize method in controller classes unless it is needed.

Once you have written and compiled the controller class, you must go back into Scene
Builder and register the controller class to the application’s GUI. Tutorial 15-3 pro-
vides the steps for writing the controller class, registering it with the GUI, and running
the application.

Step 8: At this point, the controller class is registered with the GUI, but you still need to
register the event listener for the Button component. As shown in Figure 15-32,
select the Button component in the Hierarchy panel.

Figure 15-31 Select the controller class (Oracle Corporate Counsel)

Figure 15-32 Select the Button component (Oracle Corporate Counsel)

Step 9: In the Code section of the Inspector panel you will see a dropdown list
named On Action. As shown in Figure 15-33, click the dropdown and
select convertButtonListener. Recall that convertButtonListener is the
name of the event listener method that you wrote in the controller class.
This registers the convertButtonListener method as the event listener for
the Button component.

 15.4 Writing the Application Code 1015

Step 7: With the AnchorPane selected, open the Controller section of the Document
panel. As shown in Figure 15-31, click the dropdown list and select the
KilometerConverterController class.

Step 10: Save the FXML file by clicking the File menu, then clicking Save.
Step 11: At this point, all of the pieces of the application are in place. Run the code for

the main application class (KilometerConverter). The application’s window
should appear. As shown in Figure 15-34, enter a value into the TextField and
then click the Button. A message should appear displaying the value, con-
verted from kilometers to miles.

Figure 15-33 Select the event listener method

Figure 15-34 The application running

1016 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

 15.4 Writing the Application Code 1017

Using the Sample Controller Skeleton
As an alternative for manually typing the code for the controller class, Scene Builder can
provide a sample “skeleton” for the controller class. To see the sample controller skeleton,
click the View menu, then click Show Sample Controller Skeleton, as shown in Figure
15-35. A window appears, as shown in Figure 15-36, containing the controller skeleton.
You can click the Copy button to copy the sample code to the clipboard, and then paste
it into an editing window in your IDE.

The obvious benefit of using the sample skeleton controller is that a lot of the code
is written for you. The skeleton has all of the necessary import statements, and the
class already has private field declarations for all of the components that have an
fx:id. You just need to change the name of the class, and write the code for the event
listener methods.

Figure 15-35 Accessing the sample controller skeleton

1018 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Summary of Creating a JavaFX Application
Here is a broad summary of the steps that you take when creating a JavaFX application in
this chapter:

● Use Scene Builder to design the GUI. Be sure to give an fx:id to all of the components
that you plan to access in your Java code. Save the GUI as an FXML file.

● Write the code for the main application class, which loads the FXML file and
launches the application. Save and compile the code in the same location as the
FXML file.

● Write the code for the controller class, which contains the event handler methods for
the GUI. Save and compile the code in the same location as the FXML file.

● In Scene Builder, register the controller class, then register an event handler
method for each component that needs to respond to events. Save the FXML
file again.

Figure 15-36 A sample controller skeleton (Oracle Corporate Counsel)

 15.5 RadioButtons and CheckBoxes 1019

Checkpoint

15.15 In general, what operations does the main application class perform?

15.16 What is the controller class?

15.17 What is an event listener?

15.18 How do you register a controller class to an application’s GUI in Scene Builder?

15.19 How do you register an event listener to a component in Scene Builder?

15.5 RadioButtons and CheckBoxes

CONCEPT: RadioButtons normally appear in groups of two or more and allow
the user to select one of several possible options. CheckBoxes, which
may appear alone or in groups, allow the user to make yes/no or
on/off selections.

RadioButtons
RadioButtons are useful when you want the user to select one choice from several possible
options. Figure 15-37 shows a group of RadioButtons. A RadioButton may be selected or
deselected. Each RadioButton has a small circle that appears filled-in when the RadioButton
is selected and appears empty when the RadioButton is deselected.

Figure 15-37 RadioButtons (Oracle Corporate Counsel)

To create a RadioButton, you simply drag it from the Library panel and drop it onto
the Content panel. (The RadioButton component is found in the Controls section of the
Library panel.) RadioButtons have a Text property that determines the text they display.
You change a RadioButton’s Text property in the same way that you change a Label or a
Button’s Text property:

● You select the component, and then change the Text property in the Properties section
of the Inspector panel.

 Or

● You double-click the RadioButton in the Content panel, and edit the text that it dis-
plays. This changes the component’s Text property.

RadioButtons normally are in a toggle group. Only one of the RadioButtons in a toggle group
may be selected at any time. Clicking on a RadioButton selects it and automatically deselects
any other RadioButton in the same toggle group. Because only one RadioButton in a toggle
group can be selected at any given time, the buttons are said to be mutually exclusive.

JavaFX
RadioButtons

VideoNote

1020 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Here are the steps for adding RadioButtons to a toggle group:

● Create the first RadioButton component in the Content panel.
● Open the Properties section of the Inspector Panel, and find the Toggle Group

property. Enter the name you wish to give the toggle group. Figure 15-38 shows
an example.

● Create the next RadioButton. For its Toggle Group property, you should be able
to click the down-arrow and select the toggle group that you created for the first
RadioButton. Repeat this for each subsequent RadioButton that you want in the same
toggle group.

Enter the name for the
toggle group here.

Figure 15-38 Creating a toggle group (Oracle Corporate Counsel)

If you want a RadioButton to initially appear selected, just check its Selected property as
shown in Figure 15-39. Keep in mind that only one RadioButton in a toggle group can
be selected. If you select a RadioButton, any previously selected RadioButton in the same
toggle group will be unselected.

NOTE: The name radio button refers to the old car radios that had push buttons
for selecting stations. Only one of the buttons could be pushed in at a time. When
you pushed a button in, it automatically popped out any other button that was
pushed in.

 15.5 RadioButtons and CheckBoxes 1021

Determining in Code Whether a RadioButton Is Selected
In the controller class, you can use the RadioButton’s isSelected method to determine
whether the RadioButton is selected or not. The isSelected method returns a boolean value.
If the RadioButton is selected, the method returns true. Otherwise, it returns false. In the
following code, assume the radio variable references as a RadioButton component. The if
statement calls the isSelected method to determine whether the RadioButton is selected.

if (radio.isSelected())
{
 // Code here executes if the radio
 // button is selected.
}

The RadioButtonDemo application is an example. Figure 15-40 shows the application’s GUI,
which was created in Scene Builder. The name of the FXML file is RadioButtonDemo.fxml.
The three RadioButtons are in a toggle group, so only one of them can be selected at a
time. When the user selects a RadioButton and then clicks the Show Choice button, a mes-
sage appears in the outputLabel component indicating the user’s selection. For example, in
Figure 15-41 the user has selected Vegetarian, and then clicked the Show Choice button.
The message Vegetarian is displayed in the outputLabel component.

Check the Selected property to
initially select the RadioButton.

Figure 15-39 Making a RadioButton initially selected (Oracle Corporate Counsel)

1022 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Figure 15-41 The RadioButtonDemo application (Oracle Corporate Counsel)

Code Listing 15-3 shows the main application class, and Code Listing 15-4 shows the con-
troller class. In the controller class, the showChoiceListener method in lines 34 through 44
is the event listener for the showChoiceButton component.

Code Listing 15-3 (RadioButtonDemo.java)

 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6
 7 public class RadioButtonDemo extends Application
 8 {
 9 public void start(Stage stage) throws Exception
10 {
11 // Load the FXML file.
12 Parent parent = FXMLLoader.load(
13 getClass().getResource("RadioButtonDemo.fxml"));
14

RadioButton (fx:id is veganRadioButton)

Label (fx:id is outputLabel)

Button
(fx:id is showChoiceButton)

AnchorPane

RadioButton (fx:id is vegetarianRadioButton)

RadioButton (fx:id is carnivoreRadioButton)

Figure 15-40 The RadioButtonDemo application’s GUI (Oracle Corporate Counsel)

 15.5 RadioButtons and CheckBoxes 1023

15 // Build the scene graph.
16 Scene scene = new Scene(parent);
17
18 // Display our window, using the scene graph.
19 stage.setTitle("RadioButtons");
20 stage.setScene(scene);
21 stage.show();
22 }
23
24 public static void main(String[] args)
25 {
26 // Launch the application.
27 launch(args);
28 }
29 }

Code Listing 15-4 (RadioButtonDemoController.java)

 1 import javafx.fxml.FXML;
 2 import javafx.scene.control.Button;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.RadioButton;
 5 import javafx.scene.control.ToggleGroup;
 6
 7 public class RadioButtonDemoController
 8 {
 9 @FXML
10 private RadioButton carnivoreRadioButton;
11
12 @FXML
13 private ToggleGroup myToggleGroup;
14
15 @FXML
16 private Label outputLabel;
17
18 @FXML
19 private Button showChoiceButton;
20
21 @FXML
22 private RadioButton veganRadioButton;
23
24 @FXML
25 private RadioButton vegetarianRadioButton;
26
27 // Event listener for the showChoiceButton component
28 public void showChoiceListener()
29 {

1024 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

30 if (veganRadioButton.isSelected())
31 outputLabel.setText("Vegan");
32
33 if (vegetarianRadioButton.isSelected())
34 outputLabel.setText("Vegetarian");
35
36 if (carnivoreRadioButton.isSelected())
37 outputLabel.setText("Carnivore");
38 }
39 }

Responding to RadioButton Events
In many situations you want an action to take place at the time the user clicks a RadioButton.
When this is the case, you must write an event listener method in the controller class for
each RadioButton, and then select the appropriate method as the event listener in Scene
Builder. The process is the same as selecting an event listener for a Button component.

To demonstrate, we will look at the RadioButtonEvent application. This is very similar to
the RadioButtonDemo application that we just looked at. This application does not have a
Button component, however. Immediately after the user clicks one of the RadioButtons, a
message is displayed in the outputLabel component. Figure 15-42 shows the application’s GUI,
which was created in Scene Builder. The name of the FXML file is RadioButtonEvent.fxml. In
Figure 15-43 the user has selected Vegetarian, and the message Vegetarian is immediately
displayed in the outputLabel component.

RadioButton (fx:id is veganRadioButton)

Label (fx:id is outputLabel)

AnchorPane

RadioButton (fx:id is vegetarianRadioButton)

RadioButton (fx:id is carnivoreRadioButton)

Figure 15-42 The RadioButtonEvent application’s GUI (Oracle Corporate Counsel)

Figure 15-43 The RadioButtonEvent application (Oracle Corporate Counsel)

 15.5 RadioButtons and CheckBoxes 1025

Code Listing 15-5 shows the main application class, and Code Listing 15-6 shows the con-
troller class. The controller class contains the following event listener methods:

● The veganListener method in lines 34 through 37 is the event listener for the
veganRadioButton component.

● The vegetarianListener method in lines 41 through 45 is the event listener for the
vegetarianRadioButton component.

● The carnivoreListener method in lines 48 through 52 is the event listener for the
carnivoreRadioButton component.

Code Listing 15-5 (RadioButtonEvent.java)

 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6
 7 public class RadioButtonEvent extends Application
 8 {
 9 public void start(Stage stage) throws Exception
10 {
11 // Load the FXML file.
12 Parent parent = FXMLLoader.load(
13 getClass().getResource("RadioButtonEvent.fxml"));
14
15 // Build the scene graph.
16 Scene scene = new Scene(parent);
17
18 // Display our window, using the scene graph.
19 stage.setTitle("RadioButtons");
20 stage.setScene(scene);
21 stage.show();
22 }
23
24 public static void main(String[] args)
25 {
26 // Launch the application.
27 launch(args);
28 }
29 }

1026 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Code Listing 15-6 (RadioButtonEventController.java)

 1 import javafx.fxml.FXML;
 2 import javafx.scene.control.Button;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.RadioButton;
 5 import javafx.scene.control.ToggleGroup;
 6
 7 public class RadioButtonEventController
 8 {
 9 @FXML
10 private RadioButton carnivoreRadioButton;
11
12 @FXML
13 private ToggleGroup myToggleGroup;
14
15 @FXML
16 private Label outputLabel;
17
18 @FXML
19 private Button showChoiceButton;
20
21 @FXML
22 private RadioButton veganRadioButton;
23
24 @FXML
25 private RadioButton vegetarianRadioButton;
26
27 // Event listener for the veganRadioButton
28 public void veganListener()
29 {
30 if (veganRadioButton.isSelected())
31 outputLabel.setText("Vegan");
32 }
33
34 // Event listener for the vegetarianRadioButton
35 public void vegetarianListener()
36 {
37 if (vegetarianRadioButton.isSelected())
38 outputLabel.setText("Vegetarian");
39 }
40

 15.5 RadioButtons and CheckBoxes 1027

41 // Event listener for the carnivoreRadioButton
42 public void carnivoreListener()
43 {
44 if (carnivoreRadioButton.isSelected())
45 outputLabel.setText("Carnivore");
46 }
47 }

CheckBoxes
A CheckBox is a small box with text appearing next to it. The window shown in Figure
15-44 has three CheckBoxes.

Figure 15-44 CheckBoxes (Oracle Corporate Counsel)

Like RadioButtons, CheckBoxes may be selected or deselected at run time. When a
CheckBox is selected, a small check mark appears inside the box. Although CheckBoxes
are often displayed in groups, they are not usually grouped in a toggle group like
RadioButtons are. This is because CheckBoxes are not normally used to make mutually
exclusive selections. Instead, the user is allowed to select any or all of the CheckBoxes
displayed in a group.

To create a CheckBox, you simply drag it from the Library panel and drop it onto
the Content panel. (The CheckBox component is found in the Controls section of the
Library panel.) CheckBoxes have a Text property that determines the text they display.
You change a CheckBox’s Text property in the same way that you change a Label or a
Button’s Text property:

● You select the component, and then change the Text property in the Properties section
of the Inspector panel.

 Or

● You double-click the CheckBox in the Content panel, and edit the text that it displays.
This changes the component’s Text property.

If you want a CheckBox to initially appear selected, just check its Selected property as
shown in Figure 15-45.

JavaFX
CheckBoxes

VideoNote

1028 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Determining in Code Whether a CheckBox Is Selected
In the controller class, you can use the CheckBox’s isSelected method to determine whether
the CheckBox is selected or not. The isSelected method returns a boolean value. If the
CheckBox is selected, the method returns true. Otherwise, it returns false. In the following
code, assume the checkbox variable references a CheckBox component. The if statement
calls the isSelected method to determine whether the CheckBox is selected.

if (checkbox.isSelected())
{
 // Code here executes if the
 // CheckBox is selected.
}

The CheckBoxDemo application is an example. Figure 15-46 shows the application’s GUI, which
was created in Scene Builder. The name of the FXML file is CheckBoxDemo.fxml. When the user
clicks the OK button, a message appears in the outputLabel component indicating whether the
CheckBox is selected or not. Figure 15-47 shows examples of the application running.

Check the Selected property
to initially select the CheckBox.

Figure 15-45 Making a CheckBox initially selected (Oracle Corporate Counsel)

CheckBox (fx:id is myCheckBox)

Label (fx:id is outputLabel)

Button
(fx:id is okButton)

AnchorPane

Figure 15-46 The CheckBoxDemo application’s GUI (Oracle Corporate Counsel)

 15.5 RadioButtons and CheckBoxes 1029

Code Listing 15-7 shows the main application class, and Code Listing 15-8 shows the con-
troller class. In the controller class, the okButtonListener method in lines 23 through 29 is
the event listener for the okButton component.

Code Listing 15-7 (CheckBoxDemo.java)

 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6
 7 public class CheckBoxDemo extends Application
 8 {
 9 public void start(Stage stage) throws Exception
10 {
11 // Load the FXML file.
12 Parent parent = FXMLLoader.load(
13 getClass().getResource("CheckBoxDemo.fxml"));
14
15 // Build the scene graph.
16 Scene scene = new Scene(parent);
17
18 // Display our window, using the scene graph.
19 stage.setTitle("CheckBoxes");
20 stage.setScene(scene);
21 stage.show();
22 }
23
24 public static void main(String[] args)
25 {
26 // Launch the application.
27 launch(args);
28 }
29 }

Figure 15-47 The CheckBoxDemo application running (Oracle Corporate Counsel)

1030 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Code Listing 15-8 (CheckBoxDemoController.java)

 1 import javafx.fxml.FXML;
 2 import javafx.scene.control.Button;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.control.CheckBox;
 5
 6 public class CheckBoxDemoController
 7 {
 8 @FXML
 9 private CheckBox myCheckBox;
10
11 @FXML
12 private Label outputLabel;
13
14 @FXML
15 private Button okButton;
16
17 // Event listener for the okButton component
18 public void okButtonListener()
19 {
20 if (myCheckBox.isSelected())
21 outputLabel.setText("The CheckBox is selected.");
22 else
23 outputLabel.setText("The CheckBox is not selected.");
24 }
25 }

Responding to CheckBox Events
Sometimes you want an action to take place at the time the user clicks a CheckBox. When
this is the case, you must write an event listener method in the controller class for the
CheckBox, and then select the method as the event listener in Scene Builder. The process is
the same as selecting an event listener for a Button component, or a RadioButton component.

To demonstrate, we will look at the CheckBoxEvent application. This is very similar to
the CheckBoxDemo application that we just looked at. This application does not have a
Button component, however. Immediately after the user clicks the CheckBox, a message is
displayed in the outputLabel component. Figure 15-48 shows the application’s GUI, which
was created in Scene Builder. The name of the FXML file is CheckBoxEvent.fxml. Figure
15-49 shows examples of the application running.

 15.5 RadioButtons and CheckBoxes 1031

Code Listing 15-9 shows the main application class, and Code Listing 15-10 shows the
controller class. In the controller class, the myCheckBoxListener method in lines 19 through
25 is the event listener for the myCheckBox component.

Code Listing 15-9 (CheckBoxEvent.java)

 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6
 7 public class CheckBoxEvent extends Application
 8 {
 9 public void start(Stage stage) throws Exception
10 {
11 // Load the FXML file.
12 Parent parent = FXMLLoader.load(
13 getClass().getResource("CheckBoxEvent.fxml"));
14
15 // Build the scene graph.
16 Scene scene = new Scene(parent);
17
18 // Display our window, using the scene graph.
19 stage.setTitle("CheckBoxes");
20 stage.setScene(scene);
21 stage.show();
22 }
23

CheckBox (fx:id is myCheckBox)

Label (fx:id is outputLabel)

AnchorPane

Figure 15-48 The CheckBoxEvent application’s GUI (Oracle Corporate Counsel)

Figure 15-49 The CheckBoxEvent application running (Oracle Corporate Counsel)

1032 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

24 public static void main(String[] args)
25 {
26 // Launch the application.
27 launch(args);
28 }
29 }

Code Listing 15-10 (CheckBoxEventController.java)

 1 import javafx.fxml.FXML;
 2 import javafx.scene.control.Label;
 3 import javafx.scene.control.CheckBox;
 4
 5 public class CheckBoxEventController
 6 {
 7 @FXML
 8 private CheckBox myCheckBox;
 9
10 @FXML
11 private Label outputLabel;
12
13 // Event listener for myCheckBox
14 public void myCheckBoxListener()
15 {
16 if (myCheckBox.isSelected())
17 outputLabel.setText("The CheckBox is selected.");
18 else
19 outputLabel.setText("The CheckBox is not selected.");
20 }
21 }

Checkpoint

15.20 You want the user to be able to select only one item from a group of items. Which
type of component would you use for the items, RadioButtons or CheckBoxes?

15.21 You want the user to be able to select any number of items from a group of
items. Which type of component would you use for the items, RadioButtons or
CheckBoxes?

15.22 What is the purpose of a toggle group?

15.23 Do you normally add RadioButtons or CheckBoxes to a toggle group?

 15.6 Displaying Images 1033

15.6 Displaying Images

CONCEPT: Use the ImageView component to display images in a JavaFX
application.

You can use the ImageView component to display images in an application’s GUI. You sim-
ply drag the component from the Library panel (you will find it in the Controls section) and
drop it onto the Content Panel. This creates an empty ImageView component, as shown in
Figure 15-50. Although the component does not yet display an image, it has sizing handles
that reveal its size and location when it is selected.

ImageView component

Figure 15-50 An empty ImageView component (Oracle Corporate Counsel)

Once you have created a ImageView control, you use its Image property to specify the image
that it will display. Figure 15-51 shows the Image property in the Properties section of the
Inspector panel. Click the ellipses button () to browse your file system for an image file to
display. Figure 15-52 shows an example of an image displayed in an ImageView component.

Click here to browse
for an image file.Image property

Figure 15-51 The Image property (Oracle Corporate Counsel)

1034 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Displaying an Image with Code
Sometimes you might need to write code that will change the image being displayed in an
ImageView component, as the application is running. In your controller class, you can call
the ImageView component’s setImage method to do this.

First, you must create an instance of the Image class, which can read the contents of an
image file. The Image class is in the javafx.scene.image package. The Image class construc-
tor accepts a String argument that is the name of an image file. Here is an example:

Image myImage = new Image("Dog.jpg");

This statement creates an Image object that reads the contents of the file Dog.jpg. Because
no path was given, it is assumed that the file is in the current directory or folder. Here is an
example that uses a path.

Image myImage = new Image ("C:\\Chapter 15\\Images\\Dog.jpg");

Once you have created an Image object, you pass a reference to that object to the ImageView
component’s setImage method. The following is an example. Assume that myImageView ref-
erences an ImageView component, and myImage references an Image object.

myImageView.setImage(myImage);

To demonstrate how this works, we will look at the ImageViewDemo application. The
application’s GUI is shown in Figure 15-53. Initially, the ImageView component displays an
image of a dog, and the Dog RadioButton is selected. If the user clicks the catRadioButton,
the image changes to a photo of a cat. If the user clicks the dogRadioButton, the image
changes back to the photo of the dog. Figure 15-54 shows the application running.

Figure 15-52 An image displayed in an ImageView component (Oracle Corporate Counsel)

 15.6 Displaying Images 1035

Code Listing 15-11 shows the main application class, and Code Listing 15-12 shows the
controller class.

Code Listing 15-11 (ImageViewDemo.java)

 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6

RadioButton
(fx:id is dogRadioButton)

ImageView
(fx:id is myImage)

AnchorPane

RadioButton
(fx:id is catRadioButton)

Figure 15-53 The ImageViewDemo application’s GUI (Oracle Corporate Counsel)

Figure 15-54 The ImageViewDemo application running (Oracle Corporate Counsel)

1036 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

 7 public class ImageViewDemo extends Application
 8 {
 9 public void start(Stage stage) throws Exception
10 {
11 // Load the FXML file.
12 Parent parent = FXMLLoader.load(
13 getClass().getResource("ImageViewDemo.fxml"));
14
15 // Build the scene graph.
16 Scene scene = new Scene(parent);
17
18 // Display our window, using the scene graph.
19 stage.setTitle("ImageViewDemo");
20 stage.setScene(scene);
21 stage.show();
22 }
23
24 public static void main(String[] args)
25 {
26 // Launch the application.
27 launch(args);
28 }
29 }

Code Listing 15-12 (ImageViewDemoController.java)

 1 import javafx.fxml.FXML;
 2 import javafx.scene.image.Image;
 3 import javafx.scene.image.ImageView;
 4 import javafx.scene.control.RadioButton;
 5 import javafx.scene.control.ToggleGroup;
 6
 7 public class ImageViewDemoController
 8 {
 9 // Private fields for components
10 @FXML
11 private ImageView myImage;
12
13 @FXML
14 private ToggleGroup myToggleGroup;
15
16 @FXML
17 private RadioButton dogRadioButton;
18
19 @FXML
20 private RadioButton catRadioButton;
21

 15.6 Displaying Images 1037

22 // Private fields for the dog and cat images
23 private Image dogImage;
24 private Image catImage;
25
26 // Initialize method
27 public void initialize()
28 {
29 // Load the dog and cat images
30 dogImage = new Image("Dog.jpg");
31 catImage = new Image("Cat.jpg");
32 }
33
34 // Event listener for the dogRadioButton
35 public void dogRadioButtonListener()
36 {
37 if (dogRadioButton.isSelected())
38 myImage.setImage(dogImage);
39 }
40
41 // Event listener for the catRadioButtonListener
42 public void catRadioButtonListener()
43 {
44 if (catRadioButton.isSelected())
45 myImage.setImage(catImage);
46 }
47 }

Let’s take a closer look at the controller class. Lines 10 through 20 declare the variables
that will reference the components in the GUI. Lines 23 and 24 declare two Image vari-
ables to reference two Image objects. Notice that these two declarations are not preceded
by the @FMXL annotation. That is because the Image variables will not reference any com-
ponents in the GUI. For that reason, it is not necessary to precede the declarations by the
@FMXL annotation.

The initialize method appears in lines 27 through 32. Recall that this method is automati-
cally called after the FXML file is loaded. We will use the initialize method to create two
Image objects. Line 30 creates an Image object, using the Dog.jpg image file that is in the
same folder as the application. Line 31 creates another Image object, using the Cat.jpg
image file that is also in the same folder as the application.

The dogRadioButtonListener method appears in lines 35 through 39. This is the event lis-
tener for the dogRadioButton component. If the dogRadioButton is selected, line 38 sets the
ImageView component’s Image property to the dog image.

The catRadioButtonListener method appears in lines 42 through 46. This is the event lis-
tener for the catRadioButton component. If the catRadioButton is selected, line 45 sets the
ImageView component’s Image property to the cat image.

1038 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Checkpoint

15.24 What ImageView property do you set in the Inspector panel to display an image?

15.25 What method do you call to change an ImageView’s image?

15.7 Common Errors to Avoid
● Not assigning an fx:id to a component. If you need to access a GUI component in

your Java code, you have to assign the component an fx:id in Scene Builder.
● Forgetting to select the controller class for the root node in Scene Builder. Before you

can select event listener methods for a GUI’s components, you must select the control-
ler class that contains those event listeners, for the root node.

● Forgetting to register the event listener for a component. After you have registered the
controller class for the root node, you have to select the event listener methods for
each component that must respond to events.

● Forgetting to write an event listener for each event you wish an application to respond
to. To respond to an event, you must write an event listener of the proper type regis-
tered with the component that generates the event.

● Leaving out the @FXML attribute in private declarations in the controller class. If you
declare a private field in the controller class, and that declaration refers to a compo-
nent in the FXML file, the declaration must be preceded with the @FXML annotation.

● Not placing RadioButtons in a toggle group. If you have a set of RadioButtons
and you want the user to be able to select only one at a time, you must place the
RadioButtons in a toggle group.

Review Questions and Exercises
Multiple Choice and True/False

 1. A(n) ____________ is a method that automatically executes when a specific event occurs.
a. controller
b. event listener
c. initialize method
d. autoresponder

 2. A ________________ is a tree-like hierarchical data structure that contains the com-
ponents of a JavaFX GUI.
a. directory tree
b. node tree
c. node graph
d. scene graph

 3. A _______________ is the parent of all the other nodes in a scene graph.
a. root node
b. branch node
c. leaf node
d. primary node

 Review Questions and Exercises 1039

 4. A _______________ can contain other nodes.
a. root node
b. branch node
c. leaf node
d. mother node

 5. A _______________ cannot have children.
a. root node
b. branch node
c. leaf node
d. terminal node

 6. _____________ is a markup language that describes a JavaFX scene graph.
a. FXML
b. JFXMarkUp
c. HTML
d. SceneXML

 7. The ____________ panel in Scene Builder provides a list of JavaFX components that
you can use in an application.
a. Content
b. Inspector
c. Library
d. Hierarchy

 8. The ____________ panel in Scene Builder is where you visually design an application’s
GUI.
a. Content
b. Inspector
c. Library
d. Hierarchy

 9. The ____________ panel in Scene Builder shows the scene graph.
a. Content
b. Inspector
c. Library
d. Hierarchy

 10. The ____________ panel in Scene Builder allows you to work with a component’s
properties, layout, and code.
a. Content
b. Inspector
c. Library
d. Hierarchy

 11. A(n) ________________ is a name that identifies a component in the FXML file.
a. fx:name
b. fx:id
c. fx:component
d. fx:variable

1040 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

 12. In a JavaFX application, the _________ class loads the FXML file and builds the scene
graph.
a. main application
b. controller
c. event listener
d. Loader

 13. In a JavaFX application, the _________ class is responsible for handling events that
occur while the application is running.
a. main application
b. controller
c. event listener
d. Loader

 14. A _________________ is a component that can be either selected or deselected. These
components usually appear in a group so that only one of them in the group can be
selected at a time.
a. Button
b. CheckBox
c. RadioButton
d. RadioBox

 15. You call the ___________ method to determine whether a RadioButton is selected.
a. isRadioSelected
b. isOn
c. isSelected
d. isClicked

 16. You call the ___________ method to determine whether a CheckBox is selected.
a. isCheckBoxSelected
b. isOn
c. isSelected
d. isClicked

 17. You can use the ______________ component to display images in an application’s
GUI.
a. ImageView
b. Image
c. PictureBox
d. GraphicBox

 18. You call the ________ method to change an ImageView component’s image.
a. image
b. changeImage
c. showImage
d. setImage

 19. True or False: A mutually exclusive relationship is automatically created between all
RadioButton components that are in the same toggle group.

 20. True or False: A component’s fx:id can become a variable name that you can use in
an application’s controller class.

 Review Questions and Exercises 1041

 21. True or False: The controller class usually loads the FXML file and builds the
scene graph.

 22. True or False: You can use Scene Builder to register a controller class to a GUI.

 23. True or False: Registering a controller class to a GUI automatically registers event
listeners to all of the GUI’s components.

 24. True or False: You can register an event listener to a RadioButton. The event listener
will execute when the user clicks the RadioButton.

 25. True or False: You cannot register an event listener to a CheckBox.

Find the Error

 1. The following import statements are in a controller class that uses a Button compo-
nent and a Label component.

import java.fxml.FXML;
import java.scene.control.Button;
import java.scene.control.Label;

 2. Find the errors in the following controller class.

 1 import javafx.fxml.FXML;
 2 import javafx.scene.control.Button;
 3
 4 public class MyControllerClass
 5 {
 6 private Button okButton;
 7
 8 private Label outputLabel;
 9
10 // This method is called when the FXML file is loaded
11 public void initialize()
12 {
13 // Perform any necessary initialization here.
14 }
15
16 // Event listener for the okButton
17 public void okButtonListener()
18 {
19 // Display "Hello World" in the outputLabel.
20 outputLabel.text("Hello World!");
21 }
22 }

Algorithm Workbench

 1. You created a GUI in Scene Builder and saved it to a file named MyGUI.fxml. Write a
main application class that loads the FXML file, builds the scene graph, and displays
the GUI.

 2. You created a GUI in Scene Builder and saved it to a file named Testing.fxml. The
GUI has a Button component with the fx:id myButton, and a Label component with
the fx:id myLabel. You have already written the main application class. Write the
code for the controller class. The controller class should have an event listener for the
Button component that displays the string “Testing 1, 2, 3” in the Label component.

1042 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

 3. In a controller class, the variable radio1 references a RadioButton component, and
outputLabel references a Label component. Write an if statement that determines
whether the RadioButton is selected. If the RadioButton is selected, display “Selected”
in the outputLabel. Otherwise, display “Not selected” in the outputLabel.

Short Answer

 1. What is a scene graph?

 2. List and describe the three types of nodes that can appear in a scene graph.

 3. What is FXML?

 4. What is an fx:id? Why is it important that you assign an fx:id to a component in
Scene Builder?

 5. What is the purpose of the main application class in a JavaFX application?

 6. What is the purpose of the controller class in a JavaFX application?

 7. What is an event listener?

 8. Describe the steps for registering a controller class to an application’s GUI in Scene
Builder, and then registering event listeners to specific components.

 9. Why should a group of RadioButtons belong to the same toggle group?

Programming Challenges
1. Retail Price Calculator

Create a JavaFX application where the user enters the wholesale cost of an item and its
markup percentage into TextFields. (For example, if an item’s wholesale cost is $5 and its
markup percentage is 100%, then its retail price is $10.) The application should have a
button that displays the item’s retail price when clicked.

2. Latin Translator

Look at the following list of Latin words and their meanings.

Latin English

sinister left

dexter right

medium center

Create a JavaFX application that translates the Latin words to English. The GUI should
have three Buttons, one for each Latin word. When the user clicks a Button, the application
should display the English translation in a Label.

3. Name Formatter

Create a JavaFX application that lets the user enter the following pieces of data:

● The user’s first name
● The user’s middle name
● The user’s last name
● The user’s preferred title (Mr., Mrs., Ms., Dr., etc.)

The Retail Price
Calculator

Problem

VideoNote

 Programming Challenges 1043

Assume the user has entered the following data:

● First name: Kelly
● Middle name: Jane
● Last name: Smith
● Title: Ms.

The application should have buttons that display the user’s name formatted in the follow-
ing ways:

Ms. Kelly Jane Smith
Kelly Jane Smith
Kelly Smith
Smith, Kelly Jane, Ms.
Smith, Kelly Jane
Smith, Kelly

4. Tip, Tax, and Total

Create a JavaFX application that lets the user enter the food charge for a meal at a restau-
rant. When a button is clicked, the application should calculate and display the amount of
an 18 percent tip, 7 percent sales tax, and the total of all three amounts.

5. Distance Traveled

Assuming there are no accidents or delays, the distance that a car travels down an interstate
highway can be calculated with the following formula:

Distance 5 Speed 3 Time

Create an application that allows the user to enter a car’s speed in miles per hour. The
application should have buttons that display the following:

● The distance the car will travel in 5 hours
● The distance the car will travel in 8 hours
● The distance the car will travel in 12 hours

6. Heads or Tails

Create a JavaFX application that simulates a coin being tossed. When the user clicks a but-
ton, the application should generate a random number in the range of 0 to 1. If the number
is 0, the coin has landed on “heads,” and if the number is 1, the coin has landed on “tails.”
Use an ImageView component, and the coin images that you will find in this book’s Student
Sample Programs to display the side of the coin when it is tossed.

7. Celsius and Fahrenheit Temperature Converter

Assuming that C is a Celsius temperature, the following formula converts the temperature
to Fahrenheit:

F 5 1.8 3 C 1 32

Assuming that F is a Fahrenheit temperature, the following formula converts the tempera-
ture to Celsius:

C 5 (5/9) 3 (F 2 32)

1044 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

Create a JavaFX application that allows the user to enter a temperature. The application
should have Button components described as follows:

● A button that reads Convert to Fahrenheit. If the user clicks this button, the applica-
tion should treat the temperature that is entered as a Celsius temperature and convert
it to Fahrenheit.

● A button that reads Convert to Celsius. If the user clicks this button, the application
should treat the temperature that is entered as a Fahrenheit temperature, and convert
it to Celsius.

8. Dice Simulator

Create a JavaFX application that simulates the rolling of a pair of dice. When the user clicks
a button, the application should generate two random numbers, each in the range of 1
through 6, to represent the value of the dice. Use ImageView component to display the dice.
(In the Student Sample Programs you will find six images named Die1.png, Die2.png, Die3.
png, Die4.png, Die5.png, and Die6.png that you can use in the ImageView components.)

9. Rock, Paper, Scissors Game

Create a JavaFX application that lets the user play the game of rock, paper, scissors against
the computer. The program should work as follows.

 1. When the program begins, a random number in the range of 1 through 3 is gener-
ated. If the number is 1, then the computer has chosen rock. If the number is 2, then
the computer has chosen paper. If the number is 3, then the computer has chosen
scissors. (Do not display the computer’s choice yet.)

 2. The user selects his or her choice of rock, paper, or scissors by clicking a Button. An
image of the user’s choice should be displayed in an ImageView component. (You
will find rock, paper, and scissors image files in the book’s Student Sample Files.)

 3. An image of the computer’s choice is displayed.
 4. A winner is selected according to the following rules:

● If one player chooses rock and the other player chooses scissors, then rock wins.
(Rock smashes scissors.)

● If one player chooses scissors and the other player chooses paper, then scissors
wins. (Scissors cut paper.)

● If one player chooses paper and the other player chooses rock, then paper wins.
(Paper wraps rock.)

● If both players make the same choice, the game must be played again to deter-
mine the winner.

10. Tic-Tac-Toe Simulator

Create a JavaFX application that simulates a game of tic-tac-toe. Figure 15-55 shows an
example of the application’s GUI. The window shown in the figure uses nine ImageView
components to display the Xs and Os. (You will find images for the X and the O in the
book’s Student Sample Files.)

The application should use a two-dimensional int array to simulate the game board in mem-
ory. When the user clicks the New Game button, the application should step through the
array, storing a random number in the range of 0 through 1 in each element. The number 0

 Programming Challenges 1045

represents the letter O, and the number 1 represents the letter X. The application’s window
should then be updated to display the game board. The application should display a message
indicating whether player X won, player Y won, or the game was a tie.

Figure 15-55 The Tic-Tac-Toe application (Oracle Corporate Counsel)

11. Slot Machine Simulation

A slot machine is a gambling device into which the user inserts money and then pulls a
lever (or presses a button). The slot machine then displays a set of random images. If two
or more of the images match, the user wins an amount of money that the slot machine
dispenses back to the user.

Create a JavaFX application that simulates a slot machine. Figure 15-56 shows an example
of how the GUI should look. The application should let the user enter into a TextField the
amount of money he or she is inserting into the machine. When the user clicks the Spin
button, the application should display three randomly selected symbols. (Slot machines
traditionally display fruit symbols. You will find a set of fruit symbol images in the Student
Sample Programs.) The program should also display the amount that the user won for the
spin, and the total amount won for all spins.

1046 Chapter 15 Creating GUI Applications with JavaFX and Scene Builder

The amount won for a spin is determined in the following way:

● If none of the randomly displayed images match, the user has won $0.
● If two of the images match, the user has won two times the amount entered.
● If three of the images match, the user has won three times the amount entered.

Figure 15-56 Slot Machine application

1047

Recursion

C
H

A
P

T
E

R

16
TOPICS

 16.1 Introduction to Recursion
 16.2 Solving Problems with Recursion
 16.3 Examples of Recursive Methods

 16.4 A Recursive Binary Search Method
 16.5 The Towers of Hanoi
 16.6 Common Errors to Avoid

16.1 Introduction to Recursion

COnCePT: A recursive method is a method that calls itself.

You have seen instances of methods calling other methods. Method A can call method B,
which can then call method C. It’s also possible for a method to call itself. A method that
calls itself is a recursive method. Look at the message method in Code Listing 16-1.

Code Listing 16-1 (EndlessRecursion.java)

 1 /**
 2 This class has a recursive method.
 3 */
 4
 5 public class EndlessRecursion
 6 {
 7 public static void message()
 8 {
 9 System.out.println("This is a recursive method.");
10 message();
11 }
12 }

1048 Chapter 16 Recursion

This method displays the string "This is a recursive method." and then calls itself. Each
time it calls itself, the cycle is repeated. Can you see a problem with the method? There’s no
way to stop the recursive calls. This method is like an infinite loop because there is no code
to stop it from repeating.

Like a loop, a recursive method must have some way to control the number of times it
repeats. The class in Code Listing 16-2 has a modified version of the message method. It
passes an integer argument, which holds the number of times the method should call itself.

Code Listing 16-2 (Recursive.java)

 1 /**
 2 This class has a recursive method, message,
 3 which displays a message n times.
 4 */
 5
 6 public class Recursive
 7 {
 8 public static void message(int n)
 9 {
10 if (n > 0)
11 {
12 System.out.println("This is a recursive method.");
13 message(n - 1);
14 }
15 }
16 }

This method contains an if statement that controls the repetition. As long as the n param-
eter is greater than zero, the method displays the message and calls itself again. Each time it
calls itself, it passes n − 1 as the argument. For example, look at the program in Code
Listing 16-3.

Code Listing 16-3 (RecursionDemo.java)

 1 /**
 2 This class demonstrates the Recursive.message method.
 3 */
 4
 5 public class RecursionDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 Recursive.message(5);
10 }

 16.1 Introduction to Recursion 1049

11 }
12

Program Output

This is a recursive method.
This is a recursive method.
This is a recursive method.
This is a recursive method.
This is a recursive method.

The main method in this class calls the Recursive.message method with the argument 5,
which causes the method to call itself five times. The first time the method is called, the if
statement displays the message and then calls itself with 4 as the argument. Figure 16-1
illustrates this.

The diagram in Figure 16-1 illustrates two separate calls of the message method. Each time
the method is called, a new instance of the n parameter is created in memory. The first time
the method is called, the n parameter is set to 5. When the method calls itself, a new instance
of n is created, and the value 4 is passed into it. This cycle repeats until finally, zero is passed
to the method. This is illustrated in Figure 16-2.

Figure 16-1 First two calls of the method

As you can see from Figure 16-2, the method is called a total of six times. The first time it is
called from the main method of the RecursionDemo class, and the other five times it calls
itself. The number of times that a method calls itself is known as the depth of recursion. In
this example, the depth of recursion is five. When the method reaches its sixth call, the n
parameter is set to 0. At that point, the if statement’s conditional expression is false, so the
method returns. Control of the program returns from the sixth instance of the method to
the point in the fifth instance directly after the recursive method call. This is illustrated in
Figure 16-3.

Because there are no more statements to be executed after the method call, the fifth instance
of the method returns control of the program back to the fourth instance. This repeats until
all instances of the method return.

1050 Chapter 16 Recursion

16.2 Solving Problems with Recursion

COnCePT: A problem can be solved with recursion if it can be broken down into
successive smaller problems that are identical to the overall problem.

The Recursive and RecursionDemo classes shown in the previous section demonstrate the
mechanics of a recursive method. Recursion can be a powerful tool for solving repetitive
problems and is an important topic in upper-level computer science courses. What might
not be clear to you yet is how to use recursion to solve a problem. First, it should be noted
that recursion is never absolutely required to solve a problem. Any problem that can be

Figure 16-2 Total of six calls to the message method

Figure 16-3 Control returns to the point after the recursive method call

 16.2 Solving Problems with Recursion 1051

solved recursively can also be solved iteratively, with a loop. In fact, recursive algorithms
are usually less efficient than iterative algorithms. This is because a method call requires
several actions to be performed by the JVM. These actions include allocating memory for
parameters and local variables, and storing the address of the program location where con-
trol returns after the method terminates. These actions, which are sometimes referred to as
overhead, take place with each method call. Such overhead is not necessary with a loop.

Some repetitive problems, however, are more easily solved with recursion than with itera-
tion. Where an iterative algorithm might result in faster execution time, the programmer
might be able to design a recursive algorithm faster.

In general, a recursive method works like this:

•	 If	 the	problem	can	be	solved	now,	without	recursion,	 then	the	method	solves	 it	
and returns.

•	 If	the	problem	cannot	be	solved	now,	then	the	method	reduces	it	to	a	smaller	but	
similar problem and calls itself to solve the smaller problem.

In order to apply this approach, first we identify at least one case in which the problem can
be solved without recursion. This is known as the base case. Second, we determine a way to
solve the problem in all other circumstances using recursion. This is called the recursive
case. In the recursive case, we must always reduce the problem to a smaller version of the
original problem. By reducing the problem with each recursive call, the base case will even-
tually be reached and the recursion will stop.

Let’s take an example from mathematics to examine an application of recursion. In mathe-
matics, the notation n! represents the factorial of the number n. The factorial of a nonnega-
tive number can be defined by the following rules:

If n 5 0 then n! 5 1

If n . 0 then n! 5 1 3 2 3 3 3 . . . 3 n

Let’s replace the notation n! with factorial(n), which looks a bit more like computer code,
and rewrite these rules as follows:

If n 5 0 then factorial(n) 5 1

If n . 0 then factorial(n) 5 1 3 2 3 3 3 . . . 3 n

These rules state that when n is 0, its factorial is 1. When n is greater than 0, its factorial is
the product of all the positive integers from 1 up to n. For instance, factorial(6) is calculated
as 1 3 2 3 3 3 4 3 5 3 6.

When designing a recursive algorithm to calculate the factorial of any number, first we iden-
tify the base case, which is the part of the calculation that we can solve without recursion.
That is the case where n is equal to 0 as follows:

If n 5 0 then factorial(n) 5 1

This tells how to solve the problem when n is equal to 0, but what do we do when n is
greater than 0? That is the recursive case, or the part of the problem that we use recursion
to solve. This is how we express it:

If n . 0 then factorial(n) 5 n 3 factorial(n 2 1)

Reducing a
Problem with

Recursion

VideoNote

1052 Chapter 16 Recursion

This states that if n is greater than 0, the factorial of n is n times the factorial of n 2 1.
Notice how the recursive call works on a reduced version of the problem, n 2 1. So, our
recursive rule for calculating the factorial of a number might look like this:

If n 5 0 then factorial(n) 5 1

If n . 0 then factorial(n) 5 n 3 factorial (n 2 1)

The following code shows how this might be implemented in a Java method:

private static int factorial(int n)
{
 if (n == 0)
 return 1; // Base case
 else
 return n * factorial(n - 1);
}

The program in Code Listing 16-4 demonstrates the method. Figure 16-4 shows example
interaction with the program.

Code Listing 16-4 (FactorialDemo.java)

 1 import javax.swing.JOptionPane;
 2
 3 /**
 4 This program demonstrates the recursive
 5 factorial method.
 6 */
 7
 8 public class FactorialDemo
 9 {
10 public static void main(String[] args)
11 {
12 String input; // To hold user input
13 int number; // To hold a number
14
15 // Get a number from the user.
16 input = JOptionPane.showInputDialog("Enter a " +
17 "nonnegative integer:");
18 number = Integer.parseInt(input);
19
20 // Display the factorial of the number.
21 JOptionPane.showMessageDialog(null,
22 number + "! is " + factorial(number));
23
24 System.exit(0);
25 }
26

 16.2 Solving Problems with Recursion 1053

27 /**
28 The factorial method uses recursion to calculate
29 the factorial of its argument, which is assumed
30 to be a nonnegative number.
31 @param n The number to use in the calculation.
32 @return The factorial of n.
33 */
34
35 private static int factorial(int n)
36 {
37 if (n == 0)
38 return 1; // Base case
39 else
40 return n * factorial(n - 1);
41 }
42 }

In the example run of the program, the factorial method is called with the argument 4
passed into n. Because n is not equal to 0, the if statement’s else clause executes the follow-
ing statement:

return n * factorial(n - 1);

Although this is a return statement, it does not immediately return. Before the return value
can be determined, the value of factorial(n − 1) must be determined. The factorial
method is called recursively until the fifth call, in which the n parameter will be set to zero.
The diagram in Figure 16-5 illustrates the value of n and the return value during each call of
the method.

This diagram illustrates why a recursive algorithm must reduce the problem with each
recursive call. Eventually the recursion has to stop in order for a solution to be reached. If
each recursive call works on a smaller version of the problem, then the recursive calls work
toward the base case. The base case does not require recursion, so it stops the chain of
recursive calls.

Usually, a problem is reduced by making the value of one or more parameters smaller with
each recursive call. In our factorial method, the value of the parameter n gets closer to 0
with each recursive call. When the parameter reaches 0, the method returns a value without
making another recursive call.

Figure 16-4 Interaction with the FactorialDemo.java program

1054 Chapter 16 Recursion

Direct and Indirect Recursion
The examples we have discussed so far show recursive methods that directly call them-
selves. This is known as direct recursion. There is also the possibility of creating indirect
recursion in a program. This occurs when method A calls method B, which in turn calls
method A. There can even be several methods involved in the recursion. For example,
method A could call method B, which could call method C, which calls method A.

Checkpoint

www.myprogramminglab.com

16.1 It is said that a recursive algorithm has more overhead than an iterative algorithm.
What does this mean?

16.2 What is a base case?

Figure 16-5 Recursive calls to the factorial method (Oracle Corporate Counsel)

http://www.myprogramminglab.com

 16.3 Examples of Recursive Methods 1055

16.3 What is a recursive case?

16.4 What causes a recursive algorithm to stop calling itself?

16.5 What is direct recursion? What is indirect recursion?

16.3 examples of Recursive Methods

Summing a Range of Array elements with Recursion
In this example we look at a method, rangeSum, that uses recursion to sum a range of array
elements. The method takes the following arguments: an int array that contains the range
of elements to be summed, an int specifying the starting element of the range, and an int
specifying the ending element of the range. Here is an example of how the method might
be used:

int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};
int sum;
sum = rangeSum(numbers, 3, 7);

This code specifies that rangeSum should return the sum of elements 3 through 7 in the
numbers array. The return value, which in this case would be 30, is stored in sum. Here is the
definition of the rangeSum method:

public static int rangeSum(int[] array, int start, int end)
{
 if (start > end)
 return 0;
 else
 return array[start] + rangeSum(array, start + 1, end);
}

This method’s base case is when the start parameter is greater than the end parameter.
If this is true, the method returns the value 0. Otherwise, the method executes the
following statement:

return array[start] + rangeSum(array, start + 1, end);

This statement returns the sum of array[start] plus the return value of a recursive call.
Notice that in the recursive call, the starting element in the range is start + 1. In essence,
this statement says “return the value of the first element in the range plus the sum of the rest
of the elements in the range.” The program in Code Listing 16-5 demonstrates the method.

Code Listing 16-5 (RangeSum.java)

 1 /**
 2 This program demonstrates the recursive rangeSum method.
 3 */
 4

1056 Chapter 16 Recursion

 5 public class RangeSum
 6 {
 7
 8 public static void main(String[] args)
 9 {
10 int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
11
12 System.out.print("The sum of elements 2 through " +
13 "5 is "+ rangeSum(numbers, 2, 5));
14 }
15
16 /**
17 The rangeSum method calculates the sum of a specified
18 range of elements in array.
19 @param start Specifies the starting element.
20 @param end Specifies the ending element.
21 @return The sum of the range.
22 */
23
24 public static int rangeSum(int[] array, int start, int end)
25 {
26 if (start > end)
27 return 0;
28 else
29 return array[start] +
30 rangeSum(array, start + 1, end);
31 }
32 }

Program Output

The sum of elements 2 through 5 is 18

Drawing Concentric Circles
In this example we look at the Circles applet, which uses recursion to draw concentric
circles. Concentric circles are circles of different sizes, one inside another, all with a com-
mon center point. Figure 16-6 shows the applet’s output. The applet code is shown in Code
Listing 16-6.

Code Listing 16-6 (Circles.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 This applet uses a recursive method to
 6 draw concentric circles.

 16.3 Examples of Recursive Methods 1057

 7 */
 8
 9 public class Circles extends JApplet
10 {
11 /**
12 init method
13 */
14
15 public void init()
16 {
17 getContentPane().setBackground(Color.white);
18 }
19
20 /**
21 paint method
22 @param g The applet's Graphics object.
23 */
24
25 public void paint(Graphics g)
26 {
27 // Draw 10 concentric circles. The outermost
28 // circle's enclosing rectangle should be at
29 // (5, 5), and it should be 300 pixels wide
30 // by 300 pixels high.
31 drawCircles(g, 10, 5, 300);
32 }
33
34 /**
35 The drawCircles method draws concentric circles.
36 @param g A Graphics object.
37 @param n The number of circles to draw.
38 @param topXY The top left coordinates of the
39 outermost circle's enclosing rectangle.
40 @size The width and height of the outermost
41 circle's enclosing rectangle.
42 */
43
44 private void drawCircles(Graphics g, int n,
45 int topXY, int size)
46 {
47 if (n > 0)
48 {
49 g.drawOval(topXY, topXY, size, size);
50 drawCircles(g, n − 1, topXY + 15, size − 30);
51 }
52 }
53 }

1058 Chapter 16 Recursion

The drawCircles method, which is called from the applet’s paint method, uses recursion to
draw the concentric circles. The n parameter holds the number of circles to draw. When this
parameter is set to 0, the method has reached its base case. Otherwise, it calls the g object’s
drawOval method to draw a circle. The topXY parameter holds the value to use as the X and
Y coordinate of the enclosing rectangle’s upper-left corner. The size parameter holds the
value to use as the enclosing rectangle’s width and height. After the circle is drawn, the
drawCircles method is recursively called with parameter values adjusted for the next circle.

The Fibonacci Series
Some mathematical problems are designed to be solved recursively. One well-known exam-
ple is the calculation of Fibonacci numbers. The Fibonacci numbers, named after the Italian
mathematician Leonardo Fibonacci (born circa 1170), are the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

Notice that after the second number, each number in the series is the sum of the two previ-
ous numbers. The Fibonacci series can be defined as follows:

If n 5 0 then Fib(n) 5 0

If n 5 1 then Fib(n) 5 1

If n .5 2 then Fib(n) 5 Fib(n 2 1) 1 Fib(n 2 2)

A recursive Java method to calculate the nth number in the Fibonacci series is shown here:

public static int fib(int n)
{
 if (n == 0)
 return 0;

Figure 16-6 Circles applet

 16.3 Examples of Recursive Methods 1059

 else if (n == 1)
 return 1;
 else
 return fib(n - 1) + fib(n - 2);
}

Notice that this method actually has two base cases: when n is equal to 0 and when n is
equal to 1. In either case, the method returns a value without making a recursive call. The
program in Code Listing 16-7 demonstrates this method by displaying the first 10 numbers
in the Fibonacci series.

Code Listing 16-7 (FibNumbers.java)

 1 /**
 2 This program demonstrates the recursive fib method.
 3 */
 4
 5 public class FibNumbers
 6 {
 7 public static void main(String[] args)
 8 {
 9 System.out.println("The first 10 numbers in " +
10 "the Fibonacci series are:");
11
12 for (int i = 0; i < 10; i++)
13 System.out.print(fib(i) + " ");
14
15 System.out.println();
16 }
17
18 /**
19 The fib method calculates the nth
20 number in the Fibonacci series.
21 @param n The nth number to calculate.
22 @return The nth number.
23 */
24
25 public static int fib(int n)
26 {
27 if (n == 0)
28 return 0;
29 else if (n == 1)
30 return 1;
31 else
32 return fib(n − 1) + fib(n − 2);
33 }
34 }

1060 Chapter 16 Recursion

Program Output

The first 10 numbers in the Fibonacci series are:
0 1 1 2 3 5 8 13 21 34

Finding the Greatest Common Divisor
Our next example of recursion is the calculation of the greatest common divisor, or GCD,
of two numbers. The GCD of two positive integers, x and y, is as follows:

if y divides x evenly, then gcd(x, y) = y
Otherwise, gcd(x, y) = gcd(y, remainder of x/y)

This definition states that the GCD of x and y is y if x/y has no remainder. This is the base
case. Otherwise, the answer is the GCD of y and the remainder of x/y. The program in Code
Listing 16-8 shows a recursive method for calculating the GCD.

Code Listing 16-8 (GCDdemo.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the recursive gcd method.
 5 */
 6
 7 public class GCDdemo
 8 {
 9 public static void main(String[] args)
10 {
11 int num1, num2; // Two numbers for GCD calculation
12
13 // Create a Scanner object for keyboard input.
14 Scanner keyboard = new Scanner(System.in);
15
16 // Get the first number from the user.
17 System.out.print("Enter an integer: ");
18 num1 = keyboard.nextInt();
19
20 // Get the second number from the user.
21 System.out.print("Enter another integer: ");
22 num2 = keyboard.nextInt();
23
24 // Display the GCD.
25 System.out.println("The greatest common divisor " +
26 "of these two numbers is " +
27 gcd(num1, num2));
28 }
29
30 /**

 16.4 A Recursive Binary Search Method 1061

31 The gcd method calculates the greatest common
32 divisor of the arguments passed into x and y.
33 @param x A number.
34 @param y Another number.
35 @returns The greatest common divisor of x and y.
36 */
37
38 public static int gcd(int x, int y)
39 {
40 if (x % y == 0)
41 return y;
42 else
43 return gcd(y, x % y);
44 }
45 }

Program Output with example Input Shown in Bold

Enter an integer: 49 [enter]
Enter another integer: 28 [enter]
The greatest common divisor of these two numbers is 7

16.4 A Recursive Binary Search Method

COnCePT: The recursive binary search algorithm is more elegant and easier to
understand than its iterative version.

In Chapter 7 you learned about the binary search algorithm and saw an iterative example
written in Java. The binary search algorithm can also be implemented recursively. For
example, the procedure can be expressed as:

 If array[middle] equals the search value, then the value is found.
 Else if array[middle] is less than the search value, perform

a binary search on the upper half of the array.
 Else if array[middle] is greater than the search value, perform

a binary search on the lower half of the array.

When you compare the recursive algorithm to its iterative counterpart, it becomes evident
that the recursive version is much more elegant and easier to understand. The recursive
binary search algorithm is also a good example of repeatedly breaking a problem down into
smaller pieces until it is solved. Here is the code for the method:

public static int binarySearch(int[] array, int first,
 int last, int value)
{
 int middle; // Mid point of search
 // Test for the base case where the
 // value is not found.

1062 Chapter 16 Recursion

 if (first > last)
 return -1;
 // Calculate the middle position.
 middle = (first + last) / 2;
 // Search for the value.
 if (array[middle] == value)
 return middle;
 else if (array[middle] < value)
 return binarySearch(array, middle + 1,
 last, value);
 else
 return binarySearch(array, first,
 middle - 1, value);
}

The first parameter, array, is the array to be searched. The next parameter, first, holds the
subscript of the first element in the search range (the portion of the array to be searched).
The next parameter, last, holds the subscript of the last element in the search range. The
last parameter, value, holds the value to be searched for. Like the iterative version, this
method returns the subscript of the value if it is found, or −1 if the value is not found. Code
Listing 16-9 demonstrates the method.

Code Listing 16-9 (RecursiveBinarySearch.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the recursive
 5 binary search method.
 6 */
 7
 8 public class RecursiveBinarySearch
 9 {
10 public static void main(String [] args)
11 {
12 int searchValue; // The value to search for
13 int result; // The search result
14 String input; // A line of input
15 char again; // To hold a single character
16
17 // The values in the following array are sorted
18 // in ascending order.
19 int numbers[] = {101, 142, 147, 189, 199, 207, 222,
20 234, 289, 296, 310, 319, 388, 394,
21 417, 429, 447, 521, 536, 600};
22
23 // Create a Scanner object for keyboard input.
24 Scanner keyboard = new Scanner(System.in);

 16.4 A Recursive Binary Search Method 1063

25
26 do
27 {
28 // Get a value to search for.
29 System.out.print("Enter a value to " +
30 "search for: ");
31 searchValue = keyboard.nextInt();
32
33 // Search for the value
34 result = binarySearch(numbers, 0,
35 (numbers.length - 1),
36 searchValue);
37
38 // Display the results.
39 if (result == -1)
40 {
41 System.out.println(searchValue +
42 " was not found.");
43 }
44 else
45 {
46 System.out.println(searchValue +
47 " was found at " +
48 "element " + result);
49 }
50
51 // Does the user want to search again?
52 System.out.print("Do you want to search again? " +
53 "(Y or N): ");
54 // Consume the remaining newline.
55 keyboard.nextLine();
56 // Read a line of input.
57 input = keyboard.nextLine();
58
59 } while (input.charAt(0) == 'y' ||
60 input.charAt(0) == 'Y');
61 }
62
63 /**
64 The binarySearch method performs a binary search
65 on an integer array.
66 @param array The array to search.
67 @param first The first element in the search range.
68 @param last The last element in the search range.
69 @param value The value to search for.
70 @return The subscript of the value if found,
71 otherwise -1.
72 */

1064 Chapter 16 Recursion

73
74 public static int binarySearch(int[] array, int first,
75 int last, int value)
76 {
77 int middle; // Mid point of search
78
79 // Test for the base case where the
80 // value is not found.
81 if (first > last)
82 return -1;
83
84 // Calculate the middle position.
85 middle = (first + last) / 2;
86
87 // Search for the value.
88 if (array[middle] == value)
89 return middle;
90 else if (array[middle] < value)
91 return binarySearch(array, middle + 1,
92 last, value);
93 else
94 return binarySearch(array, first,
95 middle - 1, value);
96 }
97 }

Program Output with example Input Shown in Bold

Enter a value to search for: 289 [enter]
289 was found at element 8
Do you want to search again? (Y or N): y [enter]
Enter a value to search for: 388 [enter]
388 was found at element 12
Do you want to search again? (Y or N): y [enter]
Enter a value to search for: 101 [enter]
101 was found at element 0
Do you want to search again? (Y or N): y [enter]
Enter a value to search for: 999 [enter]
999 was not found.
Do you want to search again? (Y or N): n [enter]

16.5 The Towers of Hanoi

COnCePT: The repetitive steps involved in solving the Towers of Hanoi game can be
easily implemented in a recursive algorithm.

 16.5 The Towers of Hanoi 1065

The Towers of Hanoi is a mathematical game that is often used in computer science text-
books to illustrate the power of recursion. The game uses three pegs and a set of discs
with holes through their centers. The discs are stacked on one of the pegs as shown in
Figure 16-7.

Notice that the discs are stacked on the leftmost peg, in order of size with the largest disc at
the bottom. The game is based on a legend where a group of monks in a temple in Hanoi
have a similar set of pegs with 64 discs. The job of the monks is to move the discs from the
first peg to the third peg. The middle peg can be used as a temporary holder. Furthermore,
the monks must follow these rules while moving the discs:

•	 Only	one	disk	may	be	moved	at	a	time.
•	 A	disk	cannot	be	placed	on	top	of	a	smaller	disc.
•	 All	discs	must	be	stored	on	a	peg	except	while	being	moved.

According to the legend, when the monks have moved all of the discs from the first peg to
the last peg, the world will come to an end.

To play the game, you must move all of the discs from the first peg to the third peg, follow-
ing the same rules as the monks. Let’s look at some example solutions to this game, for dif-
ferent numbers of discs. If you have only one disc, the solution to the game is simple: move
the disc from peg 1 to peg 3. If you have two discs, the solution requires three moves:

•	 Move	disc	1	to	peg	2.
•	 Move	disc	2	to	peg	3.
•	 Move	disc	1	to	peg	3.

Notice that this approach uses peg 2 as a temporary location. The complexity of the moves
continues to increase as the number of discs increases. To move three discs requires the
seven moves shown in Figure 16-8.

The following statement describes the overall solution to the problem:

Move n discs from peg 1 to peg 3 using peg 2 as a temporary peg.

The following algorithm can be used as the basis of a recursive method that simulates the
solution to the game. Notice that in this algorithm we use the variables A, B, and C to hold
peg numbers.

To move n discs from peg A to peg C, using peg B as a temporary peg:
If n . 0 then

Figure 16-7 The pegs and discs in the Towers of Hanoi game

1066 Chapter 16 Recursion

Move n 2 1 discs from peg A to peg B, using peg C as a temporary peg.
Move the remaining disc from peg A to peg C.
Move n 2 1 discs from peg B to peg C, using peg A as a temporary peg.

End if

The base case for the algorithm is reached when there are no more discs to move. The fol-
lowing code is for a method that implements this algorithm. Note that the method does not
actually move anything, but displays instructions indicating all of the disc moves to make.

private void moveDiscs(int num, int fromPeg, int toPeg, int tempPeg)
{
 if (num > 0)
 {
 moveDiscs(num − 1, fromPeg, tempPeg, toPeg);
 System.out.println("Move a disc from peg " + fromPeg +
 " to peg " + toPeg);
 moveDiscs(num − 1, tempPeg, toPeg, fromPeg);
 }
}

Figure 16-8 Steps for moving three pegs

 16.5 The Towers of Hanoi 1067

This method accepts arguments into the following four parameters:

num The number of discs to move.

fromPeg The peg to move the discs from.

toPeg The peg to move the discs to.

tempPeg The peg to use as a temporary peg.

If num is greater than 0, then there are discs to move. The first recursive call is as follows:

moveDiscs(num - 1, fromPeg, tempPeg, toPeg);

This statement is an instruction to move all but one disc from fromPeg to tempPeg, using
toPeg as a temporary peg. The next statement is as follows:

System.out.println("Move a disc from peg " + fromPeg +
 " to peg " + toPeg);

This simply displays a message indicating that a disc should be moved from fromPeg to
toPeg. Next, another recursive call is executed as follows:

moveDiscs(num - 1, tempPeg, toPeg, fromPeg);

This statement is an instruction to move all but one disc from tempPeg to toPeg, using
fromPeg as a temporary peg. Code Listing 16-10 shows the Hanoi class, which uses
this method.

Code Listing 16-10 (Hanoi.java)

 1 /**
 2 This class displays a solution to the Towers of
 3 Hanoi game.
 4 */
 5
 6 public class Hanoi
 7 {
 8 private int numDiscs; // Number of discs
 9
10 /**
11 Constructor.
12 @param n The number of discs to use.
13 */
14
15 public Hanoi(int n)
16 {
17 // Assign the number of discs.
18 numDiscs = n;
19
20 // Move the number of discs from peg 1 to peg 3
21 // using peg 2 as a temporary storage location.
22 moveDiscs(numDiscs, 1, 3, 2);
23 }

1068 Chapter 16 Recursion

24
25 /**
26 The moveDiscs method displays a disc move.
27 @param num The number of discs to move.
28 @param fromPeg The peg to move from.
29 @param toPeg The peg to move to.
30 @param tempPeg The temporary peg.
31 */
32
33 private void moveDiscs(int num, int fromPeg,
34 int toPeg, int tempPeg)
35 {
36 if (num > 0)
37 {
38 moveDiscs(num - 1, fromPeg, tempPeg, toPeg);
39 System.out.println("Move a disc from peg " +
40 fromPeg + " to peg " + toPeg);
41 moveDiscs(num - 1, tempPeg, toPeg, fromPeg);
42 }
43 }
44 }

The class constructor accepts an argument, which is the number of discs to use in the game.
It assigns this value to the numDiscs field, and then calls the moveDiscs method in line 22. In
a nutshell, this statement is an instruction to move all the discs from peg 1 to peg 3, using
peg 2 as a temporary peg. The program in Code Listing 16-11 demonstrates the class. It
displays the instructions for moving three discs.

Code Listing 16-11 (HanoiDemo.java)

 1 /**
 2 This class demonstrates the Hanoi class, which
 3 displays the steps necessary to solve the Towers
 4 of Hanoi game.
 5 */
 6
 7 public class HanoiDemo
 8 {
 9 static public void main(String[] args)
10 {
11 Hanoi towersOfHanoi = new Hanoi(3);
12 }
13 }

 Review Questions and Exercises 1069

Program Output

Move a disc from peg 1 to peg 3
Move a disc from peg 1 to peg 2
Move a disc from peg 3 to peg 2
Move a disc from peg 1 to peg 3
Move a disc from peg 2 to peg 1
Move a disc from peg 2 to peg 3
Move a disc from peg 1 to peg 3

16.6 Common errors to Avoid
•	 Not coding a base case. When the base case is reached, a recursive method stops call-

ing itself. Without a base case, the method will continue to call itself infinitely.
•	 Not reducing the problem with each recursive call. Unless the problem is reduced

(which usually means that the value of one or more critical parameters is reduced)
with each recursive call, the method will not reach the base case. If the base case is not
reached, the method will call itself infinitely.

•	 Writing the recursive call in such a way that the base case is never reached. You might
have a base case and a recursive case that reduces the problem, but if the calculations
are not performed in such a way that the base case is ultimately reached, the method
will call itself infinitely.

Review Questions and exercises
Multiple Choice and True/False

 1. A method is called once from a program’s main method, and then it calls itself four
times. The depth of recursion is __________.
a. one
b. four
c. five
d. nine

 2. This is the part of a problem that can be solved without recursion.
a. base case
b. solvable case
c. known case
d. iterative case

 3. This is the part of a problem that is solved with recursion.
a. base case
b. iterative case
c. unknown case
d. recursion case

1070 Chapter 16 Recursion

 4. This is when a method explicitly calls itself.
a. explicit recursion
b. modal recursion
c. direct recursion
d. indirect recursion

 5. This is when method A calls method B, which calls method A.
a. implicit recursion
b. modal recursion
c. direct recursion
d. indirect recursion

 6. This refers to the actions taken internally by the JVM when a method is called.
a. overhead
b. set up
c. clean up
d. synchronization

 7. True or False: An iterative algorithm will usually run faster than an equivalent recur-
sive algorithm.

 8. True or False: Some problems can be solved through recursion only.

 9. True or False: It is not necessary to have a base case in all recursive algorithms.

 10. True or False: In the base case, a recursive method calls itself with a smaller version
of the original problem.

Find the error

 1. Find the error in the following program:

public class FindTheError
{
 public static void main(String[] args)
 {
 myMethod(0);
 }
 public static void myMethod(int num)
 {
 System.out.print(num + " ");
 myMethod(num + 1);
 }
}

Algorithm Workbench

 1. Write a method that accepts a String as an argument. The method should use recur-
sion to display each individual character in the String.

 2. Modify the method you wrote in Algorithm Workbench 1 so it displays the
String backwards.

 Review Questions and Exercises 1071

 3. What will the following program display?

public class Checkpoint
{
 public static void main(String[] args)
 {
 int num = 0;
 showMe(num);
 }
 public static void showMe(int arg)
 {
 if (arg < 10)
 showMe(arg + 1);
 else
 System.out.println(arg);
 }
}

 4. What will the following program display?

public class Checkpoint
{
 public static void main(String[] args)
 {
 int num = 0;
 showMe(num);
 }
 public static void showMe(int arg)
 {
 System.out.println(arg);
 if (arg < 10)
 showMe(arg + 1);
 }
}

 5. What will the following program display?

public class ReviewQuestion5
{
 public static void main(String[] args)
 {
 int x = 10;
 System.out.println(myMethod(x));
 }
 public static int myMethod(int num)
 {
 if (num <= 0)
 return 0;
 else

1072 Chapter 16 Recursion

 return myMethod(num − 1) + num;
 }
}

 6. Convert the following iterative method to one that uses recursion:

public static void sign(int n)
{
 while (n > 0)
 {
 System.out.println("No Parking");
 n--;
 }
}

 7. Write an iterative version (using a loop instead of recursion) of the factorial method
shown in this chapter.

Short Answer

 1. What is the difference between an iterative algorithm and a recursive algorithm?

 2. What is a recursive algorithm’s base case? What is the recursive case?

 3. What is the base case of each of the recursive methods listed in Algorithm Workbench
3, 4, and 5?

 4. What type of recursive method do you think would be more difficult to debug: one
that uses direct recursion or one that uses indirect recursion? Why?

 5. Which repetition approach is less efficient: a loop or a recursive method? Why?

 6. When recursion is used to solve a problem, why must the recursive method call itself
to solve a smaller version of the original problem?

 7. How is a problem usually reduced with a recursive method?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Recursive Multiplication

Write a recursive function that accepts two arguments into the parameters x and y. The
function should return the value of x times y. Remember, multiplication can be performed
as repeated addition as follows:

7 * 4 5 4 1 4 1 4 1 4 1 4 1 4 1 4

2. isMember Method

Write a recursive boolean method named isMember. The method should search an array for
a specified value, and return true if the value is found in the array, or false if the value is
not found in the array. Demonstrate the method in a program.

http://www.myprogramminglab.com

 Programming Challenges 1073

3. String Reverser

Write a recursive method that accepts a string as its argument and prints the string in
reverse order. Demonstrate the method in a program.

4. maxElement Method

Write a method named maxElement, which returns the largest value in an array that is passed
as an argument. The method should use recursion to find the largest element. Demonstrate
the method in a program.

5. Palindrome Detector

A palindrome is any word, phrase, or sentence that reads the same forward and backward.
Here are some well-known palindromes:

Able was I, ere I saw Elba
A man, a plan, a canal, Panama
Desserts, I stressed
Kayak

Write a boolean method that uses recursion to determine whether a String argument is a
palindrome. The method should return true if the argument reads the same forward and
backward. Demonstrate the method in a program.

6. Character Counter

Write a method that uses recursion to count the number of times a specific character occurs
in an array of characters. Demonstrate the method in a program.

7. Recursive Power Method

Write a method that uses recursion to raise a number to a power. The method should accept
two arguments: the number to be raised and the exponent. Assume that the exponent is a
nonnegative integer. Demonstrate the method in a program.

8. Sum of numbers

Write a method that accepts an integer argument and returns the sum of all the integers
from 1 up to the number passed as an argument. For example, if 50 is passed as an argu-
ment, the method will return the sum of 1, 2, 3, 4, . . . 50. Use recursion to calculate the sum.
Demonstrate the method in a program.

9. Ackermann’s Function

Ackermann’s function is a recursive mathematical algorithm that can be used to test how well
a computer performs recursion. Write a method ackermann(m, n), which solves Ackermann’s
function. Use the following logic in your method:

If m 5 0 then return n 1 1
If n 5 0 then return ackermann(m 2 1, 1)
Otherwise, return ackermann(m 2 1, ackermann(m, n 2 1))

The Recursive
Power Problem

VideoNote

1074 Chapter 16 Recursion

Test your method in a program that displays the return values of the following method
calls:

ackermann(0, 0) ackermann(0, 1) ackermann(1, 1) ackermann(1, 2)
ackermann(1, 3) ackermann(2, 2) ackermann(3, 2)

10. Recursive Population Class

In Programming Challenge 9 of Chapter 4 you wrote a population class that predicts the
size of a population of organisms after a number of days. Modify the class so it uses a recur-
sive method instead of a loop to calculate the number of organisms.

1075

Databases

C
H

A
P

T
E

R

17
TOPICS

 17.1 Introduction to Database Management
Systems

 17.2 Tables, Rows, and Columns
 17.3 Introduction to the SQL SELECT

Statement
 17.4 Inserting Rows
 17.5 Updating and Deleting

Existing Rows

 17.6 Creating and Deleting Tables
 17.7 Creating a New Database with JDBC
 17.8 Scrollable Result Sets
 17.9 Result Set Metadata
 17.10 Displaying Query Results in a JTable
 17.11 Relational Data
 17.12 Advanced Topics
 17.13 Common Errors to Avoid

17.1 Introduction to Database Management Systems

COnCePT: A database management system (DBMS) is software that manages large
collections of data.

If an application needs to store only a small amount of data, text and binary files work well.
These types of files, however, are not practical when a large amount of data must be stored
and manipulated. Many businesses keep hundreds of thousands, or even millions, of data
items in files. When a text or binary file contains this much data, simple operations such as
searching, inserting, and deleting become cumbersome and inefficient.

When developing applications that work with an extensive amount of data, most develop-
ers prefer to use a database management system. A database management system (DBMS)
is software specifically designed to store, retrieve, and manipulate large amounts of data in
an organized and efficient manner. Once the data is stored using the database management
system, applications may be written in Java or other languages to communicate with the
DBMS. Rather than retrieving or manipulating the data directly, applications can send
instructions to the DBMS. The DBMS carries out those instructions and sends the results
back to the application. Figure 17-1 illustrates this.

1076 Chapter 17 Databases

Although Figure 17-1 is simplified, it illustrates the layered nature of an application that
works with a database management system. The topmost layer of software, which in this
case is written in Java, interacts with the user. It also sends instructions to the next layer of
software, the DBMS. The DBMS works directly with the data, and sends the results of
operations back to the application.

For example, suppose that a company keeps all of its product records in a database. The
company has a Java application that allows the user to look up information on any product
by entering its product ID number. The Java application instructs the DBMS to retrieve the
record for the product with the specified product ID number. The DBMS retrieves the prod-
uct record and sends the data back to the Java application. The Java application displays
the data to the user.

The advantage of this layered approach to software development is that the Java program-
mer does not need to know about the physical structure of the data. He or she only needs to
know how to write code that interacts with the DBMS. The DBMS handles the actual read-
ing, writing, and searching of data.

JDBC
Figure 17-1 gives a simple illustration of a Java application communicating with a DBMS.
The technology that makes this communication possible is known as JDBC, which stands
for Java Database Connectivity. The Java API contains numerous JDBC classes that allow
your Java applications to interact with a DBMS. This is illustrated in Figure 17-2.

Database
Management

System

Data

Java
Application

Figure 17-1 A Java application interacts with a DBMS, which manipulates data

 17.1 Introduction to Database Management Systems 1077

SQL
SQL, which stands for Structured Query Language, is a standard language for working
with database management systems. It was originally developed by IBM in the 1970s. Since
then, SQL has been adopted by almost every database software vendor as the language of
choice for interacting with its DBMS.

SQL consists of several key words. You use the key words to construct statements, which are
also known as queries. These statements, or queries, are submitted to the DBMS, and are
instructions for the DBMS to carry out operations on its data. When a Java application inter-
acts with a DBMS, the Java application must construct SQL statements as strings, and then
use an API method to pass those strings to the DBMS. In this chapter, you will learn how to
construct simple SQL statements and then pass them to a DBMS using an API method call.

Database
Management

System

Data

Java
Application

JDBC Classes

Figure 17-2 A Java application uses the JDBC classes to interact with a DBMS

nOTe: Although SQL is a language, you don’t use it to write applications. It is intended
only as a standard means of interacting with a DBMS. You still need a general program-
ming language, such as Java, to write an application for the ordinary user.

Using a DBMS
To use JDBC to work with a database, you will need a DBMS installed on your system, or
available to you in a school lab environment. There are many commercial DBMS packages
available. Oracle, Microsoft SQL Server, DB2, and MySQL are just a few of the popular ones.
In your school’s lab, you may already have access to one of these, or perhaps another DBMS.

1078 Chapter 17 Databases

Java DB
If you do not have access to a DBMS in a school lab, you can use Java DB. Beginning with
Java 7, Java DB is automatically installed on your system when you install the JDK.

Java DB is an open source distribution of Apache Derby, a pure Java DBMS that is freely
available from Oracle. It is designed specifically for Java applications and is easy to install
and use. All of the examples in this chapter were created with Java DB. If you wish to use
Java DB, see Appendix M, Configuring Java DB, available for download on this book’s
companion Web site.

Creating the CoffeeDB Database
In this chapter we will use a database named CoffeeDB as our example. The CoffeeDB data-
base is used in the business operations of The Midnight Roastery, a small coffee roasting
company. After you have installed the Java DB DBMS, perform the following steps to create
the CoffeeDB database:

 1. Make sure you have downloaded student source code files from the book’s compan-
ion Web site.

 2. In this chapter’s source code files, locate a program named CreateCoffeeDB.java.
 3. Compile and execute the CreateCoffeeDB.java program. If Java DB is properly

installed, this program will create the CoffeeDB database on your system.

Connecting to the CoffeeDB Database
After installing Java DB and creating the CoffeeDB database, you should attempt to connect
to the database with a Java program. A program can call the static JDBC method
DriverManager.getConnection to get a connection to a database. There are overloaded ver-
sions of this method, but the simplest one has the following general format:

DriverManager.getConnection(DatabaseURL);

The method returns a reference to a Connection object, which we will discuss in a moment.
In the general format, DatabaseURL is a string known as a database URL. URL stands for
Uniform Resource Locator. A database URL lists the protocol that should be used to access
the database, the name of the database, and potentially other items. A simple database URL
has the following general format:

protocol:subprotocol:databaseName

In this very simple general format, three items are listed, separated by colons: protocol,
subprotocol, and databaseName. Let’s take a closer look at each one.

•	 protocol is the database protocol. When using JDBC, the protocol will always be jdbc.
•	 The	value	for	subprotocol will be dependent upon the particular type of DBMS you

are connecting to. If you are using Java DB, the subprotocol is derby.
•	 databaseName is the name of the database you are connecting to.

nOTe: If you are in a school lab environment using a DBMS other than Java DB, consult
with your instructor on how to modify the program to work with your specific DBMS.

 17.1 Introduction to Database Management Systems 1079

If we are using Java DB, the URL for the CoffeeDB database is:

jdbc:derby:CoffeeDB

The DriverManager.getConnection method searches for and loads a JDBC driver that is
compatible with the database specified by the URL. A JDBC driver is a Java class that is
designed to communicate with a specific DBMS. Each DBMS usually comes with its own
JDBC driver. Typically, when you install a DBMS, you also update your system’s CLASSPATH
variable to include the JDBC driver’s location. This will enable the JVM to find the driver
class when you call the DriverManager.getConnection method.

When the DriverManager.getConnection method finds a compatible driver, it returns a
Connection object. Connection is an interface in the java.sql package. You will need to use
this Connection object to perform various tasks with the database, so save the reference in
a variable. Here is an example of code that we can use in a Java application to get a connec-
tion to the CoffeeDB database using Java DB:

final String DB_URL = "jdbc:derby:CoffeeDB";
Connection conn = DriverManager.getConnection(DB_URL);

In the second statement shown here, we call the DriverManager.getConnection method,
passing the URL for the CoffeeDB database. The method returns a reference to a Connection
object, which we assign to the conn variable. If the DriverManager.getConnection method
fails to load an appropriate driver for the specified database, it will throw an SQLException.

Before going any further, compile and execute the TestConnection.java program shown in
Code Listing 17-1. It demonstrates what we’ve covered so far. (This program assumes that
Java DB has been installed, and that the CoffeeDB database has been created.)

Code Listing 17-1 (TestConnection.java)

 1 import java.sql.*; // Needed for JDBC classes
 2
 3 /**
 4 This program demonstrates how to connect to
 5 a Java DB database using JDBC.
 6 */
 7
 8 public class TestConnection
 9 {
10 public static void main(String[] args)
11 {
12 // Create a named constant for the URL.
13 // NOTE: This value is specific for Java DB.
14 final String DB_URL = "jdbc:derby:CoffeeDB";
15
16 try
17 {
18 // Create a connection to the database.
19 Connection conn = DriverManager.getConnection(DB_URL);
20 System.out.println("Connection created to CoffeeDB.");

1080 Chapter 17 Databases

21
22 // Close the connection.
23 conn.close();
24 System.out.println("Connection closed.");
25 }
26 catch(Exception ex)
27 {
28 System.out.println("ERROR: " + ex.getMessage());
29 }
30 }
31 }

Program Output

Connection created to CoffeeDB.
Connection closed.

Notice that line 1 imports all of the classes in the java.sql package. This package contains
many of the necessary JDBC classes. Line 14 creates a string constant containing the URL
for the CoffeeDB database.

JDBC methods throw an SQLException if they encounter a problem with a database. For
that reason, we use a try-catch statement to handle any such exceptions. Let’s take a
closer look at the statements inside the try block:

•	 Line	19	does	the	following:
•	 It	declares	a	Connection variable named conn.
•	 It	 calls	 the	DriverManager.getConnection method to get a connection to the

CoffeeDB database.
•	 The	DriverManager.getConnection method returns a reference to a Connection

object. The reference is assigned to the conn variable.
•	 Line	20	displays	a	message	indicating	that	a	connection	was	created.
•	 Line	23	calls	the	Connection object’s close method, which simply closes the data-

base connection.
•	 Line	24	displays	a	message	indicating	that	the	connection	is	closed.

If a connection cannot be created in line 19, or the connection cannot be closed in line 23,
an exception will be thrown. The catch clause in line 26 will handle the exception, and line
28 will display the exception object’s default error message.

Connecting to a Password-Protected Database
If the database that you are connecting to requires a user name and a password, you can use
the following form of the DriverManager.getConnection method:

DriverManager.getConnection(DatabaseURL, Username, Password);

In this general format, Username is a string containing a valid username, and Password is a
string containing the password.

 17.2 Tables, Rows, and Columns 1081

Checkpoint

www.myprogramminglab.com

17.1 Why do most businesses use a DBMS to store their data instead of creating their
own text files or binary files to hold the data?

17.2 When a Java programmer uses a DBMS to store and manipulate data, why
doesn’t the programmer need to know specific details about the physical structure
of the data?

17.3 What is the technology that makes it possible for a Java application to communicate
with a DBMS?

17.4 What is the standard language for working with database management systems?

17.5 What is a database URL?

17.6 Suppose you have a Java DB database on your system named InventoryDB. What
database URL would you use in a Java program to get a connection to the database?

17.7 What static JDBC method do you call to get a connection to a database?

17.2 Tables, Rows, and Columns

COnCePT: Data that is stored in a database is organized into tables, rows, and columns.

A database management system stores data in a database. Your first step in learning to use
a DBMS is to learn how data is organized inside a database. The data that is stored in a
database is organized into one or more tables. Each table holds a collection of related data.
The data that is stored in a table is then organized into rows and columns. A row is a com-
plete set of information about a single item. The data that is stored in a row is divided into
columns. Each column is an individual piece of information about the item.

The CoffeeDB database has a table named Coffee, which holds records for all of the differ-
ent coffees sold by the company. Table 17-1 shows the contents of the table.

Table 17-1 The Coffee database table

Description ProdNum Price

Bolivian Dark 14-001 8.95

Bolivian Medium 14-002 8.95

Brazilian Dark 15-001 7.95

Brazilian Medium 15-002 7.95

Brazilian Decaf 15-003 8.55

Central American Dark 16-001 9.95

Central American Medium 16-002 9.95

Sumatra Dark 17-001 7.95

Sumatra Decaf 17-002 8.95

Sumatra Medium 17-003 7.95
(table continues next page)

http://www.myprogramminglab.com

1082 Chapter 17 Databases

Description ProdNum Price

Sumatra Organic Dark 17-004 11.95

Kona Medium 18-001 18.45

Kona Dark 18-002 18.45

French Roast Dark 19-001 9.65

Galapagos Medium 20-001 6.85

Guatemalan Dark 21-001 9.95

Guatemalan Decaf 21-002 10.45

Guatemalan Medium 21-003 9.95

As you can see, the table has 18 rows. Each row holds data about a type of coffee. The rows
are divided into three columns. The first column is named Description, and it holds the
description of a type of coffee. The second column is named ProdNum, and it holds a coffee’s
product number. The third column is named Price, and it holds a coffee’s price per pound.
As illustrated in Figure 17-3, the third row in the table holds the following data:

Description: Brazilian Dark
Product Number: 15-001
Price: 7.95

Table 17-1 The Coffee database table (continued)

This row contains data
about a single item.
Description: Brazilian Dark
Product Number: 15-001
Price: 7.95

Description
Column

ProdNum
Column

Price
Column

Figure 17-3 The Coffee database table

 17.2 Tables, Rows, and Columns 1083

Column Data Types
The columns in a database table are assigned a data type. Notice that the Description and
ProdNum columns in the Coffee table hold strings, and the Price column holds floating-
point numbers. The data types of the columns are not Java data types, however. Instead,
they are SQL data types. Table 17-2 lists a few of the standard SQL data types, and shows
the Java data type that each is generally compatible with.

Table 17-2 A few of the SQL data types

SQL Data Type Description Corresponding Java Data Type

INTEGER or INT An integer number int

CHARACTER(n) or CHAR(n) A fixed-length string with a length
of n characters

String

VARCHAR(n) A variable-length string with a
maximum length of n characters

String

REAL A single-precision floating-point
number

float

DOUBLE A double-precision floating-point
number

double

DECIMAL(t, d) A decimal value with t total digits
and d digits appearing after the
decimal point

java.math.BigDecimal

DATE A date java.sql.Date

There are many other standard data types in SQL. When the Coffee table was created, the
following data types were used for the columns:

•	 The	data	type	for	the	Description column is CHAR(25). This means that each value in
the Description column is a string with a fixed length of 25 characters, compatible
with the String type in Java.

•	 The	data	type	for	the	ProdNum column is CHAR(10). This means that each value in the
ProdNum column is a string with a fixed length of 10 characters, compatible with the
String type in Java.

•	 The	data	type	for	the	Price column is DOUBLE. This means that each value in the Price
column is a double-precision floating-point number, compatible with the double data
type in Java.

Primary Keys
Most database tables have a primary key, which is a column that can be used to identify
a specific row in a table. The column that is designated as the primary key holds a unique
value for each row. If you try to store duplicate data in the primary key column, an error
will occur.

1084 Chapter 17 Databases

In the Coffee table, the ProdNum column is the primary key because it holds a unique prod-
uct number for each type of coffee. Here are some other examples:

•	 Suppose	a	table	stores	employee	data,	and	one	of	the	columns	holds	employee	ID	
numbers. Because each employee’s ID number is unique, this column can be used as
the primary key.

•	 Suppose	a	table	stores	data	about	a	cell	phone	company’s	inventory	of	phones,	and	
one of the columns holds cell phone serial numbers. Because each phone’s serial num-
ber is unique, this column can be used as the primary key.

•	 Suppose	a	table	stores	 invoice	data,	and	one	of	 the	columns	holds	 invoice	num-
bers. Each invoice has a unique invoice number, so this column can be used as a
primary key.

Checkpoint

www.myprogramminglab.com

17.8 Describe how the data that is stored in a table is organized.

17.9 What is a primary key?

17.10 What Java data types correspond with the following SQL types?
•	 INTEGER
•	 INT
•	 REAL
•	 CHAR
•	 CHARACTER
•	 VARCHAR
•	 DOUBLE

17.3 Introduction to the SQL SELECT Statement

COnCePT: The SELECT statement is used in SQL to retrieve data from a database.

The first SQL statement we will discuss is the SELECT statement. You use the SELECT
statement to retrieve the rows in a table. As its name implies, the SELECT statement allows
you to select specific rows. We will start with a very simple form of the statement, as
shown here:

SELECT Columns FROM Table

In the general form, Columns is one or more column names, and Table is a table name.
Here is an example SELECT statement that we might execute on the CoffeeDB database:

SELECT Description FROM Coffee

nOTe: It is possible for a table’s primary key to be the combination of several columns
in the table.

http://www.myprogramminglab.com

 17.3 Introduction to the SQL SELECT Statement 1085

Figure 17-4 shows the results of a SELECT statement, but what happens to these results? In
a Java program, the results of a SELECT statement are returned to the program in a
ResultSet object. A ResultSet object is simply an object that contains the results of an
SQL statement. The process of sending an SQL statement to a DBMS can be summarized
in the following steps:

 1. Get a connection to the database.
 2. Pass a string containing an SQL statement to the DBMS. If the SQL statement has

results to send back, a ResultSet object will be returned to the program.
 3. Process the contents of the ResultSet object, if one has been returned to the program.
 4. When finished working with the database, close the connection.

You previously saw, in Code Listing 17-1, an example of how to perform step 1 (get a
connection to the database) and step 4 (close the connection). Next we look at the details
of how an SQL statement is sent to the DBMS and how its results are processed in steps
2 and 3.

Figure 17-4 Description column

Description

Bolivian Dark
Bolivian Medium
Brazilian Dark
Brazilian Medium
Brazilian Decaf
Central American Dark
Central American Medium
Sumatra Dark
Sumatra Decaf
Sumatra Medium
Sumatra Organic Dark
Kona Medium
Kona Dark
French Roast Dark
Galapagos Medium
Guatemalan Dark
Guatemalan Decaf
Guatemalan Medium

This statement will retrieve the Description column for every row in the Coffee table.
Figure 17-4 shows an example of the results.

1086 Chapter 17 Databases

Passing an SQL Statement to the DBMS
Once you have gotten a connection to the database, you are ready to issue SQL statements
to the DBMS. First, you must get a Statement object from the Connection object, using its
createStatement method. Here is an example:

Statement stmt = conn.createStatement();

After this code executes, the stmt variable will reference a Statement object. Statement is an
interface in the java.sql package. Statement objects have a variety of methods that can be
used to execute SQL queries. To execute a SELECT query, you use the executeQuery method.
The method returns a ResultSet object. Here is an example:

String sqlStatement = "SELECT Description FROM Coffee";
ResultSet result = stmt.executeQuery(sqlStatement);

The first statement creates a string containing an SQL query. The second statement passes
this string as an argument to the executeQuery method. The method returns a reference to
a ResultSet object containing the results of the query. The reference is assigned to
the result variable. Figure 17-5 illustrates how the result variable references the
ResultSet object.

A ResultSet object
contains the results of

the SQL query.

Bolivian Dark
Bolivian Medium
Brazilian Dark
Brazilian Medium
Brazilian Decaf
Central American Dark
Central American Medium
Sumatra Dark
Sumatra Decaf
Sumatra Medium
Sumatra Organic Dark
Kona Medium
Kona Dark
French Roast Dark
Galapagos Medium
Guatemalan Dark
Guatemalan Decaf
Guatemalan Medium

result variable

Figure 17-5 A ResultSet object contains the results of an SQL query

A ResultSet object contains a set of rows and columns. The ResultSet object in Figure 17-5
has 18 rows and one column. The rows in a ResultSet are numbered, with the first row
being row 1, the second row being row 2, and so forth. The columns also are numbered,
with the first column being column 1, the second column being column 2, and so forth.
Figure 17-6 shows the same ResultSet with the row and column numbers labeled.

 17.3 Introduction to the SQL SELECT Statement 1087

Getting a Row from the ResultSet Object

A ResultSet object has an internal cursor that points to a specific row in the ResultSet. The
row that the cursor points to is considered the current row. The cursor can be moved from
row to row, and this provides you with a way to examine all of the rows in the ResultSet.

At first, the cursor is not pointing to a row, but is positioned just before the first row. This
is illustrated in Figure 17-7.

Row 1
Column 1

Bolivian Dark
Bolivian Medium
Brazilian Dark
Brazilian Medium
Brazilian Decaf
Central American Dark
Central American Medium
Sumatra Dark
Sumatra Decaf
Sumatra Medium
Sumatra Organic Dark
Kona Medium
Kona Dark
French Roast Dark
Galapagos Medium
Guatemalan Dark
Guatemalan Decaf
Guatemalan Medium

Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13
Row 14
Row 15
Row 16
Row 17
Row 18

Figure 17-6 ResultSet rows and columns

Cursor

Initially the cursor is positioned just
before the first row in the ResultSet.

Row 1
Column 1

Bolivian Dark
Bolivian Medium
Brazilian Dark
Brazilian Medium
Brazilian Decaf
Central American Dark
Central American Medium
Sumatra Dark
Sumatra Decaf
Sumatra Medium
Sumatra Organic Dark
Kona Medium
Kona Dark
French Roast Dark
Galapagos Medium
Guatemalan Dark
Guatemalan Decaf
Guatemalan Medium

Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13
Row 14
Row 15
Row 16
Row 17
Row 18

Figure 17-7 The cursor is initially positioned before the first row

1088 Chapter 17 Databases

To move the cursor to the first row in a newly created ResultSet, you call the object’s next
method. Here is an example:

result.next();

Assuming that result references a newly created ResultSet object, this statement moves
the cursor to the first row in the ResultSet. Figure 17-8 shows how the cursor has moved
to the first row in the ResultSet after the next method is called the first time.

Each time you call the next method, it moves the cursor to the next row in the ResultSet.

The next method returns a boolean value. It returns true if the cursor successfully moved to
the next row. If there are no more rows, it returns false. The following code shows how
you can move the cursor through all of the rows of a newly created ResultSet.

while (result.next())
{
 // Process the current row.
}

There are other ResultSet methods for navigating the rows in a ResultSet object. We will
look at some of them later in this chapter.

Getting Columns in a ResultSet Row

You use one of the ResultSet object’s “get” methods to retrieve the contents of a specific
column in the current row. When you call one of these methods, you can pass either the
column number or the column name as an argument. There are numerous “get” methods
defined in the ResultSet interface. Table 17-3 lists a few of them.

After the ResultSet object's next method
is called the first time, the cursor is positioned
at the first row.

Cursor Row 1

Column 1

Bolivian Dark
Bolivian Medium
Brazilian Dark
Brazilian Medium
Brazilian Decaf
Central American Dark
Central American Medium
Sumatra Dark
Sumatra Decaf
Sumatra Medium
Sumatra Organic Dark
Kona Medium
Kona Dark
French Roast Dark
Galapagos Medium
Guatemalan Dark
Guatemalan Decaf
Guatemalan Medium

Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13
Row 14
Row 15
Row 16
Row 17
Row 18

Figure 17-8 The next method moves the cursor forward

 17.3 Introduction to the SQL SELECT Statement 1089

Recall that columns have an SQL data type. The SQL data types are not the same as the
Java data types, but are compatible with them. To retrieve the contents of a column, you call
the method that is designed to work with that column’s data type. For example, if the col-
umn contains a string, you would use the getString method to retrieve its value. If the
column contains an integer, you would use the getInt method. Likewise, if the column con-
tains a double, you would call the getDouble method.

When you call one of the “get” methods, you must tell it which column in the current row
you want to retrieve. These methods accept either an integer argument, which is a column
number, or a String holding the column name.

The ResultSet that we have been looking at in our example has only one column: the
Description column. The Description column’s data type is CHAR(25), which means it is a
fixed-length string of 25 characters. This is compatible with the String type in Java. To
display the contents of the Description column in the current row, we could use the follow-
ing statement:

System.out.println(result.getString("Description"));

The Description column holds values that are compatible with the String type, so we use
the getString method to retrieve its contents. We could also use the column number to
retrieve the column contents. Here is an example:

System.out.println(result.getString(1));

Table 17-3 A few of the ResultSet methods

ResultSet Method Description
double getDouble(int colNumber)
double getDouble(String colName)

Returns the double that is stored in the column specified
by colNumber or colName. The column must hold data
that is compatible with the double data type in Java. If
an error occurs, the method throws an SQLException.

int getInt(int colNumber)
int getInt(String colName)

Returns the int that is stored in the column specified by
colNumber or colName. The column must hold data
that is compatible with the int data type in Java. If an
error occurs, the method throws an SQLException.

String getString(int colNumber)
String getString(String colName)

Returns the string that is stored in the column specified
by colNumber or colName. The column must hold data
that is compatible with the String type in Java. If an
error occurs, the method throws an SQLException.

nOTe: Column names in a database table are not case sensitive. The column names
DESCRIPTION, description, and Description are all the same.

Let’s look at a complete program that demonstrates what we have covered so far. Code
Listing 17-2 displays the Description column from all of the rows in the CoffeeDB database.

1090 Chapter 17 Databases

Code Listing 17-2 (ShowCoffeeDescriptions.java)

 1 import java.sql.*; // Needed for JDBC classes
 2
 3 /**
 4 This program demonstrates how to issue an SQL
 5 SELECT statement to a database using JDBC.
 6 */
 7
 8 public class ShowCoffeeDescriptions
 9 {
10 public static void main(String[] args)
11 {
12 // Create a named constant for the URL.
13 // NOTE: This value is specific for Java DB.
14 final String DB_URL = "jdbc:derby:CoffeeDB";
15
16 try
17 {
18 // Create a connection to the database.
19 Connection conn = DriverManager.getConnection(DB_URL);
20
21 // Create a Statement object.
22 Statement stmt = conn.createStatement();
23
24 // Create a string with a SELECT statement.
25 String sqlStatement = "SELECT Description FROM Coffee";
26
27 // Send the statement to the DBMS.
28 ResultSet result = stmt.executeQuery(sqlStatement);
29
30 // Display a header for the listing.
31 System.out.println("Coffees Found in the Database");
32 System.out.println("-----------------------------");
33
34 // Display the contents of the result set.
35 // The result set will have three columns.
36 while (result.next())
37 {
38 System.out.println(result.getString("Description"));
39 }
40
41 // Close the connection.
42 conn.close();
43 }
44 catch(Exception ex)

 17.3 Introduction to the SQL SELECT Statement 1091

45 {
46 System.out.println("ERROR: " + ex.getMessage());
47 }
48 }
49 }

Program Output

Coffees Found in the Database

Bolivian Dark
Bolivian Medium
Brazilian Dark
Brazilian Medium
Brazilian Decaf
Central American Dark
Central American Medium
Sumatra Dark
Sumatra Decaf
Sumatra Medium
Sumatra Organic Dark
Kona Medium
Kona Dark
French Roast Dark
Galapagos Medium
Guatemalan Dark
Guatemalan Decaf
Guatemalan Medium

Let’s take a closer look at the code. Line 14 declares a string constant, initialized with the
URL for the CoffeeDB database. The statements that access the database are written inside
the try block that appears in lines 18 through 42. Line 19 gets a connection to the database.
After line 19 executes, the conn variable will reference a Connection object that can be used
to access the database.

At this point in the program, we have a connection to the CoffeeDB database, but we are not
ready to send a SELECT statement to the database. In order to send a SELECT statement to the
database, we must have a Statement object. Line 22 calls the Connection object’s
createStatement method, which returns a reference to a Statement object. The reference is
assigned to the stmt variable.

Line 25 declares a String variable named sqlStatement, initialized with the string
"SELECT Description FROM Coffee". This is the SQL statement that we want to submit to
the database. Line 28 passes this string as an argument to the Statement object’s executeQuery
method, which executes the statement. The method returns a reference to a ResultSet
object, which is assigned to the result variable. The ResultSet object contains the results of
the SELECT statement.

1092 Chapter 17 Databases

The while loop that appears in lines 36 through 39 displays the contents of the ResultSet
object. It works like this:

•	 The	while statement in line 36 calls the ResultSet object’s next method to advance
the internal cursor. If the cursor is successfully advanced, the method returns true and
the loop iterates. If the cursor is at the end of the ResultSet object’s rows, the method
returns false and the loop terminates.

•	 Each	time	the	loop	iterates,	the	ResultSet object’s internal cursor will be positioned at
a specific row. The statement in line 38 gets the value of the Description column and
displays it.

Line 42 closes the connection to the database.

More about the SELECT Statement

You can specify more than one column in a SELECT statement by separating the column
names with commas. Here is an example:

SELECT Description, Price FROM Coffee

This statement will retrieve the Description column and the Price column for every row in
the Coffee table. The program shown in Code Listing 17-3 demonstrates.

Code Listing 17-3 (ShowDescriptionsAndPrices.java)

 1 import java.sql.*; // Needed for JDBC classes
 2
 3 /**
 4 This program displays the coffee descriptions
 5 and their prices.
 6 */
 7
 8 public class ShowDescriptionsAndPrices
 9 {
10 public static void main(String[] args)
11 {
12 // Create a named constant for the URL.
13 // NOTE: This value is specific for Java DB.
14 final String DB_URL = "jdbc:derby:CoffeeDB";
15
16 try
17 {
18 // Create a connection to the database.
19 Connection conn = DriverManager.getConnection(DB_URL);
20
21 // Create a Statement object.
22 Statement stmt = conn.createStatement();
23
24 // Create a string with a SELECT statement.
25 String sqlStatement =

 17.3 Introduction to the SQL SELECT Statement 1093

26 "SELECT Description, Price FROM Coffee";
27
28 // Send the statement to the DBMS.
29 ResultSet result = stmt.executeQuery(sqlStatement);
30
31 // Display the contents of the result set.
32 // The result set will have three columns.
33 while (result.next())
34 {
35 System.out.printf("%25s %.2f\n",
36 result.getString("Description"),
37 result.getDouble("Price"));
38 }
39
40 // Close the connection.
41 conn.close();
42 }
43 catch(Exception ex)
44 {
45 System.out.println("ERROR: " + ex.getMessage());
46 }
47 }
48 }

Program Output

Bolivian Dark 8.95
Bolivian Medium 8.95
Brazilian Dark 7.95
Brazilian Medium 7.95
Brazilian Decaf 8.55
Central American Dark 9.95
Central American Medium 9.95
Sumatra Dark 7.95
Sumatra Decaf 8.95
Sumatra Medium 7.95
Sumatra Organic Dark 11.95
Kona Medium 18.45
Kona Dark 18.45
French Roast Dark 9.65
Galapagos Medium 6.85
Guatemalan Dark 9.95
Guatemalan Decaf 10.45
Guatemalan Medium 9.95

1094 Chapter 17 Databases

The program in Code Listing 17-3 is very similar to that in Code Listing 17-2. The differ-
ences between the two programs are summarized here:

•	 Lines	 25	 and	 26	 initialize	 the	 sqlStatement variable with the string "SELECT
Description, Price FROM Coffee". This is a SELECT statement that will retrieve the
Description and Price columns from the database table.

•	 Inside	the	while loop, in lines 35 through 37, we call result.getString to get the cur-
rent row’s Description column, and we call result.getDouble to get the current row’s
Price column. These items are displayed with the System.out.printf method.

If you wish to retrieve every column, you can use the * character instead of listing column
names. Here is an example:

SELECT * FROM Coffee

This statement will retrieve every column for every row in the Coffee table. The program
shown in Code Listing 17-4 demonstrates.

Code Listing 17-4 (ShowCoffeeData.java)

 1 import java.sql.*; // Needed for JDBC classes
 2
 3 /**
 4 This program displays all of the columns in the
 5 Coffee table of the CoffeeDB database.
 6 */
 7
 8 public class ShowCoffeeData
 9 {
10 public static void main(String[] args)
11 {
12 // Create a named constant for the URL.
13 // NOTE: This value is specific for Java DB.
14 final String DB_URL = "jdbc:derby:CoffeeDB";
15
16 try
17 {
18 // Create a connection to the database.
19 Connection conn = DriverManager.getConnection(DB_URL);
20
21 // Create a Statement object.
22 Statement stmt = conn.createStatement();
23
24 // Create a string with a SELECT statement.
25 String sqlStatement = "SELECT * FROM Coffee";
26
27 // Send the statement to the DBMS.
28 ResultSet result = stmt.executeQuery(sqlStatement);
29
30 // Display the contents of the result set.

 17.3 Introduction to the SQL SELECT Statement 1095

SQL statements are free-form, which means that tabs, newlines, and spaces between the key
words are ignored. For example, the statement

SELECT * FROM Coffee

works the same as:

SELECT
 *
FROM
 Coffee

31 // The result set will have three columns.
32 while (result.next())
33 {
34 System.out.printf("%25s %10s %5.2f\n",
35 result.getString("Description"),
36 result.getString("ProdNum"),
37 result.getDouble("Price"));
38 }
39
40 // Close the connection.
41 conn.close();
42 }
43 catch(Exception ex)
44 {
45 System.out.println("ERROR: " + ex.getMessage());
46 }
47 }
48 }

Program Output

Bolivian Dark 14-001 8.95
Bolivian Medium 14-002 8.95
Brazilian Dark 15-001 7.95
Brazilian Medium 15-002 7.95
Brazilian Decaf 15-003 8.55
Central American Dark 16-001 9.95
Central American Medium 16-002 9.95
Sumatra Dark 17-001 7.95
Sumatra Decaf 17-002 8.95
Sumatra Medium 17-003 7.95
Sumatra Organic Dark 17-004 11.95
Kona Medium 18-001 18.45
Kona Dark 18-002 18.45
French Roast Dark 19-001 9.65
Galapagos Medium 20-001 6.85
Guatemalan Dark 21-001 9.95
Guatemalan Decaf 21-002 10.45
Guatemalan Medium 21-003 9.95

1096 Chapter 17 Databases

In addition, SQL key words and table names are case insensitive. The previous statement
could be written as:

select * from coffee

Specifying Search Criteria with the WHERE Clause
Occasionally you might want to retrieve every row in a table. For example, if you wanted a
list of all the coffees in the Coffee table, the previous SELECT statement would give it to you.
Normally, however, you want to narrow the list down to only a few selected rows in the
table. That’s where the WHERE clause comes in. The WHERE clause can be used with the SELECT
statement to specify search criteria. When you use the WHERE clause, only the rows that meet
the search criteria will be returned in the result set. The general format of a SELECT state-
ment with a WHERE clause is:

SELECT Columns FROM Table WHERE Criteria

In the general format, Criteria is a conditional expression. Here is an example of a SELECT
statement that uses the WHERE clause:

SELECT * FROM Coffee WHERE Price > 12.00

The first part of the statement, SELECT * FROM Coffee, specifies that we want to see every
column. The WHERE clause specifies that we want only the rows in which the content of the
Price column is greater than 12.00. Figure 17-9 shows the results of this statement. Notice
that only two coffees meet this search criterion.

Table 17-4 SQL relational operators

Operator Meaning

> Greater-than

< Less-than

>= Greater-than or equal-to

<= Less-than or equal-to

= Equal-to

<> Not equal-to

Standard SQL supports the relational operators listed in Table 17-4 for writing conditional
expressions in a WHERE clause.

Figure 17-9 Rows where Price is greater than 12.00

Description ProdNum Price

Kona Medium 18-001 18.45
Kona Dark 18-002 18.45

 17.3 Introduction to the SQL SELECT Statement 1097

Notice that the equal-to and not equal-to operators in SQL are different from those in
Java. The equal-to operator is one equal sign, not two equal signs. The not equal-to oper-
ator is <>.

Let’s look at a few more examples of the SELECT statement. The following statement
could be used to retrieve the product numbers and prices of all the coffees that are priced
at 7.95:

SELECT ProdNum, Price FROM Coffee WHERE Price = 7.95

The results of this statement are shown in Figure 17-10.

The following SELECT statement retrieves all of the columns for the row where the
description is “French Roast Dark”. The results returned from this statement are shown
in Figure 17-11.

SELECT * FROM Coffee WHERE Description = 'French Roast Dark'

If you look carefully at the previous statement you will notice another difference between
SQL syntax and Java syntax. In SQL, string literals are enclosed in single quotes, not
double quotes.

Let’s look at an example program that uses a WHERE clause in a SELECT statement. The
program in Code Listing 17-5 lets the user enter a minimum price, and then search the
Coffee table for rows where the Price column is greater than or equal to the specified price.

TIP: If you need to include a single quote as part of a string, simply write two single
quotes in its place. For example, suppose you wanted to search the Coffee table for a cof-
fee named Joe’s Special Blend. You could use the following statement:

SELECT * FROM Coffee WHERE Description = 'Joe''s Special Blend'

Figure 17-10 Results of SQL statement

ProdNum Price

16-001 7.95
16-002 7.95
17-001 7.95
17-003 7.95

Figure 17-11 Results of SQL statement

Description ProdNum Price

French Roast Dark 19-001 9.65

1098 Chapter 17 Databases

Code Listing 17-5 (CoffeeMinPrice.java)

 1 import java.util.Scanner;
 2 import java.sql.*;
 3
 4 /**
 5 This program lets the user search for coffees
 6 priced at a minimum value.
 7 */
 8
 9 public class CoffeeMinPrice
10 {
11 public static void main(String[] args)
12 {
13 double minPrice; // To hold the minimum price
14 int coffeeCount = 0; // To count coffees that qualify
15
16 // Create a named constant for the URL.
17 // NOTE: This value is specific for Java DB.
18 final String DB_URL = "jdbc:derby:CoffeeDB";
19
20 // Create a Scanner object for keyboard input.
21 Scanner keyboard = new Scanner(System.in);
22
23 // Get the minimum price from the user.
24 System.out.print("Enter the minimum price: ");
25 minPrice = keyboard.nextDouble();
26
27 try
28 {
29 // Create a connection to the database.
30 Connection conn = DriverManager.getConnection(DB_URL);
31
32 // Create a Statement object.
33 Statement stmt = conn.createStatement();
34
35 // Create a string containing a SELECT statement.
36 // Note that we are incorporating the user's input
37 // into the string.
38 String sqlStatement =
39 "SELECT * FROM Coffee WHERE Price >= " +
40 Double.toString(minPrice);
41
42 // Send the statement to the DBMS.
43 ResultSet result = stmt.executeQuery(sqlStatement);
44
45 // Display the contents of the result set.
46 // The result set will have three columns.

 17.3 Introduction to the SQL SELECT Statement 1099

47 while (result.next())
48 {
49 // Display a row from the result set.
50 System.out.printf("%25s %10s %5.2f\n",
51 result.getString("Description"),
52 result.getString("ProdNum"),
53 result.getDouble("Price"));
54
55 // Increment the counter.
56 coffeeCount++;
57 }
58
59 // Display the number of qualifying coffees.
60 System.out.println(coffeeCount + " coffees found.");
61
62 // Close the connection.
63 conn.close();
64 }
65 catch(Exception ex)
66 {
67 System.out.println("ERROR: " + ex.getMessage());
68 }
69 }
70 }

Program Output

Enter the minimum price: 12.00 [enter]
Kona Medium 18-001 18.45
Kona Dark 18-002 18.45
2 coffees found.

Program Output

Enter the minimum price: 10.00 [enter]
Sumatra Organic Dark 17-004 11.95
Kona Medium 18-001 18.45
Kona Dark 18-002 18.45
Guatemalan Decaf 21-002 10.45
4 coffees found.

Program Output

Enter the minimum price: 20.00 [enter]
0 coffees found.

There are a few things in Code Listing 17-5 that deserve some explanation. In lines 24 and
25 the program prompts the user to enter a minimum price, and the user’s input is assigned
to the double variable minPrice. Then, notice in lines 38 through 40 that the minPrice
variable is converted to a string, and concatenated onto the string containing the SELECT

1100 Chapter 17 Databases

statement. When the program runs, if the user enters 10.00, the SELECT statement that is
created in lines 38 through 40 will be:

SELECT * FROM Coffee WHERE Price >= 10.00

Or, if the user enters 12.00, the SELECT statement that is created in lines 38 through 40 will be:

SELECT * FROM Coffee WHERE Price >= 12.00

Programs commonly need to use techniques such as this to create SQL statements that
incorporate user input.

String Comparisons in a SELECT Statement

String comparisons in SQL are case sensitive. If you ran the following statement against the
CoffeeDB database, you would not get any results:

SELECT * FROM Coffee WHERE Description = 'french roast dark'

However, you can use the UPPER() function to convert a string to uppercase. Here is
an example:

SELECT * FROM Coffee WHERE UPPER(Description) = 'FRENCH ROAST DARK'

This statement will return the same results as shown in Figure 17-11. SQL also provides a
LOWER() function, which converts its argument to lowercase.

Using the LIKE Operator

Sometimes searching for an exact string will not yield the results you want. For example,
suppose we want a list of all the decaf coffees in the Coffee table. The following statement
will not work. Can you see why?

SELECT * FROM Coffee WHERE Description = 'Decaf'

This statement will search for rows where the Description field is equal to the string
“Decaf”. Unfortunately, it will find none. If you glance back at Table 17-1, you will see that
none of the rows in the Coffee table have a Description column that is equal to “Decaf”.
You will also see, however, that the word “Decaf” does appear in the Description column
of some of the rows. For example, in one row you will find “Brazilian Decaf”. In another
row you will find “Sumatra Decaf”. In yet another row you will find “Guatemalan Decaf”.
In addition to the word “Decaf”, each of these strings contains other characters.

In order to find all of the decaf coffees, we need to search for rows where “Decaf” appears
as a substring in the Description column. You can perform just such a search using the LIKE
operator. Here is an example of how to use it.

SELECT * FROM Coffee WHERE Description LIKE '%Decaf%'

The LIKE operator is followed by a string that contains a character pattern. In this example,
the character pattern is '%Decaf%'. The % symbol is used as a wildcard character. It repre-
sents any sequence of zero or more characters. The pattern '%Decaf%' specifies that the
string “Decaf” must appear with any sequence of characters before or after it. The results of
this statement are shown in Figure 17-12.

 17.3 Introduction to the SQL SELECT Statement 1101

You can use the NOT operator to disqualify a character pattern in a search criterion. For
example, suppose that you want a list of all the coffees that are not decaf. The following
statement will yield just those results.

SELECT * FROM Coffee WHERE Description NOT LIKE '%Decaf%'

Using AND and OR

You can use the AND and OR logical operators to specify multiple search criteria in a WHERE
clause. For example, look at the following statement:

SELECT * FROM Coffee WHERE Price > 10.00 AND Price < 14.00

The AND operator requires that both of the search criteria be true in order for a row to be
qualified as a match. The only rows that will be returned from this statement are those
where the Price column contains a value that is greater than 10.00 and less than 14.00.
Figure 17-14 shows the results of the statement.

Likewise, the following statement will result in all the rows where the Description column
starts with the word “Sumatra”.

SELECT * FROM Coffee WHERE Description LIKE 'Sumatra%'

The underscore character (_) is also used as a wildcard. Unlike the % character, the under-
score represents a single character. For example, look at the following statement.

SELECT * FROM Coffee WHERE ProdNum LIKE '2_-00_'

This statement will result in all the rows where the ProdNum column begins with “2”, fol-
lowed by any single character, followed by “-00”, followed by any single character. The
results of this statement are shown in Figure 17-13.

Figure 17-12 Results of SQL statement

Description ProdNum Price

Brazilian Decaf 15-003 8.55
Sumatra Decaf 17-002 8.95
Guatemalan Decaf 21-002 10.45

Figure 17-13 Results of SQL statement

Description ProdNum Price

Galapagos Medium 20-001 6.85
Guatemalan Dark 21-001 9.95
Guatemalan Decaf 21-002 10.45
Guatemalan Medium 21-003 9.95

1102 Chapter 17 Databases

Here’s an example that uses the OR operator:

SELECT * FROM Coffee
WHERE Description LIKE '%Dark%' OR ProdNum LIKE '16%'

The OR operator requires that either of the search criteria be true in order for a row to be
qualified as a match. This statement searches for rows where the Description column con-
tains the string “Dark” at any position, or where the ProdNum column starts with “16”.
Figure 17-15 shows the results of the query.

Sorting the Results of a SELECT Query
If you wish to sort the results of a SELECT query, you can use the ORDER BY clause. Here is an
example:

SELECT * FROM Coffee ORDER BY Price

This statement will produce a list of all the rows in the Coffee table, ordered by the Price
column. The list will be sorted in ascending order on the Price column, meaning that the
lowest-priced coffees will appear first.

Here’s a SELECT statement that uses both a WHERE clause and an ORDER BY clause:

SELECT * FROM Coffee
 WHERE Price > 9.95
 ORDER BY Price

This statement will produce a list of all the rows in the Coffee table where the Price col-
umn contains a value greater than 9.95, listed in ascending order by price.

Figure 17-14 Results of SQL statement

Description ProdNum Price

Sumatra Organic Dark 17-004 11.95
Guatemalan Decaf 21-002 10.45

Figure 17-15 Results of SQL statement

Description ProdNum Price

Bolivian Dark 14-001 8.95
Brazilian Dark 15-001 7.95
Central American Dark 16-001 9.95
Central American Medium 16-002 9.95
Sumatra Dark 17-001 7.95
Sumatra Organic Dark 17-004 11.95
Kona Dark 18-002 18.45
French Roast Dark 19-001 9.65
Guatemalan Dark 21-001 9.95

 17.3 Introduction to the SQL SELECT Statement 1103

If you want the list sorted in descending order (from highest to lowest), use the DESC opera-
tor, as shown here:

SELECT * FROM Coffee
 WHERE Price > 9.95
 ORDER BY Price DESC

Mathematical Functions
SQL provides several functions for performing calculations. For example, the AVG function
calculates the average value in a particular column. Here is an example SELECT statement
using the AVG function:

SELECT AVG(Price) FROM Coffee

This statement produces a single value: the average of all the values in the Price column.
Because we did not use a WHERE clause, it uses all of the rows in the Coffee table in the cal-
culation. Here is an example that calculates the average price of all the coffees having a
product number that begins with “20”:

SELECT AVG(Price) FROM Coffee WHERE ProdNum LIKE '20%'

Another of the mathematical functions is SUM, which calculates the sum of a column’s val-
ues. The following statement, which is probably not very useful, calculates the sum of the
values in the Price column:

SELECT SUM(Price) FROM Coffee

The MIN and MAX functions determine the minimum and maximum values found in a col-
umn. The following statement will tell us the minimum value in the Price column:

SELECT MIN(Price) FROM Coffee

The following statement will tell us the maximum value in the Price column:

SELECT MAX(Price) FROM Coffee

The COUNT function can be used to determine the number of rows in a table, as demon-
strated by the following statement:

SELECT COUNT(*) FROM Coffee

The * simply indicates that you want to count entire rows. Here is another example, which
tells us the number of coffees having a price greater than 9.95:

SELECT COUNT(*) FROM Coffee WHERE Price > 9.95

Queries that use math functions, such as the examples shown here, return only one value.
So, when you submit such a statement to a DBMS using JDBC, the ResultSet object that
is returned to the program will contain one row with one column. The program shown
in Code Listing 17-6 shows an example of how you can use the MIN, MAX, and AVG func-
tions to find the lowest, highest, and average prices in the Coffee table.

1104 Chapter 17 Databases

Code Listing 17-6 (CoffeeMath.java)

 1 import java.sql.*;
 2
 3 /**
 4 This program demonstrates some of the SQL math functions.
 5 */
 6
 7 public class CoffeeMath
 8 {
 9 public static void main(String[] args)
10 {
11 // Variables to hold the lowest, highest, and
12 // average prices of coffee.
13 double lowest = 0.0,
14 highest = 0.0,
15 average = 0.0;
16
17 // Create a named constant for the URL.
18 // NOTE: This value is specific for Java DB.
19 final String DB_URL = "jdbc:derby:CoffeeDB";
20
21 try
22 {
23 // Create a connection to the database.
24 Connection conn = DriverManager.getConnection(DB_URL);
25
26 // Create a Statement object.
27 Statement stmt = conn.createStatement();
28
29 // Create SELECT statements to get the lowest, highest,
30 // and average prices from the Coffee table.
31 String minStatement = "SELECT MIN(Price) FROM Coffee";
32 String maxStatement = "SELECT MAX(Price) FROM Coffee";
33 String avgStatement = "SELECT AVG(Price) FROM Coffee";
34
35 // Get the lowest price.
36 ResultSet minResult = stmt.executeQuery(minStatement);
37 if (minResult.next())
38 lowest = minResult.getDouble(1);
39
40 // Get the highest price.
41 ResultSet maxResult = stmt.executeQuery(maxStatement);
42 if (maxResult.next())
43 highest = maxResult.getDouble(1);
44
45 // Get the average price.
46 ResultSet avgResult = stmt.executeQuery(avgStatement);

 17.3 Introduction to the SQL SELECT Statement 1105

47 if (avgResult.next())
48 average = avgResult.getDouble(1);
49
50 // Display the results.
51 System.out.printf("Lowest price: $%.2f\n", lowest);
52 System.out.printf("Highest price: $%.2f\n", highest);
53 System.out.printf("Average price: $%.2f\n", average);
54
55 // Close the connection.
56 conn.close();
57 }
58 catch(Exception ex)
59 {
60 System.out.println("ERROR: " + ex.getMessage());
61 }
62 }
63 }

Program Output

Lowest price: $6.85
Highest price: $18.45
Average price: $10.16

Lines 31 through 33 declare three strings: minStatement, maxStatement, and avgStatement.
Each of these strings contains a SELECT statement that uses a math function.

The code in lines 36 through 38 gets the lowest price in the table. Here is a summary of how
the code works:

•	 Line	36	executes	the	contents	of	minStatement, and the ResultSet reference that is
returned is assigned to the minResult variable.

•	 The	if statement in line 37 advances the ResultSet object’s cursor, and line 38 gets
the value of column 1 and assigns it to the lowest variable.

The code in lines 41 through 43 gets the highest price in the table. Here is a summary of
how the code works:

•	 Line	41	executes	the	contents	of	maxStatement, and the ResultSet reference that is
returned is assigned to the maxResult variable.

•	 The	if statement in line 42 advances the ResultSet object’s cursor, and line 43 gets
the value of column 1 and assigns it to the highest variable.

The code in lines 46 through 48 gets the average price in the table. Here is a summary of
how the code works:

•	 Line	46	executes	the	contents	of	avgStatement, and the ResultSet reference that is
returned is assigned to the avgResult variable.

•	 The	if statement in line 47 advances the ResultSet object’s cursor, and line 48 gets
the value of column 1 and assigns it to the average variable.

1106 Chapter 17 Databases

Checkpoint

www.myprogramminglab.com

17.11 What is a ResultSet object?

17.12 Look at the following SQL statement.

SELECT Id FROM Account

 What is the name of the table from which this statement is retrieving data?

 What is the name of the column that is being retrieved?

17.13 Assume that a database has a table named Inventory, with the following columns:

a) Write a SELECT statement that will return all of the columns from every row in table.
b) Write a SELECT statement that will return the ProductID column from every

row in table.
c) Write a SELECT statement that will return the ProductID column and the

QtyOnHand column from every row in table.
d) Write a SELECT statement that will return the ProductID column only from the

rows where Cost is less than 17.00.
e) Write a SELECT statement that will return all of the columns from the rows

where ProductID ends with “ZZ”.

17.14 What is the purpose of the LIKE operator?

17.15 What is the purpose of the % symbol in a character pattern used by the LIKE
operator? What is the purpose of the underline (_) character?

17.16 How can you sort the results of a SELECT statement on a specific column?

17.17 Assume that the following declarations exist:

final String DB_URL = "jdbc:derby:CoffeeDB";
String sql = "SELECT * FROM Coffee";

 Write code that uses these String objects to get a database connection and execute
the SQL statement. Be sure to close the connection when done.

17.18 How do you submit a SELECT statement to the DBMS?

17.19 Where does a ResultSet object’s cursor initially point? How do you move the cur-
sor forward in the result set?

17.20 Assume that a valid ResultSet object exists, populated with data. What method do you
call to retrieve column 3 as a string? What do you pass as an argument to the method?

17.4 Inserting Rows

COnCePT: You use the INSERT statement in SQL to insert a new row into a table.

In SQL, the INSERT statement is used to insert a row into a database table.

INSERT INTO TableName VALUES (Value1, Value2, etc...)

Column Name Type

ProductID CHAR(10)

QtyOnHand INT

Cost DOUBLE

http://www.myprogramminglab.com

 17.4 Inserting Rows 1107

In the general format, TableName is the name of the database table. Value1, Value2, etc...
is a list of column values. After the statement executes, a row containing the specified col-
umn values will be inserted into the table. Here is an example that inserts a row into the
Coffee table, in our CoffeeDB database:

INSERT INTO Coffee VALUES ('Honduran Dark', '22-001', 8.65)

Notice that the string values are enclosed in single-quote marks. Also, notice the order that
the values appear in the list. The first value, ‘Honduran Dark’, is inserted into the first col-
umn of the table, which is Description. The second value, ‘22-001’, is inserted into the
second column of the table, which is ProdNum. The third value, 8.65, is inserted into the third
column of the table, which is Price. After this statement executes, a new row will be inserted
into the Coffee table containing the following column values:

Description: 'Honduran Dark'
ProdNum: 22-001
Price: 8.65

If you are not sure of the order in which the columns appear in the table, you can use the
following general format of the INSERT statement to specify the column names and their
corresponding values.

INSERT INTO TableName
 (ColumnName1, ColumnName2, etc...)
VALUES
 (Value1, Value2, etc...)

In this general format ColumnName1, ColumnName2, etc... is a list of column names and
Value1, Value2, etc... is a list of corresponding values. In the new row, Value1 will
appear in the column specified by ColumnName1, Value2 will appear in the column speci-
fied by ColumnName2, and so forth. Here is an example:

INSERT INTO Coffee
 (Description, ProdNum, Price)
VALUES
 ('Honduran Dark', '22-001', 8.65)

This statement will produce a new row containing the following column values:

Description: 'Honduran Dark'
ProdNum: 22-001
Price: 8.65

If we rewrote the INSERT statement in the following manner, it would produce a new row
with the same values:

INSERT INTO Coffee
 (ProdNum, Price, Description)
VALUES
 ('22-001', 8.65, 'Honduran Dark')

1108 Chapter 17 Databases

Inserting Rows with JDBC
To issue an INSERT statement with JDBC, you must first get a Statement object from the
Connection object, using its createStatement method. You then use the Statement object’s
executeUpdate method. The method returns an int value representing the number of rows
that were inserted into the table. Here is an example:

String sqlStatement = "INSERT INTO Coffee " +
 "(ProdNum, Price, Description) " +
 "VALUES ('22-001', 8.65, 'Honduran Dark')";
int rows = stmt.executeUpdate(sqlStatement);

The first statement creates a string containing an INSERT statement. The second statement
passes this string as an argument to the executeUpdate method. The method should return
the int value 1, indicating that one row was inserted into the table. The program in Code
Listing 17-7 shows an example. It prompts the user for the description, product number,
and price of a new coffee and inserts that data into the Coffee table.

Code Listing 17-7 (CoffeeInserter.java)

 1 import java.util.Scanner;
 2 import java.sql.*;
 3
 4 /**
 5 This program lets the user insert a row into the
 6 CoffeeDB database's Coffee table.
 7 */
 8
 9 public class CoffeeInserter
10 {
11 public static void main(String[] args)
12 {
13 String description; // To hold the coffee description
14 String prodNum; // To hold the product number
15 double price; // To hold the price
16
17 // Create a named constant for the URL.
18 // NOTE: This value is specific for Java DB.
19 final String DB_URL = "jdbc:derby:CoffeeDB";
20
21 // Create a Scanner object for keyboard input.
22 Scanner keyboard = new Scanner(System.in);
23

nOTe: If a column is a primary key, it must hold a unique value for each row in the
table. No two rows in a table can have the same value in the primary key column. Recall
that the ProdNum column is the primary key in the Coffee table. The DBMS will not allow
you to insert a new row with the same product number as an existing row.

 17.4 Inserting Rows 1109

24 try
25 {
26 // Create a connection to the database.
27 Connection conn = DriverManager.getConnection(DB_URL);
28
29 // Get the data for the new coffee.
30 System.out.print("Enter the coffee description: ");
31 description = keyboard.nextLine();
32 System.out.print("Enter the product number: ");
33 prodNum = keyboard.nextLine();
34 System.out.print("Enter the price: ");
35 price = keyboard.nextDouble();
36
37 // Create a Statement object.
38 Statement stmt = conn.createStatement();
39
40 // Create a string with an INSERT statement.
41 String sqlStatement = "INSERT INTO Coffee " +
42 "(ProdNum, Price, Description) " +
43 "VALUES ('" +
44 prodNum + "', " +
45 price + ", '" +
46 description + "')";
47
48 // Send the statement to the DBMS.
49 int rows = stmt.executeUpdate(sqlStatement);
50
51 // Display the results.
52 System.out.println(rows + " row(s) added to the table.");
53
54 // Close the connection.
55 conn.close();
56 }
57 catch(Exception ex)
58 {
59 System.out.println("ERROR: " + ex.getMessage());
60 }
61 }
62 }

Program Output

Enter the coffee description: Honduran Dark [enter]
Enter the product number: 22-001 [enter]
Enter the price: 8.65 [enter]
1 row(s) added to the table.

1110 Chapter 17 Databases

Checkpoint

www.myprogramminglab.com

17.21 Write an SQL statement to insert a new row into the Coffee table containing the
following data:

Description: Eastern Blend
ProdNum: 30-001
Price: 18.95

17.22 Rewrite the following INSERT statement so that it specifies the Coffee table’s col-
umn names.

INSERT INTO Coffee
VALUES ('Honduran Dark', '22-001', 8.65)

17.5 Updating and Deleting existing Rows

COnCePT: You use the UPDATE statement in SQL to change the value of an existing
row. You use the DELETE statement to delete rows from a table.

In SQL, the UPDATE statement is used to change the contents of an existing row in a table. For
example, if the price of Brazilian Decaf coffee changes, we could use an UPDATE statement to
change the Price column for that row. Here is the general format of the UPDATE statement:

UPDATE Table
 SET Column = Value
 WHERE Criteria

In the general format, Table is a table name, Column is a column name, Value is a value to
store in the column, and Criteria is a conditional expression. Here is an UPDATE statement
that will change the price of Brazilian Decaf coffee to 9.95:

UPDATE Coffee
 SET Price = 9.95
 WHERE Description = 'Brazilian Decaf'

Here is another example:

UPDATE Coffee
 SET Description = 'Galapagos Organic Medium'
 WHERE ProdNum = '20-001'

This statement locates the row where ProdNum is ‘20-001’ and sets the Description field to
'Galapagos Organic Medium'.

It is possible to update more than one row. For example, suppose we wish to change the
price of every Guatemalan coffee to 12.95. If you look back at Table 17-1 you will see that
the product number for each of the Guatemalan coffees begins with ‘21’. All we need is an
UPDATE statement that locates all the rows where the ProdNum column begins with ‘21’, and
changes the Price column of those rows to 12.95. Here is such a statement:

UPDATE Coffee
 SET Price = 12.95

 WHERE ProdNum LIKE '21%'

http://www.myprogramminglab.com

 17.5 Updating and Deleting Existing Rows 1111

Updating Rows with JDBC
The process of issuing an UPDATE statement in JDBC is similar to that of issuing an INSERT
statement. First, you get a Statement object from the Connection object, using its
createStatement method. You then use the Statement object’s executeUpdate method to
issue the UPDATE statement. The method returns an int value representing the number of
rows that were affected by the UPDATE statement. Here is an example:

String sqlStatement = "UPDATE Coffee " +
 "SET Price = 9.95 " +
 "WHERE Description = 'Brazilian Decaf'";
int rows = stmt.executeUpdate(sqlStatement);

The first statement creates a string containing an UPDATE statement. The second statement
passes this string as an argument to the executeUpdate method. The method returns an int
value indicating the number of rows that were changed.

Code Listing 17-8 demonstrates how to update a row in the Coffee table. The user enters an
existing product number, and the program displays that product’s data. The user then enters
a new price for the specified product, and the program updates the row with the new price.

Code Listing 17-8 (CoffeePriceUpdater.java)

 1 import java.util.Scanner;
 2 import java.sql.*;
 3
 4 /**
 5 This program lets the user change the price of a
 6 coffee in the CoffeeDB database's Coffee table.
 7 */
 8
 9 public class CoffeePriceUpdater
 10 {
 11 public static void main(String[] args)
 12 {
 13 String prodNum; // To hold the product number
 14 double price; // To hold the price
 15
 16 // Create a named constant for the URL.

WaRnInG! Be careful that you do not leave out the WHERE clause and the conditional
expression when using an UPDATE statement. You could change the contents of every row
in the table! For example, look at the following statement:

UPDATE Coffee
 SET Price = 4.95

Because this statement does not have a WHERE clause, it will change the Price column for
every row in the Coffee table to 4.95!

1112 Chapter 17 Databases

 17 // NOTE: This value is specific for Java DB.
 18 final String DB_URL = "jdbc:derby:CoffeeDB";
 19
 20 // Create a Scanner object for keyboard input.
 21 Scanner keyboard = new Scanner(System.in);
 22
 23 try
 24 {
 25 // Create a connection to the database.
 26 Connection conn = DriverManager.getConnection(DB_URL);
 27
 28 // Create a Statement object.
 29 Statement stmt = conn.createStatement();
 30
 31 // Get the product number for the desired coffee.
 32 System.out.print("Enter the product number: ");
 33 prodNum = keyboard.nextLine();
 34
 35 // Display the coffee's current data.
 36 if (findAndDisplayProduct(stmt, prodNum))
 37 {
 38 // Get the new price.
 39 System.out.print("Enter the new price: ");
 40 price = keyboard.nextDouble();
 41
 42 // Update the coffee with the new price.
 43 updatePrice(stmt, prodNum, price);
 44 }
 45 else
 46 {
 47 // The specified product number was not found.
 48 System.out.println("That product was not found.");
 49 }
 50
 51 // Close the connection.
 52 conn.close();
 53 }
 54 catch(Exception ex)
 55 {
 56 System.out.println("ERROR: " + ex.getMessage());
 57 }
 58 }
 59
 60 /**
 61 The findAndDisplayProduct method finds a specified coffee's
 62 data and displays it.
 63 @param stmt A Statement object for the database.
 64 @param prodNum The product number for the desired coffee.

 17.5 Updating and Deleting Existing Rows 1113

 65 @return true/false indicating whether the product was found.
 66 */
 67
 68 public static boolean findAndDisplayProduct(Statement stmt,
 69 String prodNum)
 70 throws SQLException
 71 {
 72 boolean productFound; // Flag
 73
 74 // Create a SELECT statement to get the specified
 75 // row from the Coffee table.
 76 String sqlStatement =
 77 "SELECT * FROM Coffee WHERE ProdNum = '" +
 78 prodNum + "'";
 79
 80 // Send the SELECT statement to the DBMS.
 81 ResultSet result = stmt.executeQuery(sqlStatement);
 82
 83 // Display the contents of the result set.
 84 if (result.next())
 85 {
 86 // Display the product.
 87 System.out.println("Description: " +
 88 result.getString("Description"));
 89 System.out.println("Product Number: " +
 90 result.getString("ProdNum"));
 91 System.out.println("Price: $" +
 92 result.getDouble("Price"));
 93
 94 // Set the flag to indicate the product was found.
 95 productFound = true;
 96 }
 97 else
 98 {
 99 // Indicate the product was not found.
100 productFound = false;
101 }
102
103 return productFound;
104 }
105
106 /**
107 The updatePrice method updates a specified coffee's price.
108 @param stmt A Statement object for the database.
109 @param prodNum The product number for the desired coffee.
110 @param price The product's new price.
111 */
112

1114 Chapter 17 Databases

113 public static void updatePrice(Statement stmt, String prodNum,
114 double price) throws SQLException
115 {
116 // Create an UPDATE statement to update the price
117 // for the specified product number.
118 String sqlStatement = "UPDATE Coffee " +
119 "SET Price = " + Double.toString(price) +
120 "WHERE ProdNum = '" + prodNum + "'";
121
122 // Send the UPDATE statement to the DBMS.
123 int rows = stmt.executeUpdate(sqlStatement);
124
125 // Display the results.
126 System.out.println(rows + " row(s) updated.");
127 }
128 }

Program Output

Enter the product number: 17-001 [enter]
Description: Sumatra Dark
Product Number: 17-001
Price: $7.95
Enter the new price: 9.95 [enter]
1 row(s) updated.

In the main method, line 26 gets a connection to the database and line 29 creates a Statement
object. Lines 32 and 33 prompt the user for a product number, which is assigned to the
prodNum variable.

Before we let the user change the specified product’s price, we want to display the prod-
uct’s current information. So, line 36 calls a method named findAndDisplayProduct,
passing the Statement object and the prodNum variable as arguments. The
findAndDisplayProduct method (which is shown in lines 68 through 104) queries the data-
base table for the row with the specified product number. If the row is found, the method
displays the row’s contents and then returns true. If the row is not found, the method
simply returns false.

If the specified product is found, lines 39 and 40 prompt the user for the product’s new
price, and the user’s input is assigned to the price variable. Then, line 43 calls a method
named updatePrice, passing the Statement object, the prodNum variable, and the price vari-
able as arguments. The updatePrice method (which is shown in lines 113 through 127)
updates the row containing the specified product number with the new price.

Notice that neither the findAndDisplayProduct method nor the updatePrice method
handles any SQLExceptions that might occur. If an SQLException happens in either of
those methods, it gets passed up to the main method, where it is handled by the try-
catch statement.

 17.5 Updating and Deleting Existing Rows 1115

Deleting Rows with JDBC
The process of issuing a DELETE statement in JDBC is similar to that of issuing an INSERT
statement or an UPDATE statement. First, you get a Statement object from the Connection
object, using its createStatement method. You then use the Statement object’s executeUpdate
method to issue the DELETE statement. The method returns an int value representing the
number of rows that were deleted. Here is an example:

String sqlStatement = "DELETE FROM Coffee " +
 "WHERE ProdNum = '20-001'";
int rows = stmt.executeUpdate(sqlStatement);

The first statement creates a string containing a DELETE statement. The second statement
passes this string as an argument to the executeUpdate method. The method returns an int
value indicating the number of rows that were deleted.

The program shown in Code Listing 17-9 demonstrates how a row can be deleted from the
Coffee table.

Deleting Rows with the DELETE Statement
In SQL you use the DELETE statement to delete one or more rows from a table. The general
format of the DELETE statement is:

DELETE FROM Table WHERE Criteria

In the general format, Table is a table name and Criteria is a conditional expression.
Here is a DELETE statement that will delete the row where ProdNum is 20-001:

DELETE FROM Coffee WHERE ProdNum = '20-001'

This statement locates the row in the Coffee table where the ProdNum column is set to the
value '20-001', and deletes that row.

It is possible to delete multiple rows with the DELETE statement. For example, look at the
following statement:

DELETE FROM Coffee WHERE Description LIKE 'Sumatra%'

This statement will delete all rows in the Coffee table where the Description column
begins with ‘Sumatra’. If you glance back at Table 17-1, you will see that four rows will
be deleted.

WaRnInG! Be careful that you do not leave out the WHERE clause and the conditional
expression when using a DELETE statement. You could delete every row in the table! For
example, look at the following statement:

DELETE FROM Coffee

Because this statement does not have a WHERE clause, it will delete every row in the
Coffee table!

1116 Chapter 17 Databases

Code Listing 17-9 (CoffeeDeleter.java)

 1 import java.util.Scanner;
 2 import java.sql.*;
 3
 4 /**
 5 This program lets the user delete a coffee
 6 from the CoffeeDB database's Coffee table.
 7 */
 8
 9 public class CoffeeDeleter
 10 {
 11 public static void main(String[] args)
 12 {
 13 String prodNum; // To hold the product number
 14 String sure; // To make sure the user wants to delete
 15
 16 // Create a named constant for the URL.
 17 // NOTE: This value is specific for Java DB.
 18 final String DB_URL = "jdbc:derby:CoffeeDB";
 19
 20 // Create a Scanner object for keyboard input.
 21 Scanner keyboard = new Scanner(System.in);
 22
 23 try
 24 {
 25 // Create a connection to the database.
 26 Connection conn = DriverManager.getConnection(DB_URL);
 27
 28 // Create a Statement object.
 29 Statement stmt = conn.createStatement();
 30
 31 // Get the product number for the desired coffee.
 32 System.out.print("Enter the product number: ");
 33 prodNum = keyboard.nextLine();
 34
 35 // Display the coffee's current data.
 36 if (findAndDisplayProduct(stmt, prodNum))
 37 {
 38 // Make sure the user wants to delete this product.
 39 System.out.print("Are you sure you want to delete " +
 40 "this item? (y/n): ");
 41 sure = keyboard.nextLine();
 42
 43 if (Character.toUpperCase(sure.charAt(0)) == 'Y')
 44 {
 45 // Delete the specified coffee.
 46 deleteCoffee(stmt, prodNum);

 17.5 Updating and Deleting Existing Rows 1117

 47 }
 48 else
 49 {
 50 System.out.println("The item was not deleted.");
 51 }
 52 }
 53 else
 54 {
 55 // The specified product number was not found.
 56 System.out.println("That product was not found.");
 57 }
 58
 59 // Close the connection.
 60 conn.close();
 61 }
 62 catch(Exception ex)
 63 {
 64 System.out.println("ERROR: " + ex.getMessage());
 65 }
 66 }
 67
 68 /**
 69 The findAndDisplayProduct method finds a specified coffee's
 70 data and displays it.
 71 @param stmt A Statement object for the database.
 72 @param prodNum The product number for the desired coffee.
 73 @return true/false to indicate whether the product was found.
 74 */
 75
 76 public static boolean findAndDisplayProduct(Statement stmt,
 77 String prodNum)
 78 throws SQLException
 79 {
 80 boolean productFound; // Flag
 81
 82 // Create a SELECT statement to get the specified
 83 // row from the Coffee table.
 84 String sqlStatement =
 85 "SELECT * FROM Coffee WHERE ProdNum = '" +
 86 prodNum + "'";
 87
 88 // Send the SELECT statement to the DBMS.
 89 ResultSet result = stmt.executeQuery(sqlStatement);
 90
 91 // Display the contents of the result set.
 92 if (result.next())
 93 {
 94 // Display the product.

1118 Chapter 17 Databases

 95 System.out.println("Description: " +
 96 result.getString("Description"));
 97 System.out.println("Product Number: " +
 98 result.getString("ProdNum"));
 99 System.out.println("Price: $" +
100 result.getDouble("Price"));
101
102 // Set the flag to indicate the product was found.
103 productFound = true;
104 }
105 else
106 {
107 // Indicate the product was not found.
108 productFound = false;
109 }
110
111 return productFound;
112 }
113
114 /**
115 The deleteCoffee method deletes a specified coffee.
116 @param stmt A Statement object for the database.
117 @param prodNum The product number for the desired coffee.
118 */
119
120 public static void deleteCoffee(Statement stmt, String prodNum)
121 throws SQLException
122 {
123 // Create a DELETE statement to delete the
124 // specified product number.
125 String sqlStatement = "DELETE FROM Coffee " +
126 "WHERE ProdNum = '" + prodNum + "'";
127
128 // Send the DELETE statement to the DBMS.
129 int rows = stmt.executeUpdate(sqlStatement);
130
131 // Display the results.
132 System.out.println(rows + " row(s) deleted.");
133 }
134 }

Program Output

Enter the product number: 20-001 [enter]
Description: Galapagos Medium
Product Number: 20-001
Price: $6.85
Are you sure you want to delete this item? (y/n): y [enter]
1 row(s) deleted.

 17.6 Creating and Deleting Tables 1119

Checkpoint

www.myprogramminglab.com

17.23 The Midnight Coffee Roastery is running a special on decaf coffee. Write an SQL
statement that changes the price of all decaf coffees to 4.95.

17.24 The sale on decaf coffee didn’t do too well, so the Midnight Coffee Roastery has
decided to stop selling decaf. Write an SQL statement that will delete all decaf cof-
fees from the Coffee table.

17.6 Creating and Deleting Tables

COnCePT: In SQL, the CREATE TABLE statement can be used to create a database
table. The DROP TABLE statement can be used to delete a table.

The CoffeeDB database that we have been using as our example is very simple. It has only
one table, Coffee, which holds product information. The usefulness of this database is lim-
ited to looking up coffee descriptions, product numbers, and prices.

Suppose we want to store other data in the database, such as a list of customers. To do so,
we would have to add another table to the database. In SQL you use the CREATE TABLE state-
ment to create a table. Here is the general format of the CREATE TABLE statement:

CREATE TABLE TableName
 (ColumnName1 DataType1,
 ColumnName2 DataType2,
 etc...)

In the general format, TableName is the name of the table. ColumnName1 is the name of the
first column, and DataType1 is the SQL data type for the first column. ColumnName2 is the
name of the second column, and DataType2 is the SQL data type for the second column.
This sequence repeats for all of the columns in the table. Here is an example:

CREATE TABLE Customer
 (Name CHAR(25),
 Address CHAR(25),
 City CHAR(12),
 State CHAR(2),
 Zip CHAR(5))

This statement creates a new table named Customer. The columns in the Customer table are
Name, Address, City, State, and Zip.

You may also specify that a column is a primary key by listing the PRIMARY KEY qualifier
after the column’s data type. Recall from our earlier discussion on database organization
that a primary key is a column that holds a unique value for each row, and can be used to
identify specific rows. When you use the PRIMARY KEY qualifier with a column, you should
also use the NOT NULL qualifier. The NOT NULL qualifier specifies that the column must contain

http://www.myprogramminglab.com

1120 Chapter 17 Databases

a value for every row. Here is an example of how we can create a Customer table, using the
CustomerNumber column as the primary key:

CREATE TABLE Customer
 (CustomerNumber CHAR(10) NOT NULL PRIMARY KEY,
 Name CHAR(25),
 Address CHAR(25),
 City CHAR(12),
 State CHAR(2),
 Zip CHAR(5))

This statement creates a new table named Customer. It has the same structure as the table
created by the previous example, with one additional column, CustomerNumber, which is the
primary key. Because CustomerNumber is the primary key, this column must hold a unique
value for each row in the table.

Take a look at the program in Code Listing 17-10. When you run this program, it creates the
Customer table in the CoffeeDB database, and then inserts the three rows shown in Table 17-5.

Code Listing 17-10 (CreateCustomerTable.java)

 1 import java.sql.*; // Needed for JDBC classes
 2
 3 /**
 4 This program creates a Customer
 5 table in the CoffeeDB database.
 6 */
 7
 8 public class CreateCustomerTable
 9 {
10 public static void main(String[] args)
11 {
12 // Create a named constant for the URL.
13 // NOTE: This value is specific for Java DB.
14 final String DB_URL = "jdbc:derby:CoffeeDB";
15
16 try
17 {
18 // Create a connection to the database.
19 Connection conn = DriverManager.getConnection(DB_URL);
20
21 // Get a Statement object.
22 Statement stmt = conn.createStatement();

TIP: Remember, a primary key is used to identify a specific row in a table. When selecting
a column as a primary key, make sure it holds a unique value that cannot be duplicated for
two rows in the table.

 17.6 Creating and Deleting Tables 1121

23
24 // Make an SQL statement to create the table.
25 String sql = "CREATE TABLE Customer" +
26 "(CustomerNumber CHAR(10) NOT NULL PRIMARY KEY, " +
27 " Name CHAR(25)," +
28 " Address CHAR(25)," +
29 " City CHAR(12)," +
30 " State CHAR(2)," +
31 " Zip CHAR(5))";
32
33 // Execute the statement.
34 stmt.execute(sql);
35
36 // Add some rows to the new table.
37 sql = "INSERT INTO Customer VALUES" +
38 "('101', 'Downtown Cafe', '17 N. Main Street'," +
39 " 'Asheville', 'NC', '55515')";
40 stmt.executeUpdate(sql);
41
42 sql = "INSERT INTO Customer VALUES" +
43 "('102', 'Main Street Grocery'," +
44 " '110 E. Main Street'," +
45 " 'Canton', 'NC', '55555')";
46 stmt.executeUpdate(sql);
47
48 sql = "INSERT INTO Customer VALUES" +
49 "('103', 'The Coffee Place', '101 Center Plaza'," +
50 " 'Waynesville', 'NC', '55516')";
51 stmt.executeUpdate(sql);
52
53 // Close the connection.
54 conn.close();
55 }
56 catch (Exception ex)
57 {
58 System.out.println("ERROR: " + ex.getMessage());
59 }
60 }
61 }

Table 17-5 Rows inserted into the Customer table

CustomerNumber Name Address City State Zip

101 Downtown Cafe 17 N. Main Street Asheville NC 55515

102 Main Street Grocery 110 E. Main Street Canton NC 55555

103 The Coffee Place 101 Center Plaza Waynesville NC 55516

1122 Chapter 17 Databases

Removing a Table with the DROP TABLE Statement
Should the need arise to delete a table from a database, you can use the DROP TABLE state-
ment. Here is the statement’s general format:

DROP TABLE TableName

In the general format, TableName is the name of the table you wish to delete. For example,
suppose that after we created the Customer table, we discovered that we selected the wrong
data type for many of the columns. We could delete the table, and then recreate it with the
proper data types. The SQL statement to delete the table would be:

DROP TABLE Customer

Checkpoint

www.myprogramminglab.com

17.25 Write the SQL statement to create a table named Book. The Book table should have
the columns to hold the name of the publisher, the name of the author, the number
of pages, and a 10-character ISBN number.

17.26 Write a statement to delete the Book table you created in Checkpoint 17.25.

17.7 Creating a new Database with JDBC

COnCePT: Creating a new database with JDBC is as simple as adding an attribute to
the database URL and then using SQL to create a table in the database.

In the previous section you learned about the CREATE TABLE statement, which is used to
create a new table in an existing database. But, suppose you wish to create a completely
new database. With JDBC, all you must do is append the attribute ;create=true to the
database URL. For example, suppose you wish to create a new database named
EntertainmentDB, to hold data on your collection of DVDs. In Java DB, the URL you
would use would be:

"jdbc:derby:EntertainmentDB;create=true"

Because we have appended the attribute ;create=true to the database URL, the program
will create the database when it runs. Then, we can use a CREATE TABLE statement to create
a table in the database. The program in Code Listing 17-11 demonstrates.

Code Listing 17-11 (BuildEntertainmentDB.java)

 1 import java.sql.*;
 2
 3 /**
 4 This program shows how to create a new database
 5 using Java DB.
 6 */

http://www.myprogramminglab.com

 17.7 Creating a New Database with JDBC 1123

 7
 8 public class BuildEntertainmentDB
 9 {
10 public static void main(String[] args)
11 throws Exception
12 {
13 final String DB_URL =
14 "jdbc:derby:EntertainmentDB;create=true";
15
16 try
17 {
18 // Create a connection to the database.
19 Connection conn =
20 DriverManager.getConnection(DB_URL);
21
22 // Create a Statement object.
23 Statement stmt = conn.createStatement();
24
25 // Create the Dvd table.
26 System.out.println("Creating the Dvd table...");
27 stmt.execute("CREATE TABLE Dvd (" +
28 "Title CHAR(25), " +
29 "Minutes INTEGER, " +
30 "Price DOUBLE)");
31
32 // Close the resources.
33 stmt.close();
34 conn.close();
35 System.out.println("Done");
36 }
37 catch(Exception ex)
38 {
39 System.out.println("ERROR: " + ex.getMessage());
40 }
41 }
42 }

When this program runs, the EntertainmentDB database will be created. This is because the
database URL, in line 14, has the ;create=true attribute. Lines 27 through 30 then create a
table named Dvd.

nOTe: When you create a new database using Java DB, you will see a folder appear on
your system with the same name as the database. This folder holds the database. To delete
the entire database, simply delete the folder.

1124 Chapter 17 Databases

17.8 Scrollable Result Sets

COnCePT: A scrollable result set allows random cursor movement. By default, a
result set is not scrollable.

By default, ResultSet objects allow you to move the cursor forward only. Once the cursor
has moved past a row, you cannot move the cursor backward to read that row again. If you
need to move the cursor backward through the result set, you can create a scrollable result
set. You do this when you create a Statement object by using an overloaded version of a
Connection object’s createStatement method. The method accepts two arguments. The
first specifies the result set’s scrolling type. You can use any of the following constants for
this argument:

ResultSet.TYPE_FORWARD_ONLY

This is the default scrolling type. It specifies that the result set’s cursor should move
forward only.

ResultSet.TYPE_SCROLL_INSENSITIVE

This specifies that the result set should be scrollable, allowing the cursor to move forward
and backward through the result set. In addition, this result set is insensitive to changes
made to the database. This means that if another program or process makes changes to the
database, those changes will not appear in this result set.

ResultSet.TYPE_SCROLL_SENSITIVE

This specifies that the result set should be scrollable, allowing the cursor to move forward
and backward through the result set. In addition, this result set is sensitive to changes made
to the database. This means that if another program or process makes changes to the data-
base, those changes will appear in this result set as soon as they are made.

The second argument specifies the result set’s concurrency level. You can use any of the fol-
lowing constants for this argument:

ResultSet.CONCUR_READ_ONLY

This is the default concurrency level. It specifies that the result set contains a read-only ver-
sion of data from the database. You cannot change the contents of the database by altering
the contents of the result set.

ResultSet.CONCUR_UPDATEABLE

This specifies that the result set should be updateable. Changes can be made to the result
set, and then those changes can be saved to the database. The ResultSet interface specifies
several methods that may be used to update the result set and then save those updates to the
database. These methods allow you to make changes to the database without issuing SQL
statements. For more information on these methods, see the Java API documentation.

Assuming that conn references a Connection object, here is an example of the method call:

Statement stmt =
 conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

 17.9 Result Set Metadata 1125

The Statement object created by this code will be scrollable, insensitive to changes made to
the database by other processes, and will not be updateable.

ResultSet navigation Methods

Once you have created a scrollable result set, you can use the following ResultSet methods
to move the cursor:

first() Moves the cursor to the first row in the result set.

last() Moves the cursor to the last row in the result set.

next() Moves the cursor to the next row in the result set.

previous() Moves the cursor to the previous row in the result set.

relative(rows) Moves the cursor the number of rows specified by the argument rows,
relative to the current row. For example, the call relative(2) will move
the cursor 2 rows forward from the current row, and relative(-1) will
move the cursor 1 row backward from the current row.

absolute(row) Moves the cursor to the row specified by the integer row. Remember,
row numbering begins at 1, so the call absolute(1) will move the cur-
sor to the first row in the result set.

nOTe: Scrollable result sets are not supported by all JDBC drivers. If your driver does
not support scrollable result sets, it will throw an exception when you try to use an
unsupported navigation method.

The following code shows a simple, yet practical use of some of these methods:

resultSet.last(); // Move to the last row
int numRows = resultSet.getRow(); // Get the current row number
resultSet.first(); // Move back to the first row

This code would be useful when you need to determine the number of rows in the result set
before processing any of its data. The first statement moves the cursor to the last row. The sec-
ond statement calls the ResultSet method getRow, which returns the row number of the cur-
rent row. The third statement then moves the cursor to the first row for subsequent processing.

17.9 Result Set Metadata

COnCePT: Result set metadata describes the contents of a result set. The metadata
can be used to determine which columns were returned when a query that
is not known in advance is executed.

The term metadata refers to data that describes other data. A ResultSet object has meta-
data, which describes the data stored in the ResultSet. You can use result set metadata to
determine several things about a result set, including the number of columns it contains, the
names of the columns, the types of each column, and much more. Result set metadata can
be very useful if you are writing an application that will submit an SQL query, and you
don’t know in advance what columns will be returned.

1126 Chapter 17 Databases

Once you have a ResultSet object, you can call its getMetaData method to get a reference
to a ResultSetMetaData object. Assuming that resultSet references a ResultSet object,
here is an example:

ResultSetMetaData meta = resultSet.getMetaData();

ResultSetMetaData is an interface in the java.sql package. It specifies numerous methods,
a few of which are described in Table 17-6.

Table 17-6 A few ResultSetMetaData methods

Method Description

int getColumnCount() Returns the number of columns in the result set.

String getColumnName(int col) Returns the name of the column specified by the integer
col. The first column is column 1.

String getColumnTypeName(int col) Returns the name of the data type of the column speci-
fied by the integer col. The first column is column 1.
The data type name returned is the database-specific
SQL data type.

int getColumnDisplaySize(int col) Returns the display width, in characters, of the column
specified by the integer col. The first column is column 1.

String getTableName(int col) Returns the name of the table associated with the column
specified by the integer col. The first column is column 1.

The program in Code Listing 17-12 demonstrates how metadata can be used. It asks the
user to enter a SELECT statement for the CoffeeDB database, then displays information about
the result set as well as the result set’s contents.

Code Listing 17-12 (MetaDataDemo.java)

 1 import java.sql.*;
 2 import java.util.Scanner;
 3
 4 /**
 5 This program demonstrates result set metadata.
 6 */
 7
 8 public class MetaDataDemo
 9 {
10 public static void main(String[] args) throws Exception
11 {
12 // Create a named constant for the URL.
13 // NOTE: This value is specific for Java DB.
14 final String DB_URL = "jdbc:derby:CoffeeDB";
15

 17.9 Result Set Metadata 1127

16 try
17 {
18 // Create a Scanner object for keyboard input.
19 Scanner keyboard = new Scanner(System.in);
20
21 // Get a SELECT statement from the user.
22 System.out.println("Enter a SELECT statement for " +
23 "the CoffeeDB database:");
24 String sql = keyboard.nextLine();
25
26 // Create a connection to the database.
27 Connection conn =
28 DriverManager.getConnection(DB_URL);
29
30 // Create a Statement object.
31 Statement stmt = conn.createStatement();
32
33 // Execute the query.
34 ResultSet resultSet = stmt.executeQuery(sql);
35
36 // Get the result set metadata.
37 ResultSetMetaData meta = resultSet.getMetaData();
38
39 // Display the number of columns returned.
40 System.out.println("The result set has " +
41 meta.getColumnCount() +
42 " column(s).");
43
44 // Display the column names and types.
45 for (int i = 1; i <= meta.getColumnCount(); i++)
46 {
47 System.out.println(meta.getColumnName(i) + ", " +
48 meta.getColumnTypeName(i));
49 }
50
51 // Display the contents of the rows.
52 System.out.println("\nHere are the result set rows:");
53 while (resultSet.next())
54 {
55 // Display a row.
56 for (int i = 1; i <= meta.getColumnCount(); i++)
57 {
58 System.out.print(resultSet.getString(i));
59 }
60 System.out.println();
61 }
62

1128 Chapter 17 Databases

Program Output with example Input Shown in Bold

Enter a SELECT statement for the CoffeeDB database:
SELECT ProdNum FROM Coffee WHERE Price > 10.00 [enter]
The result set has 1 column(s).
PRODNUM, CHAR

Here are the result set rows:
17-004
18-001
18-002
21-002

Line 34 submits the query to the DBMS and gets a ResultSet object. Line 37 gets a
ResultSetMetaData object. The statement in lines 40 through 42 displays the number of
columns contained in the result set. It uses the ResultSetMetaData object’s getColumnCount
method to get this value. The loop in lines 45 through 49 iterates once for each column
in the result set. Each iteration displays the column name and column data type. The
ResultSetMetaData object’s getColumnName and getColumnTypeName methods are used to
retrieve this information. The while loop in lines 53 through 61 displays the contents of
the result set. It has a nested for loop, in lines 56 through 59, which iterates once for
each column in the result set. Each iteration gets the column value as a string and
displays it.

63 // Close the statement and the connection.
64 stmt.close();
65 conn.close();
66 }
67 catch(Exception ex)
68 {
69 System.out.println("ERROR: " + ex.getMessage());
70 }
71 }
72 }

Program Output with example Input Shown in Bold

Enter a SELECT statement for the CoffeeDB database:
SELECT * FROM Coffee WHERE Price > 10.00 [enter]
The result set has 3 column(s).
DESCRIPTION, CHAR
PRODNUM, CHAR
PRICE, DOUBLE

Here are the result set rows:
Sumatra Organic Dark 17-004 11.95
Kona Medium 18-001 18.45
Kona Dark 18-002 18.45
Guatemalan Decaf 21-002 10.45

 17.10 Displaying Query Results in a JTable 1129

Figure 17-16 A JTable displaying data

17.10 Displaying Query Results in a JTable

ConCept: The JTable component is a Swing class that can be used to display a
table of data. It is ideal for displaying result set data in a GUI application.

The JTable class is a Swing component that displays data in a two-dimensional table. The
class has several constructors, but the one we will use has the following format:

JTable(Object[][] rowData, Object[] colNames)

The rowData parameter is a two-dimensional array of Objects. This array contains the data that
will be displayed in the table. Each row in the array becomes a row of data in the table, and each
column in the array becomes a column in the table. The JTable component calls the toString
method of each object in the array to get the value to store in each column of the table.

The colNames parameter is a one-dimensional array of Objects. It contains the column
names to display. Once again, the JTable component calls the toString method of each
object in the array to get a value.

The following code shows an example of how to set up a simple JTable component.

String[] colNames = {"Name", "Telephone" };
String[][] rowData = {{ "Jean", "555-2222" },
 { "Tim", "555-1212" },
 { "Matt", "555-9999" },
 { "Rose", "555-4545" },
 { "Geri", "555-5214" },
 { "Shawn", "555-7821" },
 { "Renee", "555-9640" },
 { "Joe", "555-8657" } };
JTable myTable = new JTable(rowData, colNames);
JScrollPane scrollPane = new JScrollPane(JTable);

In this code, the colNames array contains the column names, and the rowData array contains
the data to display in the table. After the JTable object is constructed, it is added to a
JScrollPane object. Figure 17-16 shows an example of how this table will appear when
displayed in a frame.

Displaying
Query Results

in a JTable

VideoNote

1130 Chapter 17 Databases

Now, let’s look at how a JTable can be used to display the results of a database query. We
will use three classes to build an application that allows the user to enter a SELECT state-
ment, and then displays the results of the query in a JTable. The three classes are
TableFormatter, CoffeeDBQuery, and CoffeeDBViewer. Code Listing 17-13 shows the
TableFormatter class, which inherits from JFrame. When you instantiate this class, you pass
a two-dimensional array containing table data, and a single-dimensional array containing
column names to the constructor. The object creates a JTable containing the data, and dis-
plays the JTable in a JFrame that is 400 pixels wide by 200 pixels high.

Code Listing 17-13 (TableFormatter.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The TableFormatter class displays a populated JTable.
 6 */
 7
 8 public class TableFormatter extends JFrame
 9 {
10 // Constants for size.
11 private final int WIDTH = 400;
12 private final int HEIGHT = 200;
13
14 /**
15 Constructor
16 */
17
18 public TableFormatter(Object[][] data, Object[] colNames)
19 {
20 // Specify an action for the close button.
21 setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
22
23 // Create a JTable with the results.
24 JTable table = new JTable(data, colNames);
25
26 // Put the table in a scroll pane.
27 JScrollPane scrollPane = new JScrollPane(table);
28
29 // Add the table to the content pane.
30 add(scrollPane, BorderLayout.CENTER);
31
32 // Set the size and display.
33 setSize(WIDTH, HEIGHT);
34 setVisible(true);
35 }
36 }

 17.10 Displaying Query Results in a JTable 1131

Let’s look at the constructor. In line 18 it accepts a two-dimensional Object array, data, and
a one-dimensional Object array, colNames. These arrays contain the data and the column
names to display in the table. In line 24 they are passed to the JTable constructor. Also
notice in line 21 that we pass JFrame.DISPOSE_ON_CLOSE to the setDefaultCloseOperation
method. Because this JFrame will be instantiated by another class, we do not want to shut
down the entire application when the user clicks the standard close button. Instead, we
merely want to dispose of this JFrame.

Code Listing 17-14 shows the CoffeeDBQuery class. The class constructor accepts a String
containing an SQL query. It creates a database connection, executes the query, and then
makes the result set data and its column names available through accessor methods.

Code Listing 17-14 (CoffeeDBQuery.java)

 1 import java.sql.*;
 2
 3 /**
 4 This class executes queries on the CoffeeDB database
 5 and provides the results in arrays.
 6 */
 7
 8 public class CoffeeDBQuery
 9 {
 10 // Database URL Constant
 11 public final String DB_URL =
 12 "jdbc:derby:CoffeeDB";
 13
 14 private Connection conn; // Database connection
 15 private String[][] tableData; // Table data
 16 private String[] colNames; // Column names
 17
 18 /**
 19 Constructor
 20 */
 21
 22 public CoffeeDBQuery(String query)
 23 {
 24 // Get a connection to the database.
 25 getDatabaseConnection();
 26
 27 try
 28 {
 29 // Create a Statement object for the query.
 30 Statement stmt =
 31 conn.createStatement(
 32 ResultSet.TYPE_SCROLL_INSENSITIVE,
 33 ResultSet.CONCUR_READ_ONLY);
 34

1132 Chapter 17 Databases

 35 // Execute the query.
 36 ResultSet resultSet =
 37 stmt.executeQuery(query);
 38
 39 // Get the number of rows.
 40 resultSet.last(); // Move to last row
 41 int numRows = resultSet.getRow(); // Get row number
 42 resultSet.first(); // Move to first row
 43
 44 // Get a metadata object for the result set.
 45 ResultSetMetaData meta = resultSet.getMetaData();
 46
 47 // Create an array of Strings for the column names.
 48 colNames = new String[meta.getColumnCount()];
 49
 50 // Store the column names in the colNames array.
 51 for (int i = 0; i < meta.getColumnCount(); i++)
 52 {
 53 // Get a column name.
 54 colNames[i] = meta.getColumnLabel(i+1);
 55 }
 56
 57 // Create a 2D String array for the table data.
 58 tableData =
 59 new String[numRows][meta.getColumnCount()];
 60
 61 // Store the columns in the tableData array.
 62 for (int row = 0; row < numRows; row++)
 63 {
 64 for (int col = 0; col < meta.getColumnCount(); col++)
 65 {
 66 tableData[row][col] = resultSet.getString(col + 1);
 67 }
 68
 69 // Go to the next row in the ResultSet.
 70 resultSet.next();
 71 }
 72
 73 // Close the statement and connection objects.
 74 stmt.close();
 75 conn.close();
 76 }
 77 catch (SQLException ex)
 78 {
 79 ex.printStackTrace();
 80 }
 81 }
 82
 83 /**

 17.10 Displaying Query Results in a JTable 1133

 84 The getDatabaseConnection method loads the JDBC
 85 and gets a connection to the database.
 86 */
 87
 88 private void getDatabaseConnection()
 89 {
 90 try
 91 {
 92 // Create a connection to the database.
 93 conn = DriverManager.getConnection(DB_URL);
 94 }
 95 catch (Exception ex)
 96 {
 97 ex.printStackTrace();
 98 System.exit(0);
 99 }
100 }
101
102 /**
103 The getColumnNames method returns the column names.
104 */
105
106 public String[] getColumnNames()
107 {
108 return colNames;
109 }
110
111 /**
112 The getTableData method returns the table data.
113 */
114
115 public String[][] getTableData()
116 {
117 return tableData;
118 }
119 }

In line 22, the constructor accepts a String referenced by the query parameter variable. This
String should contain a SELECT statement. In line 25, the constructor calls the
getDatabaseConnection method. This method, which appears in lines 88 through 100,
establishes a connection with the database.

Lines 30 through 33 create a Statement object, specifying a scrollable result set. Lines 36 and
37 execute the query that was passed as an argument to the constructor, and get a reference
to a ResultSet object. In lines 40 through 42, we determine the number of rows in the result
set. This involves moving the cursor to the last row, getting the row number (which is stored
in the numRows variable), then moving the cursor to the first row for subsequent processing.

Line 45 gets a ResultSetMetaData object. Line 48 creates a String array, referenced by the
colNames variable, to hold the column names. This statement uses the ResultSetMetaData

1134 Chapter 17 Databases

object’s getColumnCount method to determine the size of the array. The for loop in lines 51
through 55 retrieves the column names from the ResultSetMetaData object and stores the
names in the colNames array.

Lines 58 through 59 create a two-dimensional String array, referenced by the tableData vari-
able, to hold the table data. It uses the numRows variable to determine the number of rows, and
the ResultSetMetaData object’s getColumnCount method to determine the number of columns.

The for loop in lines 62 through 71 stores the result set data in the data array. This loop
iterates once for each row in the result set. Inside the loop, in lines 64 through 67, a nested
for loop iterates once for each column in the result set. It retrieves the value of each column,
as a string, and stores it as an element in the tableData array. Lines 74 and 75 call the
Statement and Connection objects’ close method.

The getColumnNames method, in lines 106 through 109, is an accessor method that returns a
reference to the colNames array. The getTableData method, in lines 115 through 118, is an
accessor method that returns a reference to the tableData array.

Code Listing 17-15 shows the CoffeeDBviewer class, which allows the user to enter any sort
of SELECT statement for the CoffeeDB database, and then displays the result in an instance of
the TableFormatter class.

Code Listing 17-15 (CoffeeDBViewer.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 /**
 6 The CoffeeDBViewer class is a simple database viewer for
 7 the CoffeeDB database.
 8 */
 9
 10 public class CoffeeDBViewer extends JFrame
 11 {
 12 JPanel queryPanel; // A panel to hold the query
 13 JPanel buttonPanel; // A panel to hold the buttons
 14 JTextArea queryTextArea; // The user enters a query here
 15 JButton submitButton; // To submit a query
 16 JButton exitButton; // To quit the application
 17
 18 /**
 19 Constructor
 20 */
 21
 22 public CoffeeDBViewer()
 23 {
 24 // Set the window title.
 25 setTitle("CoffeeDB Viewer");
 26

 17.10 Displaying Query Results in a JTable 1135

 27 // Specify an action for the close button.
 28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 29
 30 // Build the Query Panel.
 31 buildQueryPanel();
 32
 33 // Build the Button Panel.
 34 buildButtonPanel();
 35
 36 // Add the panels to the content pane.
 37 add(queryPanel, BorderLayout.NORTH);
 38 add(buttonPanel, BorderLayout.SOUTH);
 39
 40 // Pack and display.
 41 pack();
 42 setVisible(true);
 43 }
 44
 45 /**
 46 The buildQueryPanel method builds a panel to hold the
 47 text area that the user will enter a query into.
 48 */
 49
 50 private void buildQueryPanel()
 51 {
 52 // Create a panel.
 53 queryPanel = new JPanel();
 54
 55 // Create a text area, 8 rows by 50 columns.
 56 queryTextArea = new JTextArea(8, 50);
 57
 58 // Turn line wrapping on.
 59 queryTextArea.setLineWrap(true);
 60
 61 // Add a scroll pane to the text area.
 62 JScrollPane qaScrollPane =
 63 new JScrollPane(queryTextArea);
 64 qaScrollPane.setHorizontalScrollBarPolicy(
 65 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
 66 qaScrollPane.setVerticalScrollBarPolicy(
 67 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED);
 68
 69 // Add the text area to the panel.
 70 queryPanel.add(qaScrollPane);
 71 }
 72
 73 /**
 74 The buildButtonPanel method builds a panel

1136 Chapter 17 Databases

 75 to hold the Submit and Exit buttons.
 76 */
 77
 78 private void buildButtonPanel()
 79 {
 80 // Create a panel.
 81 buttonPanel = new JPanel();
 82
 83 // Create the Submit button.
 84 submitButton = new JButton("Submit");
 85
 86 // Register an action listener for the Submit button.
 87 submitButton.addActionListener(new SubmitButtonListener());
 88
 89 // Create the Exit button.
 90 exitButton = new JButton("Exit");
 91
 92 // Register an action listener for the Exit button.
 93 exitButton.addActionListener(new ExitButtonListener());
 94
 95 // Add the two buttons to the panel.
 96 buttonPanel.add(submitButton);
 97 buttonPanel.add(exitButton);
 98 }
 99
100 /**
101 The SubmitButtonListener class is an action listener
102 for the Submit button.
103 */
104
105 private class SubmitButtonListener implements ActionListener
106 {
107 public void actionPerformed(ActionEvent e)
108 {
109 // Get the user's statement.
110 String userStatement = queryTextArea.getText();
111
112 // Qualify that it is a SELECT statement.
113 if (userStatement.trim().toUpperCase()
114 .startsWith("SELECT"))
115 {
116 // Create a CoffeeDBQuery object for the query.
117 CoffeeDBQuery dbQuery =
118 new CoffeeDBQuery(userStatement);
119
120 // Get the column names.
121 String[] colNames = dbQuery.getColumnNames();
122

 17.10 Displaying Query Results in a JTable 1137

123 // Get the table data.
124 String[][] data = dbQuery.getTableData();
125
126 // Display the results in a table.
127 TableFormatter table =
128 new TableFormatter(data, colNames);
129 }
130 else
131 {
132 JOptionPane.showMessageDialog(null,
133 "Only enter SELECT statements.");
134 }
135 }
136 }
137
138 /**
139 The ExitButtonListener class is an action listener
140 for the Exit button.
141 */
142
143 private class ExitButtonListener implements ActionListener
144 {
145 public void actionPerformed(ActionEvent e)
146 {
147 // End the application.
148 System.exit(0);
149 }
150 }
151
152 /**
153 The main method creates an instance of the class.
154 */
155
156 public static void main(String[] args)
157 {
158 new CoffeeDBViewer();
159 }
160 }

In line 25, the title bar text is set, and in line 28, an action for the standard close button is
established. In line 31, the buildQueryPanel method is called. This method, which appears
in lines 50 through 71, creates a panel with a JTextArea component. The user will enter
SELECT statements into this JTextArea.

In line 34, the buildButtonPanel method is called. This method, which appears in lines 78
through 98, creates a panel with a Submit button and an Exit button. In lines 37 and 38, the
query panel and the button panel are added to the JFrame’s content pane, and in lines 41
and 42, the JFrame is packed and displayed.

1138 Chapter 17 Databases

The SubmitButtonListener class, in lines 105 through 136, is registered as an action listener
for the Submit button. When the user clicks the Submit button, the actionPerformed
method, in lines 107 through 135, executes. In line 110, the text entered by the user into the
JTextArea component is retrieved. The if statement, which begins at line 113, determines
whether the text begins with "SELECT". Because this application is designed only to execute
SELECT statements, we want to reject any other types of statements. If the text does begin
with "SELECT", we proceed. Otherwise, an error message is displayed in lines 132 and 133.

Lines 117 and 118 create an instance of the CoffeeDBQuery class, passing the user’s SQL
statement as an argument to the constructor. Line 121 calls the CoffeeDBQuery method
getColumnNames to retrieve an array containing the column names. Line 124 calls the
CoffeeDBQuery method getTableData to retrieve a two-dimensional array containing the
table data. Lines 127 and 128 create an instance of the TableFormatter class, passing the
arrays containing the table data and column names as arguments to the constructor.

The ExitButtonListener class, in lines 143 through 150, is registered as an action listener
for the Exit button. When the user clicks the Exit button, this class’s actionPerformed
method ends the application.

The main method in lines 156 through 159 creates an instance of the CoffeeDBViewer class,
which starts the application running. Figure 17-17 shows the application’s window. In the
figure, the user has entered the statement SELECT * FROM Coffee. When the user clicks
the Submit button, the window at the bottom appears, showing the results of the query.
Note that the JTable has a scroll bar, and not all of the rows are visible.

This window appears first. The user enters a SELECT statement and
clicks the Submit button.

This window appears next. It displays the results of the SELECT
statement in a JTable component.

Figure 17-17 Interaction with the CoffeeDBViewer application

 17.11 Relational Data 1139

17.11 Relational Data

COnCePT: In a relational database, a column from one table can be associated with
a column from other tables. This association creates a relationship
between the tables.

Figure 17-18 shows another session with the application. In the figure, the user has entered
the following statement:

SELECT
 ProdNum, Price
FROM
 Coffee
WHERE
 Price > 9.0
ORDER BY
 ProdNum

When the user clicks the Submit button, the window at the bottom appears, showing the
results of the query.

This window appears first. The user enters a SELECT statement and
clicks the Submit button.

This window appears next. It displays the results of the SELECT
statement in a JTable component.

Figure 17-18 Interaction with the CoffeeDBViewer application

1140 Chapter 17 Databases

In the section 17.6 we added a Customer table to the CoffeeDB database (see Code Listing
17-10). This made the database more useful by giving us the ability to look up customer
information, as well as the product information held in the Coffee table.

Suppose we want to make the database even more useful by storing information about
unpaid customer orders. That way, we can get a list of all the customers with outstanding
balances. To do this, we will need to add an additional table and more data to the database.
Here is a summary of the UnpaidOrder table, which we will create to hold order data. (We
will explain what a foreign key is momentarily.)

UnpaidOrder table:

CustomerNumber CHAR(10) Foreign Key
ProdNum CHAR(10) Foreign Key
OrderDate CHAR(10)
Quantity DOUBLE
Cost DOUBLE

The first column, CustomerNumber, identifies the customer that placed the order. Notice,
however, that the UnpaidOrder table does not hold any other customer data. It holds only
the customer number. When designing a database, it is important that you avoid unneces-
sary duplication of data. Because the customer data is already stored in the Customer table,
we need only to store the customer number in the Order table. We can use that number to
look up the rest of the customer’s data in the Customer table.

In the UnpaidOrder table, the CustomerNumber column is considered a foreign key. A foreign
key is a column in one table that references a primary key in another table. Recall that
CustomerNumber is the primary key in the Customer table. When we add a row to the
UnpaidOrder table, the value that we store in the CustomerNumber column must match a
value in the CustomerNumber column of the Customer table. This creates a relationship
between the rows in the UnpaidOrder table and the rows in the Customer table.

The next column, ProdNum, is also a foreign key because it identifies a product in the Coffee
table. This is the item that the customer ordered. Once again, it is not necessary to store all
of the product data in the UnpaidOrder table. We need only to store the product number,
and then we can use that number to look up the product data in the Coffee table.

The next column in the UnpaidOrder table is OrderDate. This will hold the date that the
order was placed.1 The Quantity column holds the number of pounds of coffee that the
customer ordered. The Cost column holds the total cost of the item. We will use the follow-
ing SQL statement to create the Order table:

CREATE TABLE UnpaidOrder
(CustomerNumber CHAR(10) NOT NULL REFERENCES Customer(CustomerNumber),
 ProdNum CHAR(10) NOT NULL REFERENCES Coffee(ProdNum),
 OrderDate CHAR(10),
 Quantity DOUBLE,
 Cost DOUBLE)

1In SQL there is a DATE data type, which is used to hold dates. It corresponds to the java.sql.Date class. To
keep the example simple, however, we will merely store the invoice date as a string.

 17.11 Relational Data 1141

Notice that this statement introduces a new qualifier, REFERENCES, which is used with
both the CustomerNumber and ProdNum columns. Here is the way it is used with the
CustomerNumber column:

REFERENCES Customer(CustomerNumber)

This indicates that the column references the CustomerNumber column in the Customer table.
Because of this qualifier, the DBMS performs a check when you insert a row into the
UnpaidOrder table. It will allow you to insert a row only if the CustomerNumber column con-
tains a valid value from the CustomerNumber column of the Customer table. This ensures
referential integrity between the two tables.

The REFERENCES qualifier is also used with the ProdNum column:

REFERENCES Coffee(ProdNum)

This indicates that the column references the ProdNum column in the Coffee table. When you
insert a row into the Order table, its ProdNum column must contain a valid value from the
ProdNum column of the Coffee table.

System designers commonly use entity relationship diagrams to show the relationships between
database tables. Figure 17-19 shows an entity relationship diagram for the CoffeeDB database.
In the diagram, the primary keys are denoted with (PK). The lines that are drawn between the
tables show how the tables are related. In this diagram, there are two types of relationships:

•	 A	one to many relationship means that for each row in table A there can be many
rows in table B that reference it.

•	 A	many to one relationship means that many rows in table A can reference a single
row in table B.

Notice that the ends of each line show either a 1 or an infinity symbol (∞). You can interpret
the infinity symbol as meaning many, and the number 1 as meaning one. Look at the line
that connects the Customer table to the UnpaidOrder table. The 1 is at the end of the line
near the Customer table, and the infinity symbol is at the end near the UnpaidOrder table.
This means that one row in the Customer table may be referenced by many rows in the
UnpaidOrder table. This makes sense because a customer can place many orders. (In fact,
this is what management hopes for!)

If we look at the relationship in the other direction, we see that many of the rows in the
UnpaidOrder table can reference one row in the Customer table. Here is a summary of all the
relationships shown in the diagram:

•	 There	is	a	one	to	many	relationship	between	the	Customer table and the UnpaidOrder
table. One row in the Customer table may be referenced by many rows in the
UnpaidOrder table.

•	 There	is	a	many	to	one	relationship	between	the	UnpaidOrder table and the Customer
table. Many rows in the UnpaidOrder table may reference a single row in the
Customer table.

•	 There	is	a	one	to	many	relationship	between	the	Coffee table and the UnpaidOrder table.
One row in the Coffee table may be referenced by many rows in the UnpaidOrder table.

•	 There	is	a	many	to	one	relationship	between	the	UnpaidOrder table and the Coffee table.
Many rows in the UnpaidOrder table may reference a single row in the Coffee table.

1142 Chapter 17 Databases

Joining Data from Multiple Tables
When related data is stored in multiple tables, as in the CoffeeDB database, it is often neces-
sary to pull data from different tables in a SELECT statement. For example, suppose we want
to see information about all the unpaid orders. Specifically, for each unpaid order, we want
to see the customer number, customer name, order date, coffee description, and cost. This
involves columns from the Customer, UnpaidOrder, and Coffee tables. Because some of these
tables have columns with the same name, we have to use qualified column names in our
SELECT statement. A qualified column name takes the following form:

TableName.ColumnName

For example, Customer.CustomerNumber specifies the CustomerNumber column in the
Customer table, and UnpaidOrder.CustomerNumber specifies the CustomerNumber column in
the UnpaidOrder table. Take a look at the following query:

SELECT
 Customer.CustomerNumber,
 Customer.Name,
 UnpaidOrder.OrderDate,
 Coffee.Description,
 UnpaidOrder.Cost
FROM
 Customer, UnpaidOrder, Coffee
WHERE
 UnpaidOrder.CustomerNumber = Customer.CustomerNumber AND
 UnpaidOrder.ProdNum = Coffee.ProdNum

The first part of the query specifies the columns we want:

SELECT
 Customer.CustomerNumber,
 Customer.Name,
 UnpaidOrder.OrderDate,
 Coffee.Description,
 UnpaidOrder.Cost

The second part of the query, which uses the FROM clause, specifies the tables we want to pull
the data from:

Name

City

State
Zip
Phone

CustomerNumber (PK)

Address

Description

ProdNum (PK)
Price

1

Cost

CustomerNumber

ProdNum
Quantity

1
Customer Table UnpaidOrder Table Coffee Table

Figure 17-19 Entity relationship diagram

 17.11 Relational Data 1143

FROM
 Customer, UnpaidOrder, Coffee

Notice that the table names are separated by commas. The third part of the query, which
uses the WHERE clause, specifies search criteria:

WHERE
 UnpaidOrder.CustomerNumber = Customer.CustomerNumber AND
 UnpaidOrder.ProdNum = Coffee.ProdNum

The search criteria tell the DBMS how to link the rows in the tables. Recall from our
earlier discussion that the UnpaidOrder.CustomerNumber column references the
Customer.CustomerNumber column, and the UnpaidOrder.ProdNum column references the
Coffee.ProdNum column.

WaRnInG! When joining data from multiple tables, be sure to use a WHERE clause to
specify search criteria that link the appropriate columns. Failure to do so will result in a
large set of unrelated data.

an Order entry System
Now, let’s look at an example application that uses a relational database. In order to use
this application, you will need the Coffee table, the Customer table, and the UnpaidOrder
table in the CoffeeDB database. Back in Section 17.6 you saw Code Listing 17-10, which is
a program named CreateCustomerTable.java. This program created the Customer table in
the CoffeeDB database, and added three sample rows. If you haven’t already run that pro-
gram, do so now. After running the program, you can run the CoffeeDBViewer application
presented earlier in this chapter, and enter the statement SELECT * FROM Customer. You
should see the data shown in Figure 17-20.

Figure 17-20 Customer table

Next, you should run the program CreateUnpaidOrderTable.java. This program is in the
source code folder for this chapter, and it will create the UnpaidOrder table we discussed
earlier in this chapter. The table will have no data stored in it, however.

Now that we have the necessary tables set up in our database, we will examine an order
entry application that allows the user to place an order for coffee. The application is built
from a number of classes. The first class we will look at is the CoffeeDBManager class, shown
in Code Listing 17-16. This class performs a variety of operations on the CoffeeDB data-
base, which we will need in our order entry system.

1144 Chapter 17 Databases

Code Listing 17-16 (CoffeeDBManager.java)

 1 import java.sql.*;
 2
 3 /**
 4 The CoffeeDBManager class performs operations on
 5 the CoffeeDB database.
 6 */
 7
 8 public class CoffeeDBManager
 9 {
 10 // Constant for database URL.
 11 public final String DB_URL =
 12 "jdbc:derby:CoffeeDB";
 13
 14 // Field for the database connection
 15 private Connection conn;
 16
 17 /**
 18 Constructor
 19 */
 20
 21 public CoffeeDBManager() throws SQLException
 22 {
 23 // Create a connection to the database.
 24 conn = DriverManager.getConnection(DB_URL);
 25 }
 26
 27 /**
 28 The getCoffeeNames method returns an array
 29 of Strings containing all the coffee names.
 30 */
 31
 32 public String[] getCoffeeNames()
 33 throws SQLException
 34 {
 35 // Create a Statement object for the query.
 36 Statement stmt =
 37 conn.createStatement(
 38 ResultSet.TYPE_SCROLL_SENSITIVE,
 39 ResultSet.CONCUR_READ_ONLY);
 40
 41 // Execute the query.
 42 ResultSet resultSet = stmt.executeQuery(
 43 "SELECT Description FROM Coffee");
 44
 45 // Get the number of rows
 46 resultSet.last(); // Move to last row

 17.11 Relational Data 1145

 47 int numRows = resultSet.getRow(); // Get row number
 48 resultSet.first(); // Move to first row
 49
 50 // Create an array for the coffee names.
 51 String[] listData = new String[numRows];
 52
 53 // Populate the array with coffee names.
 54 for (int index = 0; index < numRows; index++)
 55 {
 56 // Store the coffee name in the array.
 57 listData[index] = resultSet.getString(1);
 58
 59 // Go to the next row in the result set.
 60 resultSet.next();
 61 }
 62
 63 // Close the connection and statement objects.
 64 conn.close();
 65 stmt.close();
 66
 67 // Return the listData array.
 68 return listData;
 69 }
 70
 71 /**
 72 The getProdNum method returns a specific
 73 coffee's product number.
 74 @param coffeeName The specified coffee.
 75 */
 76
 77 public String getProdNum(String coffeeName)
 78 throws SQLException
 79 {
 80 String prodNum = ""; // Product number
 81
 82 // Create a connection to the database.
 83 conn = DriverManager.getConnection(DB_URL);
 84
 85 // Create a Statement object for the query.
 86 Statement stmt = conn.createStatement();
 87
 88 // Execute the query.
 89 ResultSet resultSet = stmt.executeQuery(
 90 "SELECT ProdNum " +
 91 "FROM Coffee " +
 92 "WHERE Description = '" +
 93 coffeeName + "'");
 94

1146 Chapter 17 Databases

 95 // If the result set has a row, go to it
 96 // and retrieve the product number.
 97 if (resultSet.next())
 98 prodNum = resultSet.getString(1);
 99
100 // Close the Connection and Statement objects.
101 conn.close();
102 stmt.close();
103
104 // Return the product number.
105 return prodNum;
106 }
107
108 /**
109 The getCoffeePrice method returns the price
110 of a coffee.
111 @param prodNum The specified product number.
112 */
113
114 public double getCoffeePrice(String prodNum)
115 throws SQLException
116 {
117 double price = 0.0; // Coffee price
118
119 // Create a connection to the database.
120 conn = DriverManager.getConnection(DB_URL);
121
122 // Create a Statement object for the query.
123 Statement stmt = conn.createStatement();
124
125 // Execute the query.
126 ResultSet resultSet = stmt.executeQuery(
127 "SELECT Price " +
128 "FROM Coffee " +
129 "WHERE ProdNum = '" +
130 prodNum + "'");
131
132 // If the result set has a row, go to it
133 // and retrieve the price.
134 if (resultSet.next())
135 price = resultSet.getDouble(1);
136
137 // Close the connection and statement objects.
138 conn.close();
139 stmt.close();
140
141 // Return the price.
142 return price;

 17.11 Relational Data 1147

143 }
144
145 /**
146 The getCustomerNames method returns an array
147 of Strings containing all the customer names.
148 */
149
150 public String[] getCustomerNames() throws SQLException
151 {
152 // Create a connection to the database.
153 conn = DriverManager.getConnection(DB_URL);
154
155 // Create a Statement object for the query.
156 Statement stmt =
157 conn.createStatement(
158 ResultSet.TYPE_SCROLL_SENSITIVE,
159 ResultSet.CONCUR_READ_ONLY);
160
161 // Execute the query.
162 ResultSet resultSet =
163 stmt.executeQuery("SELECT Name FROM Customer");
164
165 // Get the number of rows
166 resultSet.last(); // Move last row
167 int numRows = resultSet.getRow(); // Get row number
168 resultSet.first(); // Move to first row
169
170 // Create an array for the customer names.
171 String[] listData = new String[numRows];
172
173 // Populate the array with customer names.
174 for (int index = 0; index < numRows; index++)
175 {
176 // Store the customer name in the array.
177 listData[index] = resultSet.getString(1);
178
179 // Go to the next row in the result set.
180 resultSet.next();
181 }
182
183 // Close the connection and statement objects.
184 conn.close();
185 stmt.close();
186
187 // Return the listData array.
188 return listData;
189 }
190

1148 Chapter 17 Databases

191 /**
192 The getCustomerNum method returns a specific
193 customer's number.
194 @param name The specified customer's name.
195 */
196
197 public String getCustomerNum(String name)
198 throws SQLException
199 {
200 String customerNumber = "";
201
202 // Create a connection to the database.
203 conn = DriverManager.getConnection(DB_URL);
204
205 // Create a Statement object for the query.
206 Statement stmt = conn.createStatement();
207
208 // Execute the query.
209 ResultSet resultSet =
210 stmt.executeQuery("SELECT CustomerNumber " +
211 "FROM Customer " +
212 "WHERE Name = '" + name + "'");
213
214 if (resultSet.next())
215 customerNumber = resultSet.getString(1);
216
217 // Close the connection and statement objects.
218 conn.close();
219 stmt.close();
220
221 // Return the customer number.
222 return customerNumber;
223 }
224
225 /**
226 The submitOrder method submits an order to
227 the UnpaidOrder table in the CoffeeDB database.
228 @param custNum The customer number.
229 @param prodNum The product number.
230 @param quantity The quantity ordered.
231 @param price The price.
232 @param orderDate The order date.
233 */
234
235 public void submitOrder(String custNum, String prodNum,
236 int quantity, double price,
237 String orderDate) throws SQLException
238 {

 17.11 Relational Data 1149

239 // Calculate the cost of the order.
240 double cost = quantity * price;
241
242 // Create a connection to the database.
243 conn = DriverManager.getConnection(DB_URL);
244
245 // Create a Statement object for the query.
246 Statement stmt = conn.createStatement();
247
248 // Execute the query.
249 stmt.executeUpdate("INSERT INTO UnpaidOrder VALUES('" +
250 custNum + "', '" +
251 prodNum + "', '" + orderDate + "', " +
252 quantity + ", " + cost + ")");
253
254 // Close the connection and statement objects.
255 conn.close();
256 stmt.close();
257 }
258 }

Here is a summary of the methods in the CoffeeDBManager class:

•	 The	constructor,	in	lines	21	through	25,	establishes	a	connection	to	the	database.	The	
getCoffeeNames method, in lines 32 through 69, returns an array of strings containing
the names of all the coffees in the Coffee table.

•	 The	getProdNum method, in lines 77 through 106, accepts a String argument contain-
ing the name of a coffee. The method returns the coffee’s product number.

•	 The	getCoffeePrice method, in lines 114 through 143, accepts a String argument
containing a coffee’s product number. The method returns the price of the speci-
fied coffee.

•	 The	getCustomerNames method, in lines 150 through 189, returns an array of strings
containing the names of all the customers in the Customer table.

•	 The	getCustomerNum method, in lines 197 through 223, accepts a String argument
containing a customer’s name. The method returns that customer’s customer number.

•	 The	submitOrder method, in lines 235 through 257, creates a row in the UnpaidOrder
table. It accepts arguments for the customer number, the product number of the coffee
being ordered, the quantity being ordered, the coffee’s price per pound, and the order
date. Line 240 calculates the cost of the order by multiplying the quantity by the price
per pound. Line 243 opens a connection to the database and line 246 creates a
Statement object. Lines 249 through 252 execute an INSERT statement on the
UnpaidOrders table.

The next class we will look at is the CustomerPanel class, shown in Code Listing 17-17. This
class, which inherits from JPanel, uses a JList component to display all of the customer
names in the Customer table. Figure 17-21 shows an example of how the panel will appear
when it is displayed in a GUI application.

1150 Chapter 17 Databases

Code Listing 17-17 (CustomerPanel.java)

 1 import java.sql.*;
 2 import javax.swing.*;
 3
 4 /**
 5 The CustomerPanel class is a custom JPanel that
 6 shows a list of customers in a JList.
 7 */
 8
 9 public class CustomerPanel extends JPanel
10 {
11 private final int NUM_ROWS = 5; // Number of rows to display
12 private JList customerList; // A list for customer names
13 String[] names; // To hold customer names
14
15 /**
16 Constructor
17 */
18
19 public CustomerPanel()
20 {
21 try
22 {
23 // Create a CoffeeDBManager object.
24 CoffeeDBManager dbManager = new CoffeeDBManager();
25
26 // Get a list of customer names as a String array.
27 names = dbManager.getCustomerNames();
28
29 // Create a JList object to hold customer names.
30 customerList = new JList(names);
31
32 // Set the number of visible rows.
33 customerList.setVisibleRowCount(NUM_ROWS);

Figure 17-21 Customer panel

 17.11 Relational Data 1151

34
35 // Put the JList object in a scroll pane.
36 JScrollPane scrollPane =
37 new JScrollPane(customerList);
38
39 // Add the scroll pane to the panel.
40 add(scrollPane);
41
42 // Add a titled border to the panel.
43 setBorder(BorderFactory.createTitledBorder(
44 "Select a Customer"));
45 }
46 catch (SQLException ex)
47 {
48 ex.printStackTrace();
49 System.exit(0);
50 }
51 }
52
53 /**
54 The getCustomer method returns the customer
55 name selected by the user.
56 */
57
58 public String getCustomer()
59 {
60 // The JList class's getSelectedValue method returns
61 // an Object reference, so we will cast it to a String.
62 return (String) customerList.getSelectedValue();
63 }
64 }

Line 24 in the constructor creates an instance of the CoffeeDBManager class. Line 27 calls
the getCustomerNames method to get a String array containing the customer names. Line 30
creates a JList component, passing the array of customer names as an argument to the
constructor. This will cause the JList component to be populated with the names of all the
customers in the Customer table. Line 33 sets the number of visible rows for the JList com-
ponent, and lines 36 and 37 put the JList in a scroll pane. Line 40 adds the scroll pane to
the panel, and lines 43 and 44 create a titled border around the panel.

The getCustomer method, in lines 58 through 63, returns the customer name that is cur-
rently selected in the JList component.

The next class, CoffeePanel, is shown in Code Listing 17-18. This class, which inherits from
JPanel, uses a JList component to display all of the coffee names in the Description col-
umn of the Coffee table. Figure 17-22 shows an example of how the panel will appear
when it is displayed in a GUI application.

1152 Chapter 17 Databases

Code Listing 17-18 (CoffeePanel.java)

 1 import java.sql.*;
 2 import javax.swing.*;
 3
 4 /**
 5 The CoffeePanel class is a custom JPanel that
 6 shows a list of coffees in a JList.
 7 */
 8
 9 public class CoffeePanel extends JPanel
10 {
11 private final int NUM_ROWS = 5; // Number of rows to display
12 private JList coffeeList; // A list for coffee descriptions
13 String[] coffeeNames; // To hold coffee names
14
15 /**
16 Constructor
17 */
18
19 public CoffeePanel()
20 {
21 try
22 {
23 // Create a CoffeeDBManager object.
24 CoffeeDBManager dbManager = new CoffeeDBManager();
25
26 // Get a list of coffee names as a String array.
27 coffeeNames = dbManager.getCoffeeNames();
28
29 // Create a JList object to hold the coffee names.
30 coffeeList = new JList(coffeeNames);
31
32 // Set the number of visible rows.
33 coffeeList.setVisibleRowCount(NUM_ROWS);

Figure 17-22 Coffee panel

 17.11 Relational Data 1153

34
35 // Put the JList object in a scroll pane.
36 JScrollPane scrollPane = new JScrollPane(coffeeList);
37
38 // Add the scroll pane to the panel.
39 add(scrollPane);
40
41 // Add a titled border to the panel.
42 setBorder(BorderFactory.createTitledBorder(
43 "Select a Coffee"));
44 }
45 catch (SQLException ex)
46 {
47 ex.printStackTrace();
48 System.exit(0);
49 }
50 }
51
52 /**
53 The getCoffee method returns the coffee
54 description selected by the user.
55 */
56
57 public String getCoffee()
58 {
59 // The JList class's getSelectedValue method returns
60 // an Object reference, so we will cast it to a String.
61 return (String) coffeeList.getSelectedValue();
62 }
63 }

Line 24 in the constructor creates an instance of the CoffeeDBManager class. Line 27 calls
the getCoffeeNames method to get a String array containing coffee names. Line 30 creates
a JList component, passing the array of coffee names as an argument to the constructor.
This will cause the JList component to be populated with the names of all the coffees in the
Coffee table. Line 33 sets the number of visible rows for the JList component, and line 36
puts the JList in a scroll pane. Line 39 adds the scroll pane to the panel, and lines 42 and
43 create a titled border around the panel.

The getCoffee method, in lines 57 through 62, returns the coffee name that is currently
selected in the JList component.

The next class, QtyDatePanel, is shown in Code Listing 17-19. This class, which inherits
from JPanel, simply displays JTextField components for the quantity of coffee being
ordered (in pounds) and the date of the order. Figure 17-23 shows an example of how the
panel will appear when it is displayed in a GUI application.

1154 Chapter 17 Databases

Code Listing 17-19 (QtyDatePanel.java)

 1 import javax.swing.*;
 2 import java.awt.*;
 3
 4 /**
 5 The QtyDatePanel presents text fields for the
 6 quantity of coffee being ordered and the order
 7 date.
 8 */
 9
10 public class QtyDatePanel extends JPanel
11 {
12 private JTextField qtyTextField; // Order quantity
13 private JTextField dateTextField; // order date
14
15 /**
16 Constructor
17 */
18
19 public QtyDatePanel()
20 {
21 // Create a label prompting the user
22 // for a quantity.
23 JLabel qtyPrompt = new JLabel("Quantity");
24
25 // Create a text field for the quantity.
26 qtyTextField = new JTextField(10);
27
28 // Create a label prompting the user
29 // for a date.
30 JLabel datePrompt = new JLabel("Order Date");
31
32 // Create a text field for the date.
33 dateTextField = new JTextField(10);
34
35 // Create a grid layout manager, 4 rows, 1 column.
36 setLayout(new GridLayout(4, 1));

Figure 17-23 QtyDate panel

 17.11 Relational Data 1155

37
38 // Add the components to the panel.
39 add (qtyPrompt);
40 add (qtyTextField);
41 add (datePrompt);
42 add (dateTextField);
43 }
44
45 /**
46 The getQuantity method returns the quantity
47 entered by the user.
48 @return The value entered into qtyTextField.
49 */
50
51 public int getQuantity()
52 {
53 return Integer.parseInt(qtyTextField.getText());
54 }
55
56 /**
57 The getDate method returns the quantity
58 entered by the user.
59 @return The value entered into dateTextField.
60 */
61
62 public String getDate()
63 {
64 return dateTextField.getText();
65 }
66
67 /**
68 The clear method clears the text fields.
69 */
70
71 public void clear()
72 {
73 qtyTextField.setText("");
74 dateTextField.setText("");
75 }
76 }

The constructor creates text fields into which the user can enter the quantity of an order and
the order date. It also creates labels that prompt the user for the correct information for each
text box. A GridLayout manager is then created, and these components are added to the panel.

The getQuantity method, in lines 51 through 54, returns the quantity entered by the user as
an integer. The getDate method, in lines 62 through 65, returns the order date entered by the
user as a String. The clear method, in lines 71 through 75, clears the text fields of any data.

1156 Chapter 17 Databases

Code Listing 17-20 (PlaceOrder.java)

 1 import java.sql.*;
 2 import javax.swing.*;
 3 import java.awt.*;
 4 import java.awt.event.*;
 5
 6 /**
 7 The PlaceOrder class is a simple order entry system.
 8 */
 9
 10 public class PlaceOrder extends JFrame
 11 {
 12 CustomerPanel customerPanel; // Panel for customers
 13 CoffeePanel coffeePanel; // Panel for coffees
 14 QtyDatePanel qtyDatePanel; // Panel for quantity and date
 15 JPanel buttonPanel; // Panel for buttons
 16
 17 /**
 18 Constructor
 19 */
 20
 21 public PlaceOrder()
 22 {
 23 // Set the window title.
 24 setTitle("Place Order");
 25
 26 // Specify an action for the close button.
 27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 28

Now let’s look at the PlaceOrder class, shown in Code Listing 17-20. This application pres-
ents the GUI interface shown in Figure 17-24 for order entry.

Figure 17-24 Order Entry GUI

 17.11 Relational Data 1157

 29 // Create a CustomerPanel object.
 30 customerPanel = new CustomerPanel();
 31
 32 // Create a CoffeePanel object.
 33 coffeePanel = new CoffeePanel();
 34
 35 // Create a QtyDatePanel object.
 36 qtyDatePanel = new QtyDatePanel();
 37
 38 // Build the ButtonPanel object.
 39 buildButtonPanel();
 40
 41 // Create a BorderLayout manager.
 42 setLayout(new BorderLayout());
 43
 44 // Add the panels to the content pane.
 45 add(customerPanel, BorderLayout.WEST);
 46 add(coffeePanel, BorderLayout.CENTER);
 47 add(qtyDatePanel, BorderLayout.EAST);
 48 add(buttonPanel, BorderLayout.SOUTH);
 49
 50 // Pack and display the window.
 51 pack();
 52 setVisible(true);
 53 }
 54
 55 /**
 56 The buildButtonPanel method builds a panel for
 57 the Submit and Exit buttons.
 58 */
 59
 60 public void buildButtonPanel()
 61 {
 62 // Create a panel for the buttons.
 63 buttonPanel = new JPanel();
 64
 65 // Create a Submit button and add an action listener.
 66 JButton submitButton = new JButton("Submit");
 67 submitButton.addActionListener(new SubmitButtonListener());
 68
 69 // Create an Exit button.
 70 JButton exitButton = new JButton("Exit");
 71 exitButton.addActionListener(new ExitButtonListener());
 72
 73 // Add the buttons to the panel.
 74 buttonPanel.add(submitButton);
 75 buttonPanel.add(exitButton);
 76 }

1158 Chapter 17 Databases

 77
 78 /**
 79 Private inner class that handles submit button events
 80 */
 81
 82 private class SubmitButtonListener implements ActionListener
 83 {
 84 public void actionPerformed(ActionEvent e)
 85 {
 86 try
 87 {
 88 // Get the customer name from the CustomerPanel object.
 89 String customerName = customerPanel.getCustomer();
 90
 91 // Get the coffee description from the CoffeePanel.
 92 String coffee = coffeePanel.getCoffee();
 93
 94 // Get the quantity from the QtyDatePanel object.
 95 int qty = qtyDatePanel.getQuantity();
 96
 97 // Get the order date from the QtyDatePanel object.
 98 String orderDate = qtyDatePanel.getDate();
 99
100 // Create a CoffeeDBManager object.
101 CoffeeDBManager dbManager = new CoffeeDBManager();
102
103 // Get the customer number.
104 String customerNum =
105 dbManager.getCustomerNum(customerName);
106
107 // Get the coffee product number.
108 String prodNum = dbManager.getProdNum(coffee);
109
110 // Get the coffee price per pound.
111 double price = dbManager.getCoffeePrice(prodNum);
112
113 // Submit the order.
114 dbManager.submitOrder(customerNum, prodNum, qty,
115 price, orderDate);
116
117 // Clear the text fields for quantity and order date.
118 qtyDatePanel.clear();
119
120 // Let the user know the order was placed.
121 JOptionPane.showMessageDialog(null, "Order Placed.");
122 }

 17.11 Relational Data 1159

123 catch (SQLException ex)
124 {
125 ex.printStackTrace();
126 System.exit(0);
127 }
128 }
129 }
130
131 /**
132 Private inner class that handles exit button events
133 */
134
135 private class ExitButtonListener implements ActionListener
136 {
137 public void actionPerformed(ActionEvent e)
138 {
139 System.exit(0);
140 }
141 }
142
143 /**
144 main method
145 */
146
147 public static void main(String[] args)
148 {
149 new PlaceOrder();
150 }
151 }

In the constructor, lines 24 through 27 set the JFrame’s title and specify an action for the
close button. Lines 30, 33, and 36 create instances of the CustomerPanel, CoffeePanel, and
QtyDatePanel classes. Line 39 calls the buildButtonPanel method. The buildButtonPanel
method, which appears in lines 60 through 76, creates a panel with two JButton compo-
nents: a Submit button and an Exit button. We will look at these buttons’ event handlers in
a moment. Back in the constructor, line 42 creates a BorderLayout manager. Lines 45
through 48 add the panels to appropriate regions of the content pane. Lines 51 and 52 pack
and display the JFrame.

The SubmitButtonListener class, in lines 82 through 129, is the event handler for the
Submit button. Line 89 retrieves the customer name from the CustomerPanel object. Line 92
retrieves the coffee description from the CoffeePanel object. Lines 95 and 98 retrieve the
quantity and order date from the QtyDatePanel object. Line 101 creates an instance of the
CoffeeDBManager class, which we will use to submit the order.

We have the name of the customer placing the order, and the name of the coffee being ordered,
but to submit an order we need the customer number and the product number. Lines 104 and
105 call the CoffeeDBManager object’s getCustomerNum method to retrieve the customer num-
ber. Line 108 calls the CoffeeDBManager object’s getProdNum method to retrieve the product

1160 Chapter 17 Databases

After we submit the order shown in Figure 17-25, we can run the CoffeeDBViewer applica-
tion and enter the following SELECT statement to pull data from various tables relating to
the order. Figure 17-26 shows the CoffeeDBViewer application’s opening screen with the
SELECT statement already filled in, and the results of the statement.

number. We also need the price of the coffee. Line 111 calls the CoffeeDBManager object’s
getCoffeePrice method to retrieve this information. Lines 114 and 115 call the
CoffeeDBManager object’s submitOrder method to submit the order. After the order is submit-
ted, line 118 clears the text fields holding the quantity and order date, making it easier to enter
the next order. Line 121 displays a dialog box indicating that the order was placed.

Figure 17-25 shows the order entry GUI with a customer selected, a coffee selected, a quan-
tity entered, and an order date entered.

Figure 17-25 Order data entered

This window appears first in the CoffeeDBViewer application. The user enters a
SELECT statement and clicks the Submit button.

This window appears next. It displays the results of the SELECT
statement in a JTable component.

Figure 17-26 Order information viewed in CoffeeDBViewer

 17.12 Advanced Topics 1161

SELECT
 Customer.CustomerNumber,
 Customer.Name,
 UnpaidOrder.OrderDate,
 Coffee.Description,
 UnpaidOrder.Cost
FROM
 Customer, UnpaidOrder, Coffee
WHERE
 UnpaidOrder.CustomerNumber = Customer.CustomerNumber AND
 UnpaidOrder.ProdNum = Coffee.ProdNum

17.12 advanced Topics

Transactions
Sometimes an application must perform several database updates to carry out a single task.
For example, suppose you have a checking account and a car loan at your bank. Each
month, your car payments are automatically taken from your checking account. For this
operation to take place, the balance of your checking account must be reduced by the
amount of the car payment, and the balance of the car loan must also be reduced.

An operation that requires multiple database updates is known as a transaction. In order
for a transaction to be complete, all of the steps involved in the transaction must be per-
formed. If any single step within a transaction fails, then none of the steps in the transaction
should be performed. For example, imagine that the bank system has begun the process of
making your car payment. The amount of the payment is subtracted from your checking
account balance, but then some sort of system failure occurs before the balance of the car
loan is reduced. You would be quite upset to learn that the amount for your car payment
was withdrawn from your checking account, but never applied to your loan!

Most database systems provide a means for undoing the partially completed steps in a
transaction when a failure occurs. When you write transaction-processing code, there are
two concepts you must understand: commit and rollback. The term commit refers to
making a permanent change to a database, and the term rollback refers to undoing
changes to a database.

By default, the JDBC Connection class operates in auto commit mode. In auto commit
mode, all updates that are made to the database are made permanent as soon as they are
executed. When auto commit mode is turned off, however, changes do not become perma-
nent until a commit command is executed. This makes it possible to use a rollback com-
mand to undo changes. A rollback command will undo all database changes since the last
commit command.

In JDBC, you turn auto commit mode off with the Connection class’s setAutoCommit
method, passing the argument false. Here is an example:

conn.setAutoCommit(false);

1162 Chapter 17 Databases

You execute a commit command by calling the Connection class’s commit method, as shown
here:

conn.commit();

A rollback command can be executed with the Connection class’s rollback method, as
shown here:

conn.rollback();

Let’s look at an example. Suppose we add a new table named Inventory to the CoffeeDB
database, for the purpose of storing the quantity of each type of coffee in inventory. The
table has two rows: ProdNum, which is a coffee product number, and Qty, which is the quan-
tity of each type of coffee. When an order is placed, we want to update both the Inventory
table and the UnpaidOrder table. In the Inventory table we want to subtract the quantity
being ordered from the quantity in inventory. In the UnpaidOrder table we want to insert a
new row representing the order. Here is some example code that might be used to process
this as a transaction.

Connection conn = DriverManager.getConnection(DB_URL);
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
// Attempt the transaction.
try
{
 // Update the inventory records.
 stmt.executeUpdate("UPDATE Inventory SET Qty = Qty - " +
 qtyOrdered + " WHERE ProdNum = " + prodNum);
 // Add the order to the UnpaidOrder table.
 stmt.executeUpdate("INSERT INTO UnpaidOrder VALUES('" +
 custNum + "', '" +
 prodNum + "', '" + orderDate + "', " +
 qtyOrdered + ", " + cost + ")");
 // Commit all these updates.
 conn.commit();
}
catch (SQLException ex)
{
 // Roll back the changes.
 conn.rollback();
}

Notice that inside the try block, after the statements to update the database have been exe-
cuted, the Connection class’s commit method is executed. In the catch block, the rollback
method is executed in the event of an error.

Stored Procedures
Many commercial database systems allow you to create SQL statements and store them in
the DBMS itself. These SQL statements are called stored procedures, and they can be exe-
cuted by other applications using the DBMS. If you have written an SQL statement that is

 Review Questions and Exercises 1163

used often in a variety of applications, it might be helpful to store it as a stored procedure
in the DBMS. Then, you can call the stored procedure from any of your applications when
you need to execute the SQL statement. Because stored procedures are already in the DBMS,
they usually execute faster than SQL statements that are submitted from applications
outside the DBMS.

We won’t go into the details of stored procedures in this book, but we will point you in the
right direction if you want to learn more. Each DBMS has its own syntax for creating a
stored procedure in SQL, so you will have to consult your DBMS documentation to deter-
mine the format. Once you have properly written a stored procedure in SQL, you simply
submit it to the DBMS using the Statement class’s execute method. To execute a stored
procedure, you must create a CallableStatement object. CallableStatement is an interface
in the java.sql package. To create a CallableStatement object, you call the Connection
class’s prepareCall statement.

17.13 Common errors to avoid
•	 Using the == operator instead of the = operator in an SQL statement. The equal-to

operator in SQL is one = sign, instead of two.
•	 Using double quotes around strings instead of single quotes. String literals in SQL are

enclosed in single quotes instead of double quotes.
•	 Using && and || in an SQL statement. The logical AND and logical OR operators in

SQL are the words AND and OR, not the && and || symbols.
•	 Not using the correct WHERE clause in an UPDATE statement. Be careful that you do not

leave out the WHERE clause and the conditional expression when using an UPDATE state-
ment. You could change the contents of every row in the table!

•	 Not using the correct WHERE clause in a DELETE statement. Be careful that you do not
leave out the WHERE clause and the conditional expression when using a DELETE state-
ment. You could delete every row in the table!

•	 Not using the correct WHERE clause when joining data. When joining data from multi-
ple tables, be sure to use a WHERE clause to specify search criteria that link the appro-
priate columns. Failure to do so will result in a large set of unrelated data.

Review Questions and exercises
Multiple Choice and True/False

 1. This is the technology that makes it possible for a Java application to communicate
with a DBMS.
a. DBMSC
b. JDBC
c. JDBMS
d. JDSQL

1164 Chapter 17 Databases

 2. This is a standard language for working with database management systems.
a. Java
b. COBOL
c. SQL
d. BASIC

 3. The data that is stored in a table is organized in __________.
a. rows
b. files
c. folders
d. pages

 4. The data that is stored in a row is divided into __________.
a. sections
b. bytes
c. columns
d. tables

 5. This is a column that holds a unique value for each row, and can be used to identify
specific rows.
a. ID column
b. public key
c. designator column
d. primary key

 6. This type of SQL statement is used to retrieve rows from a table.
a. RETRIEVE
b. GET
c. SELECT
d. READ

 7. This contains the results of an SQL SELECT statement.
a. select set
b. result set
c. SQL set
d. collection set

 8. This clause allows you to specify search criteria with the SELECT statement.
a. SEARCH
b. WHERE
c. AS
d. CRITERIA

 9. This is a Java class that is designed to communicate with a specific DBMS.
a. JDBC driver
b. DBMS Superclass
c. DBMS Subclass
d. Stream converter

 10. This is a string listing the protocol that should be used to access a database, the name
of the database, and potentially other items.
a. JDBC driver
b. JDBC locator
c. Database URL
d. Database specifier

 Review Questions and Exercises 1165

 11. This method is specified in the Statement interface, and should be used to execute a
SELECT statement.
a. execute
b. executeUpdate
c. executeQuery
d. executeSelect

 12. This method is specified in the Statement interface, and should be used to execute an
UPDATE statement.
a. execute
b. executeUpdate
c. executeQuery
d. executeSelect

 13. This method is specified in the Statement interface, and should be used to execute an
INSERT statement.
a. execute
b. executeUpdate
c. executeQuery
d. executeSelect

 14. This SQL statement is used to insert rows into a table.
a. INSERT
b. ADD
c. CREATE
d. UPDATE

 15. This SQL statement is used to remove rows from a table.
a. REMOVE
b. ERASE
c. PURGE
d. DELETE

 16. This SQL statement is used to delete an entire table.
a. REMOVE
b. DROP
c. PURGE
d. DELETE

 17. This is a column in one table that references a primary key in another table.
a. secondary key
b. fake key
c. foreign key
d. duplicate key

 18. True/False: Java comes with its own built-in DBMS.

 19. True/False: A Java programmer that uses a DBMS to store data does not need to
know about the physical structure of the data.

 20. True/False: You use SQL instead of Java to write entire applications, including the
user interface.

 21. True/False: In SQL, the not-equal-to operator is !=, which is the same as in Java.

 22. True/False: When a ResultSet object is initially created, its cursor is pointing at the
first row in the result set.

1166 Chapter 17 Databases

 23. True/False: In a transaction, it is permissible for only some of the database updates to
be made.

 24. True/False: The term rollback refers to undoing changes to a database.

Find the error

 1. Find the error in the following SQL statement.

SELECT * FROM Coffee WHERE Description 5 "French Roast Dark"

 2. Find the error in the following SQL statement.

SELECT * FROM Coffee WHERE ProdNum !5 '14-001'

 3. Find the error in the following Java code. Assume that conn references a valid
Connection object.

// This code has an error!!!
String sql 5 "SELECT * FROM Coffee";
Statement stmt 5 conn.createStatement();
ResultSet result 5 stmt.execute(sql);

algorithm Workbench

 1. What SQL data types correspond with the following Java types?

•	 int
•	 float
•	 String
•	 double

 2. Look at the following SQL statement.

SELECT Name FROM Employee

 What is the name of the table from which this statement is retrieving data?

 What is the name of the column that is being retrieved?

For questions 3 through 12, assume that a database has a table named Stock, with the fol-
lowing columns:

Column Name Type

TradingSymbol CHAR(10)

CompanyName CHAR(25)

NumShares INT

PurchasePrice DOUBLE

SellingPrice DOUBLE

 3. Write a SELECT statement that will return all of the columns from every row in table.

 4. Write a SELECT statement that will return the TradingSymbol column from every row
in table.

 5. Write a SELECT statement that will return the TradingSymbol column and the NumShares
column from every row in table.

 6. Write a SELECT statement that will return the TradingSymbol column only from the
rows where PurchasePrice is greater than 25.00.

 Review Questions and Exercises 1167

 7. Write a SELECT statement that will return all of the columns from the rows where
TradingSymbol starts with “SU”.

 8. Write a SELECT statement that will return the TradingSymbol column only from the
rows where SellingPrice is greater than PurchasePrice, and NumShares is greater
than 100.

 9. Write a SELECT statement that will return the TradingSymbol column and the NumShares
column only from the rows where SellingPrice is greater than PurchasePrice, and
NumShares is greater than 100. The results should be sorted by the NumShares column,
in ascending order.

 10. Write an SQL statement that will insert a new row into the Stock table. The row
should have the following column values:

TradingSymbol: XYZ
CompanyName: “XYZ Company”
NumShares: 150
PurchasePrice: 12.55
SellingPrice: 22.47

 11. Write an SQL statement that does the following: For each row in the Stock table, if
the TradingSymbol column is “XYZ”, change it to “ABC”.

 12. Write an SQL statement that will delete rows in the Stock table where the number of
shares is less than 10.

 13. Assume that the following declaration exists.

final String DB_URL 5 "jdbc:derby:CoffeeDB";

 The string referenced by DB_URL is a database URL. Write a statement that uses this
string to get a connection to the database.

 14. Assuming that conn references a valid Connection object, write code to create a
Statement object. (Do not be concerned about result set scrolling or concurrency.)

 15. Look at the following declaration.

String sql 5 "SELECT * FROM Coffee WHERE Price . 10.00";

 Assume also that stmt references a valid Statement object. Write code that executes
the SQL statement referenced by the sql variable.

 16. Assume that the following code is used to retrieve data from the CoffeeDB database’s
Coffee table. Write the code that should appear inside the loop to display the contents
of the result set.

String sql 5 "SELECT * FROM Coffee";
Connection conn 5 DriverManager.getConnection(DB_URL);
Statement stmt 5 conn.createStatement();
ResultSet result 5 stmt.executeQuery(sql);
while (result.next())
{
 // Finish this code!!
}
stmt.close();
conn.close();

1168 Chapter 17 Databases

 17. Write an SQL statement to create a table named Car. The Car table should have
the columns to hold a car’s manufacturer, year model, and a 20-character vehicle
ID number.

 18. Write an SQL statement to delete the Car table you created in Algorithm Workbench 17.

Short Answer

 1. If you are writing an application to store the customer and inventory records for a
large business, why would you not want to use traditional text or binary files?

 2. You hear a fellow classmate say the following: “JDBC is a standard language for
working with database management systems. It was invented at IBM.” Are these state-
ments correct, or is he confusing JDBC with something else?

 3. When we speak of database organization, we speak of such things as rows,
tables, and columns. Describe how the data in a database is organized into these
conceptual units.

 4. What is a primary key?

 5. What is a result set?

 6. What are the relational operators in SQL for the following comparisons?

Greater-than
Less-than
Greater-than or equal-to
Less-than or equal-to
Equal-to
Not equal-to

 7. What is the number of the first row in a table? What is the number of the first column
in a table?

 8. What is metadata? What is result set metadata? When is result set metadata useful?

 9. What is a foreign key?

Programming Challenges

Visit www.myprogramminglab.com to complete many of these Programming Challenges
online and get instant feedback.

1. Customer Inserter

Write an application that connects to the CoffeeDB database, and allows the user to insert a
new row into the Customer table.

2. Customer Updater

Write an application that connects to the CoffeeDB database, and allows the user to select
a customer, then change any of that customer’s information. (You should not attempt to
change the customer number, because it is referenced by the UnpaidOrder table.)

The Customer
Inserter

Problem

VideoNote

http://www.myprogramminglab.com

 Programming Challenges 1169

3. Unpaid Order Sum

Write an application that connects to the CoffeeDB database, then calculates and displays
the total amount owed in unpaid orders. This will be the sum of each row’s Cost column.

4. Unpaid Order Lookup

Write an application that connects to the CoffeeDB database and displays a JList compo-
nent. The JList component should display a list of customers with unpaid orders. When the
user clicks on a customer, the application should display a summary of all the unpaid orders
for that customer.

5. Population Database

Make sure you have downloaded the book’s source code from the companion Web site
at www.pearsonhighered.com/gaddis. In this chapter’s source code folder you will find
a program named CreateCityDB.java. Compile and run the program. The program will
create a Java DB database named CityDB. The CityDB database will have a table named City,
with the following columns:

Column Name Data Type

CityName
Primary key

CHAR (50)

Population DOUBLE

The CityName column stores the name of a city and the Population column stores the
population of that city. After you run the CreateCityDB.java program, the City table will
contain 20 rows with various cities and their populations.

Next, write a program that connects to the CityDB database, and allows the user to select
any of the following operations:

•	 Sort	the	list	of	cities	by	population,	in	ascending	order.
•	 Sort	the	list	of	cities	by	population,	in	descending	order.
•	 Sort	the	list	of	cities	by	name.
•	 Get	the	total	population	of	all	the	cities.
•	 Get	the	average	population	of	all	the	cities.
•	 Get	the	highest	population.
•	 Get	the	lowest	population.

6. Personnel Database Creator

Write an application that creates a database named Personnel. The database should have a
table named Employee, with columns for employee ID, name, position, and hourly pay rate.
The employee ID should be the primary key. Insert at least five sample rows of data into the
Employee table.

7. employee Inserter

Write a GUI application that allows the user to add new employees to the Personnel data-
base you created in Programming Challenge 6.

http://www.pearsonhighered.com/gaddis

1170 Chapter 17 Databases

8. employee Updater

Write a GUI application that allows the user to look up an employee in the Personnel data-
base you created in Programming Challenge 6. The user should be able to change any of the
employee’s information except employee ID, which is the primary key.

9. PhoneBook Database

Write an application that creates a database named PhoneBook. The database should have a
table named Entries, with columns for a person’s name and phone number.

Next, write an application that lets the user add rows to the Entries table, look up a person’s
phone number, change a person’s phone number, and delete specified rows.

A
abstract classes and methods,

662–669
Abstract Windowing Toolkit

(AWT)
See also specific classes
applets created with, 937–941
classes, list of, 937
class hierarchy, 849–850
defined, 761, 762–763
portability, 937–941

access
package, 648–649
sequential file, 741
specification in UML

diagrams, 341
accessing variables, within

lambda expressions, 690
accessor method, 340
access specifiers

private, 328
protected, 643–649
public, 28, 328

accumulators, 217, 219, 429
action command, 789, 792
ActionEvent class

getActionCommand(), 789–792
getSource(), 789, 792–793

ActionEvent object, 788–789
action events, 778
ActionListener interface, 777–

784
action listeners, handling events

with, 764, 777–784
actionPerformed(), 777–778
actual parameters, 281
adapter classes, 967–972
addActionListener(), 783, 786–

790, 791, 974
adding/inserting items in ArrayList,

475, 479–480

addition operator, 55
addListSelectionListener(), 853
address, 4
aggregation

description of, 517–527
security issues, 525–527
in UML diagrams, 525

algorithms, 6
array, 428–435
binary search, 468–470
binary search, recursive, 1061–

1064
selection sort, 465–468
sequential search, 449–451

ALU (arithmetic and logic unit), 3
AnchorPane component, JavaFX

GUI, 992, 994
AND (&&), 137, 138–140, 1101–

1102
anonymous inner classes, 683–

686
anonymous object, 771, 783
Apache Derby, 1078
API (application programmer

interface), 33
standard packages, 383

appearance, 904–906
append(), 584–585
appending data to files, 236–237,

740
Applet class, 937

See also AudioClip interface
applets

audio, playing, 977–980
AWT, creating with, 937–941
defined, 8–9, 917–918
differences between GUI and,

929
events, handling in, 932–936
restrictions on, 919
running, 930–932

running with appletviewer,
931–932

security, 919, 931
Swing, creating with, 928–936

appletviewer, 931–932
application programmer interface.

See API
applications

defined, 917
Java, 8–9
playing audio in, 981
software, 5

arcs, drawing, 943, 950–952
ArgumentList, 175–176
arguments, 34

arrays as, 424–428
command-line, 470–471
formatting string, 174–175
object references/arguments to

methods, passing, 285–288
objects as, passing, 360–362,

502–505
other names for, 281
parameter data type

compatibility and, 281–282
passing, by value, 284–285
passing, to a method, 279–289
passing multiple, 282–283
variable length argument lists,

472–474
arithmetic and logic unit (ALU), 3
arithmetic operators

+ (addition), 55
associativity of, 58
/ (division), 55, 56
% (modulus), 55, 56
* (multiplication), 55
– (negation), 55
precedence of operations, 57–59
+ (string concatenation), 40–41
– (subtraction), 55

1171

Index

1172 Index

ArrayList class
adding/inserting items, 475,

479–480
autoboxing and unboxing,

602–603
capacity, 481–482
constructor, 481, 482
defined, 474
diamond operator for type

inference, 482
enhanced for loop with,

476–477
get(), 475–476
object, creating and using,

475–476
removing items, 478–479
set/replacing items, 480–481
size(), 475
toString(), 477–478

arrays
accessing elements of, 407–408
algorithms, 428–435, 465–470
as arguments, 424–428
averaging values in numeric,

430
binary search algorithm,

468–470
binary search algorithm,

recursive, 1061–1064
bounds checking, 411–412
comparing, 428–429
content, inputting/outputting,

408–411
copying, 422–424
declaration notation, 414
defined, 405
elements, displaying, 415–417,

459
enhanced for loop, 418–419
errors, off-by-one, 412, 418
files and, 440–441
finding highest/lowest values in

numeric, 430–431
initialization, 413–414, 456–457
invalid subscripts with,

411–412
length field in, 418, 446,

457–458
length of, 417–418
of objects, 435–439, 446–449
one-dimensional, 452
partially filled, 439–440
passing, to methods, 424–428,

461–463

ragged, 463
reference variables, reassigning,

421–422
returning, from methods,

441–443
selection sort algorithm,

465–468
sequential search algorithm,

449–451
size, user specified, 419–421
size declarator, 406–407
String, 443–446
subscripts, 407, 411–412, 451
summing values in numeric,

429–430, 459–461
with three or more dimensions,

464
two-dimensional, 452–463

assignment operators, 52
combined, 63–64

assignment statements, 39, 52–53
associativity, 143–144

of arithmetic operators, 58
@exception, 733–734
@FXML, 1013
@Override, 637
@param, 288–289
@return, 296–297
attributes, 20
audio, playing

in an applet, 977–980
in an application, 981

AudioClip interface
getAudioClip(), 978
getCodeBase(), 978
getDocumentBase(), 978
loop(), 978
play(), 977, 978
stop(), 978

autoboxing, 598–600
auto commit, 1161
AWT. See Abstract Windowing

Toolkit

B
background color, 784–788
backslashes, 36, 37, 38, 237
backspace, 37
backups, external hard drives for, 5
BankAccount, 374–380
base case, 1051
base class, 614
BASIC, 7, 8
Bell Laboratories, 7

binary digit, 4
binary files

appending data to, 740
DataInputStream class,

738–739, 740
DataOutputStream class,

735–737
defined, 230, 734–735
FileInputStream class,

738–739
FileOutputStream class,

735–737, 740
raw format, 735
reading data from, 738–740
writing data to, 735–737

binary numbers, 6
binary operators, 55
binary search algorithm, 468–470

recursive, 1061–1064
binding

defined, 373
dynamic, 658–660
late, 659

bit, 4
blank lines, 28
block comments, 79
block of statements, 119, 197
body

class, 29
document, 921
loop, 194
method, 30, 271

boolean data type, 50
boolean expressions

logical operators and, 137, 138
relational operators and, 114

boolean value, returning, 300
BorderFactory class, list of

methods, 822
BorderLayout manager, 794,

797–804
borders

compound, 822
defined, 821
empty, 822–823
etched, 822
line, 822, 823
lowered bevel, 822
matte, 822
methods for creating, 822
objects, 821
raised bevel, 822
setBorder(), 821, 858
titled, 822, 823

 Index 1173

bounds checking, 411–412
braces, 29–31, 197
branch node, scene graph,

993, 994
Brandi’s Bagel House application,

824–836
breaks, creating text, 924–927
break statements, 155–156, 229
browsers, 919, 937
buffers

file, 231
keyboard, 90

buildMenuBar(), 893
buildTextMenu(), 893
Button class, 937
Button component, JavaFX GUI,

992
ButtonGroup class, 811
buttons, 762, 771

See also JButton class; JButton
component; Radio buttons

displaying images in, 874–880
byte, 4
byte code, 8
byte data type, 45, 46
Byte.parseByte(), 96
Byte wrapper class, 96, 597

C
calling methods, 73, 272–276,

295–296
hierarchical, 277–278
superclass constructor, 626–633

call stack, 722, 725, 727
Car class, 389
case conversion, character, 565–567
case sensitive, 29, 43
case statement, 155–156
cast operators, 66–67, 282
catch block, 706
catch clause, 706

using multiple, 712–720
using one, 722–725

CDs (compact discs), 5
CellPhone class example, 352–356
central processing unit (CPU), 7,

12–13
fetch/decode/execute cycle, 3–4
parts/organization of, 3
role of, 3

chains of inheritance, 649–654
Character class

case conversion, 565–567
description of, 560–567

isDigit(), 560
isLetter(), 560,
isLetterOrDigit(), 560
isLowerCase(), 560
isSpaceChar(), 560
isUpperCase(), 560
isWhiteSpace(), 560
toLowerCase(), 566
toUpperCase(), 566

characters
comparing, 120–121
conversion, 166
literals, 50–51
reading, 88
Unicode, 51–52, 120–121
wrapping, 897

charAt(), 74, 584
char data type, 50–52, 560
CheckBox class, 937
check boxes, 762, 810, 816–821

See also JCheckBox class
CheckBox component, JavaFX

GUI, 992, 1027–1032
events, responding to,

1030–1032
isSelected(), 1028
Text property, 1027

check box menu item, 886
See also JCheckBoxMenuItem

class
checked exceptions, 726–727
Cho Han game example, 362–372
circles, drawing, 950

concentric, 1056–1058
classes

See also specific classes
accessor(), 340
access specifiers, 328
adapter, 967–972
aggregation, 517–527
anonymous, 683–686
base, 614
body of, 29
collaborations, 544–548
constructors and, 348–352
data hiding, 340–341
definition, 28
derived, 614
finding, 384–387
header, 28
hierarchies of, 655, 849–850
inner, 777, 683–686
instance fields and, 343–347,

380–381, 495–496

instance methods and, 330,
343–347, 495–496

instance of, 343–347
interfaces, 669–680
in Java API, 321–323
layout of members, 342
mutator method, 340
names, 29, 44
objects created from, 320–321
peer, 763
private access specifier, 328
protected members, 643–648
public access specifier, 328
responsibilities, identifying,

387–390
static, 495–501
type variables, 71–72, 324
writing, step-by-step

instructions, 326–342
.class file extension, 28, 770
close(), 736, 738
COBOL, 7
code reuse, 270
collaboration, class, 544–548
color

background and foreground,
setting, 784–788

changing background color of
JFrame content pane, 788

constants, list of, 784
getColor(), 943

ColorCheckBoxWindow, 817–820
color chooser dialog box, 885
ColorWindow class, 784–788
columns, 1081–1084
combined assignment operators,

63–64
ComboBox component, JavaFX

GUI, 992
combo boxes, 762, 868–874

See also JComboBox class
command-line arguments, 470–471
commas

in numeric literals, 47, 48
separated value, 601
separators, 170–172

comments
block, 79
defined, 77
documentation, 79–81, 278,

288–289, 296–297
multi-line, 78–79
single-line, 77–78
slash marks, use of, 28, 31

1174 Index

commit, 1161
compact discs (CDs), 5
comparing arrays, 428–429
comparing string objects, 145–

151
compiler, role of, 12–13
compiling programs, 14–15
components

See also type of
adding, to a window, 771–776
borders, 821–823
buttons, 762, 771, 874–880
check boxes, 762, 816–821
combo boxes, 762, 868–874
defined, 761
heavyweight, 763
labels, 762, 771, 874–880
lightweight, 763
lists, 762, 852–868
panels, 772–776
radio buttons, 762, 810–816
sliders, 762, 899–904
text areas, 895–899
text fields, 762, 771, 850–851

compound borders, 822
compound operators, 63
computer systems

hardware, 2–5
software, 5–6

concat(), 579
concatenation operator, 40–41
conditional expression, 152–154
conditional loops, 207
conditionally executed, 112,

119–120
conditional operator, 152–154
console

output, 33
window, 33

constants
color, 784
enum, 533
EXIT_ON_CLOSE, 766–767
HIDE_ON_CLOSE, 767
MAX_VALUE, 602
MIN_VALUE, 602
named, 69–70

constructors
copy, 516–517
default, 350–351, 632–633
Image class, 1034
no-arg, 351, 632–633
object creation and, 348–352
overloading, 372–380, 532

StringBuilder class, 583–584
String class, 352
superclass, 623–625, 626–633
in UML diagrams, 350

containers, GUI, 764
adding layout manager to, 794
nesting panels, 801–804

content panes, 772–776, 788
continue statements, 229
contract, interface as, 671–675
control characters, 36
control unit, 3
controller class, JavaFX

sample skeleton, 1017–1018
writing code for, 1012–1016

control variable, loop, 196
conversion

character, 166
data type, 65–68, 95–98,

281–282
copy (copying)

arrays, 422–424
constructors, 516–517
deep, 525–527
devices for, 5
objects, 514–516
reference, 422, 514
shallow, 525–527

count-controlled loops, 207,
214–216

counter variables, 208
C programming language, 7, 8
C++ programming language, 7, 8
C# programming language, 7
CPU. See central processing unit
CRC cards, 547–548
createCompoundBorder(), 822
createEmptyBorder(), 822
createEtchedBorder(), 822
createLineBorder(), 822
createLoweredBevelBorder(), 822
createMatteBorder(), 822
createRaisedBevelBorder(), 822
createTitledBorder(), 822
.csv file, 604
currency symbols, 48
cursor navigation methods, 1125
Customer class, 388

D
data

appending, to files, 236–237,
740

hiding, 20, 340–341

metadata, ResultSet,
1125–1128

reading, from files, 237–238,
738–740

stale, 341
storage, 4–5
writing, to files, 230–236,

735–737
database example (CoffeeDB)

columns, getting, 1088–1089
connecting to, 1078–1080
CREATE and DROP TABLE

statements, 1119–1122
creating, 1078
DELETE statement, JDBC,

1115–1118
DELETE statement, SQL, 1110,

1115
displaying tables, 1129–1139
INSERT statement, JDBC,

1108–1109
INSERT statement, SQL, 1106–

1108
joining data from multiple

tables,
1142–1143

keys, primary, 1083–1084
LIKE operator, 1100–1101
logical operators (and, or),

1101–1102
mathematical functions, 1103–

1105
ORDER BY clause, 1102–1103
passing SQL statements to

DBMS,
1086–1096

relational database, 1139–
1161

ResultSet object, 1086–1092
rows, getting, 1087–1088
SELECT statement, 1084–1085,

1092–1096, 1100
tables, rows, and columns,

1081–1084
UPDATE statement, JDBC,

1111–1114
UPDATE statement, SQL, 1110–

1111
WHERE clause, 1096–1102,

1111, 1115, 1143
database management systems

(DBMS)
defined, 1075–1076
Java DB, 1078

 Index 1175

JDBC (Java Database
Connectivity), 1076–1077

JDBC, creating a, 1122–1123
packages, 5, 1077
password-protected, 1080
ResultSet, metadata,

1125–1128
ResultSet, navigation

methods, 1125
ResultSet, scrollable,

1124–1125
Structured Query Language

(SQL), 1077
transactions, 1161–1163

DataInputStream class, 738–739,
740

DataOutputStream class, 735–737
data types

boolean, 50
byte, 45, 46
char, 50–52
conversion between, 65–68,

95–98, 281–282
double, 45, 47
enumerated, 533–541
float, 45, 47
floating-point, 47–49
int, 45, 46–47
long, 45, 46
mixing, in expressions, 67–68
numeric data, 45, 601–603
primitive, 44–52, 65–68
ranking, 65–66
short, 45, 46
SQL, 1083
in UML diagrams, 341–342

DB2, 1077
debugging GUI applications,

837–841
decimal notation, 49
decision structures

conditional operator, 152–154
defined, 112
if-else-if statement, 131–136
if-else statement, 121–123
if statement, 111–121
logical operators
nested if statements, 124–131
switch statement, 154–162

declarations
array notation, 414
parameters, lambda

expressions, 689
variable, 39, 151–152

decorations, window, 766
decrement operator (++), 189–192

postfix versus prefix modes, 192
deep copy, 525–527
default(), 676–678
default constructor, 350–351,

632–633
default error message, retrieving,

709–712
default exception handler, 704
default methods, interfaces,

676–678
default statement, 155–156, 157
definition, class, 28
delete(), 586–587
deleteCharAt(), 586–587
DELETE statement

JDBC, 1115–1118
SQL, 1110, 1115

delimiters, 232, 597–598
depth of recursion, 1049
derived class, 614
deserialization, 734, 747
diagnostic messages, 837–838
dialog boxes, 92–98
diamond operator for type

inference, 482
dice with objects, example,

356–360
digital versatile discs (DVDs), 5
Dimension class, 892–893
direct recursion, 1054
disk drives, 4–5

See also solid state drives
divide-and-conquer approach,

269–269
division

integer, 57
operator, 55, 56
remainder of, 56

doClick(), 816, 820–821
documentation comments, 79–81,

278, 288–289, 296–297,
733–734

document body, 921
document head, 920
document structure tags, 920–922
dot, 34
double data type, 45, 47
Double.parseDouble(), 96
Double wrapper class, 96, 601
do-while loops, 204–206
drawArc(), 943, 950–952
DrawBoxes, 967–972

drawCircles(), 1058
drawing

arcs, 943, 950–952
circles, 950
concentric circles, 1056–1058
lines, 943, 946
ovals, 943, 948–950
on panels, 957–962
polygons, 944, 952
rectangles, 943, 946–948
strings, 944, 954–956
XY coordinate system, 942

drawLine(), 943, 946
drawOval(), 943, 948–950
drawPolygon(), 944, 952
drawRect(), 943, 946–948
drawstring(), 944, 954–956
DriverManager.getConnection(),

1078–1080
DVDs (digital versatile discs), 5
dynamic binding, 658–660

E
editor, text, 12
else, trailing, 134–135
EmbeddedMain class, 769–771
empty borders, 822–823
encapsulation, 20
endsWith(), 568–571
enhanced for loop, 418–419,

476–477
E notation, 49
enter key, 88
entity relationship diagrams, 1141
enum constants, 533
enumerated data types, 533–541

switching on, 540–541
EOFException class, 705
equals(), 146–148, 511–514, 656
Error class, 726
error messages

cannot resolve symbol, 76
default error message,

retrieving, 709–712
errors

common, to avoid, 99–100,
255, 306–307, 390–391,
483, 548, 608, 681, 751,
842, 906–907, 982, 1069,
1163

compiler, 293, 294
exception handler used for

recovering from, 715–718
logical, 17

1176 Index

errors (continued)
off-by-one, 412, 418
syntax, 12
using trailing else to catch, 134

escape sequences, 36–37
event-driven programming, 764,

993
event listener

defined, 764, 777, 993
handling, 777–784
interface implementation,

778–779
private inner classes, 777
registering, 779

events, 993
action, 778
in applets, 932–936
CheckBox, responding to,

1030–1032
defined, 777, 993
firing, 777
handling, 777–784
item, 817
listener, 764, 777–784
mouse, 963–973
object, 777
RadioButton, responding to,

1024–1027
source, 777

Excel spreadsheet, 604
Exception class, description of,

704–705
exception handler

defined, 704
recovering from errors using,

715–718
exceptions

catch clause, using one,
722–725

catch clauses, using multiple,
712–720

checked, 726–727
classes, 704–705
creating your own classes for,

730–733
default error message,

retrieving, 709–712
default handler, 704
defined, 233, 703, 704
EOFException class, 705
Error class, 726
Exception class, 704–705
FileNotFoundException class,

705

finally clause, 720–721
handling, 703–727
handling multiple, 712–720
IllegalArgumentException

class, 720, 729–730
InputMismatchException class,

724
IOException class, 233, 235,

237, 241, 306, 705, 724
MalformedURLException class,

981
methods and throwing, 306
NumberFormatException class,

719–720, 723–724
polymorphism and, 712
RuntimeException class, 705,

726, 730
stack trace, 722–723
throwing, 306, 727–733
throws clause, 233, 241
try statement, 705–709,

719–720
when not caught, 725–726
unchecked, 726–727

executable files, 12
exists(), 245–248
EXIT_ON_CLOSE constant, 766–767
explicit import statement, 382
expressions

initialization, 207–208,
211–214

regular, 599
return statement, 294
test, 207–208
update, 207–208, 211,

213–214
extending classes from JPanel

class, 824–836
extending the JFrame class,

767–769

F
factorial(), 1051–1054
fetch/decode/execute cycle, 3–4
Fibonacci series, 1058–1060
fields

instance, 343–347, 380–381,
495–496

interface, 675
length, 418, 446, 457–458
object, 319
static, 496–498
text, 762, 771
text, read-only, 850–851

file chooser dialog box, 883–884
See also JFileChooser class

File class, 230
exists(), 245–248

FileInputStream class, 738–739
FileNotFoundException class, 705
FileOutputStream class, 735–737,

740
files

appending data to, 236–237,
740

arrays and, 440–441
binary, 230, 734–740
buffers and, 231
closing, 230
comma separated value

format, 601
detecting end of, 241–242
exceptions, 233
existence, checking for,

245–248
FileWriter class, 230,

236–237
input/output, 230–248
location of, specifying, 237
names, 14
opening, 230
pointer, 743–746
PrintWriter class, 230–236
random access, 741–746
reading, 230
reading data from, 237–238,

738–740
reading lines from, using

nextLine(), 238–241
reading primitive values from,

242–244
read position of, 239
Scanner class, 230, 237–244
sequential access to, 741
source, 12
text, 230
throws clause, 233, 241
writing data to, 230–236,

735–737
FileWriter class, 230, 236–237
fillArc(), 943, 950–952
fillOval(), 943, 946–950
fillPolygon(), 944, 952–954
fillRect(), 943
finalize(), 544
final key word, 69–70
finally block, 721
finally clause, 720–721

 Index 1177

flags, 120, 170–174
flash memory, 5
float data type, 45, 47
floating-point data types, 47–49
floating-point literals, 48–49
Float.parseFloat(), 96
Float wrapper class, 96, 597
floppy disk drives, 5
FlowLayout manager, 794–797
fonts, 898–899

setFont(), 895, 944
foreground color, 784–788
foreign key, 1140
for loops

ArrayList class and, 476–477
count-controlled, 207, 214–216
counter variable, 208
defined, 207
enhanced, 418–419, 476–477
header, 207
initialization expression,

207–208, 211–214
pretest, 210
test expression, 207–208
update expression, 207–208,

211, 213–214
user-controlled, 212–213

formal parameters, 281
FormatString, 175
formatting

string arguments, 174–175
String.format(), 175–177
System.out.printf(), 164–178
text formatting tags, 922–924

FORTRAN, 7
Frame class, 937
frames, 764

See also JFrame class
functional decomposition, 302
functional interfaces, 686–690

See also lambda expressions
FXML, 995–996
@FXML annotation, 1013

G
garbage collection, 542–544

finalize(), 544
generalization and specialization,

613–614
get(), 475–476
getActionCommand(), 789–792
getArea(), 337–340
getAudioClip(), 978
getChars(), 575, 576–578, 584

getCodeBase(), 978
getColor(), 943
getColumnCount(), 1126
getColumnDisplaySize(), 1126
getColumnName(), 1126
getColumnTypeName(), 1126
getContentPanel(), 788
getDelay(), 974
getDocumentBase(), 978
getDouble(), 1089
getInt(), 1089
getLength(), 334–337
getSelectedFile(), 884
getSelectedIndex(), 854, 864,

869–873
getSelectedItem(), 869–873
getSelectedValue(), 854, 864
getSource(), 789, 792–793
getString(), 1089
getTableName(), 1126
getters, 340
getText(), 782, 896
getValue(), 901–904
getWidth(), 334–337
getX(), 964
getY(), 964
Gosling, James, 8
graphical user interface (GUI)

appearance, 904–906
components, 761–762, 992
components, adding to a

window, 771–776
creating windows, 764–793
creation of, 762–763
debugging, 837–841
defined, 761
differences between applets

and, 929
event-driven programming,

764, 993
JavaFX applications,

991–1038
layout managers, 793–809
main(), 769–771

Graphics class
drawArc(), 943, 950–952
drawCircles(), 1058
drawLine(), 943, 946
drawOval(), 943, 948–950
drawPolygon(), 944, 952
drawRect(), 943, 946–948
drawstring(), 944, 954–956
fillArc(), 943, 950–952
fillOval(), 943, 946–950

fillPolygon(), 944, 952–954
fillRect(), 943
getColor(), 943
objects, 942–956
setColor(), 943
setFont(), 944

greatest common divisor (GCD),
finding, 1060–1061

Green Team, 8
GridLayout manager, 794,

804–809
GUI. See graphical user interface

H
hard drives, 4–5
hardware

central processing unit (CPU),
3–4, 7, 12–13

components of, 2
defined, 2
input devices, 5
memory, 4
output devices, 5
secondary storage, 4–5

hash code, 656
headers

class, 28
loop, 194, 207
method, 29–30, 233, 241,

271–272
while loop, 194

heavyweight components, 763
hexadecimal numbers,

656–657
HIDE_ON_CLOSE constant, 767
hiding, data, 20, 340–341
hierarchical method calls,

277–278
hierarchies, class, 655, 849–850
HotJava, 8
HTML. See Hypertext Markup

Language
hypertext, defined, 919
Hypertext Markup Language

(HTML), 8, 79
breaks, creating, 924–927
defined, 919
document body, 921
document head, 920
document structure tags,

920–922
limitations of, 917
links, inserting, 927–928
text formatting tags, 922–924

1178 Index

Hypertext Markup Language
(HTML), tags

, 927–928
<applet></applet>, 930
, 924
<body></body>, 921

, 924–927
<center></center>, 922–923
<head></head>, 920
<h1></h1> through <h6></h6>,

922
<hr />, 925–926
<html></html>, 920
<i></i>, 924
<p />, 925
<title></title>, 920

I
IDEs (integrated development

environments), 15
identifiers, 9, 11, 42–43
if-else-if statements

compared to nested decision
structure, 135–136

description of, 131–136
trailing else clause, 134–135

if-else statements, 121–123
if statements

braces used with, 120
characters, comparing,

 120–121
description of, 111–121
flags, 120
flowcharting, 112–113
multiple statements,

119–120
nested, 124–131
programming style and,

118–120
relational operators to form

conditions, 113–114
IllegalArgumentException class,

720, 729–730
ImageIcon class, 874–876

constructor, 875
Image class, 1034
images, displaying, 874–880,

1033–1038
ImageView component, JavaFX

GUI, 1033–1038
setImage method, 1034

immutable objects, 286, 526
implementing an interface,

669–674, 686–690, 778

import statement
explicit, 382
Scanner class and, 87–88
wildcard, 383

increment operator (++), 189–192
postfix versus prefix

modes, 192
indentation, 82
indexOf(), 572, 584
indirect recursion, 1054
infinite loops, 196–197
inheritance

base class, 614
chains of, 649–654
defined, 613
derived class, 614
does not work in reverse, 625
extend JFrame class, 767–769
generalization and

specialization, 613–614
“is a” relationship, 614–622,

660–661
subclasses and, 614
superclass, 614
superclass constructors, 623–

625, 626–633
superclass methods, overriding,

634–639
UML diagrams, 622–623

initialization
array, 413–414
array, two-dimensional,

 456–457
variable, 52–53

inner class, 777
anonymous, 683–686

input
devices, 5
dialogs, displaying, 93
file, 230–248
keyboard, 84–91
validation, 200–203

InputMismatchException class,
713, 724

insert(), 585–586
inserting

items in ArrayList, 475,
479–480

links, 927–928
INSERT statement

JDBC, 1108–1109
SQL, 1106–1108

instance
class, 71, 343–347

fields, 343–347, 380–381,
495–496

methods, 330, 343–347,
495–496

variables, 347
instanceof operator, 661
int data type, 39, 45, 46–47
Integer.parseInt(), 96
integers

data types, 45, 46–47
division, 57
literals, 42, 47
mixed, 67–68

Integer wrapper class, 96, 601
integrated development environ-

ments (IDEs), 15
interfaces

See also graphical user interface
as contract, 671–675
default methods, 676–678
defined, 669
fields, 675
functional, 686–690
implementing, 669–675, 686–

690, 778
key word, 669
multiple, 675
polymorphism and, 678–683
serializable, 750
UML diagram, 675–676

Internet Explorer, 79, 937
IOException class, 233, 235, 237,

241, 306, 705, 724, 736, 747
“is a” relationship, 614–622,

660–661
isDigit(), 560
isLetter(), 560,
isLetterOrDigit(), 560
isLowerCase(), 560
isRunning(), 974
isSelected(), 815–816, 817–820

CheckBox, 1028
RadioButton, 1021

isSpaceChar(), 560
isUpperCase(), 560
isWhiteSpace(), 560
item event, 817
item listener, 817
iterations, loop, 195–196

J
JApplet class, 929
Java

applets, 8–9, 917–919, 928–941

 Index 1179

applications, 8–9
compiler, 12–13
defined, 7
editions, 14
history of, 8
parts of a simple program,

27–31
portability, 13
security, 9
virtual machine, 12–13, 542,

659, 705, 706
java.applet, 383
java.awt, 383, 764

class hierarchy, 849–850
java.awt.event, 778, 782, 880,

963, 964, 971
java command, 14–15, 28, 471,

837
Java Database Connectivity. See

JDBC
Java DB, 1078
Java Development Kit (JDK), 14
javadoc, documentation and,

79–81, 278
Java Enterprise Edition (EE), 14
.java file extension, 12, 28
Java Foundation Classes (JFC),

761, 762
java.io, 383, 705, 735, 738, 747,

884
java.lang, 383
Java Micro Edition (ME), 14
java.net, 383, 981
javafx.scene.image package, 1034
JavaScript, 7
java.security, 383
java.sql, 383, 1080
Java Standard Edition, (SE) 14
java.text, 383
java.util, 383, 593
Java Virtual Machine (JVM), 12–

13, 542, 659, 705, 706
javax.swing, 383, 764

class hierarchy, 849–850
javax.swing.event, 853
JButton class, 771

addActionListener(), 783,
786–790, 791

constructor, 775, 876
displaying images, 876–880
setActionCommand(), 792
setIcon(), 875

JButton component, action events
and, 779

JCheckBox class
constructor, 816–817
doClick(), 820–821
events, responding to, 817
isSelected(), 817–820

JCheckBoxMenuItem class, 887
JColorChooser class, 885
JComboBox class

constructor, 868
defined, 868
editable, 873–874
events, responding to, 869
getSelectedIndex(), 869–873
getSelectedItem(), 869–873
retrieving selected item, 869–873
setEditable(), 873–874

JComponent class, 895
JDBC (Java Database

Connectivity),
1076–1077

DELETE statement, JDBC,
1115–1118

INSERT statement, 1108–1109
UPDATE statement, 1111–1114

JDK (Java Development Kit), 14
JFC (Java Foundation Classes),

761, 762
JFileChooser class

constructor, 883
defined, 883
getSelectedFile(), 884
showOpenDialog(), 883–884
showSaveDialog(), 884

JFrame class
content panes and panels,

772–776, 788
EXIT_ON_CLOSE constant,

766–767
getContentPane(), 788
HIDE_ON_CLOSE constant, 767
inheritance to extend, 767–769
instance, 766
paint(), overriding, 944, 956
repaint(), 956–957
setDefaultCloseOperation(),

766
setLayout(), 794
setSize(), 766
setTitle(), 766
setVisible(), 767

JLabel class, 771
constructor, 875
displaying images, 874–880
setIcon(), 875

JList class
adding items to, 863
addListSelectionListener(),

853
border, placing around, 858
constructor, 852
defined, 852
events, responding to, 853
getSelectedIndex(), 854, 864
getSelectedValue(), 854, 864
multiple interval selection

mode, 864–868
multiple selection lists,

863–868
retrieving selected item,

854–857
scroll bar, adding to, 858–863
selection modes, 852–853
setBorder(), 858
setListData(), 863
setVisibleRowCount(),

858–859
single interval selection mode,

863–864
JMenuBar class, 887
JMenu class, 887
JMenuItem class, 887
JOptionPane class, 764

dialog boxes displayed using,
92–98

showInputDialog(), 93
showMessageDialog(), 92–93

JPanel class
content panes and panels,

772–776
extending classes from,

824–836
nesting, 801–804
paintComponent(), 957–962
setBorder(), 820, 821, 858

JRadioButton class
constructor, 810
doClick(), 816
events, responding to, 811–815
grouping, 811
isSelected(), 815–816
radio buttons, creating, 762,

810–816
JRadioButtonMenuItem class, 887
JScrollPane class, 863, 896–897

constructor, 859
JSlider class

constructor, 900
defined, 899

1180 Index

JSlider class (continued)
events, responding to, 901
getValue(), 901–904
tick mark spacing, 900–901

JTable class, 1129–1139
JTextArea class

constructor, 895–896
defined, 895
getText(), 896
scroll bars, 896–897
setLineWrap(), 897
setText(), 896
setWrapStyleWord(), 897

JTextField class, 771
constructor, 775
getText(), 782
read-only text fields, 850–851
setEditable(), 850–851

JVM. See Java Virtual Machine

K
keyboard

buffer, 90
input from, 84–91
mnemonics, 880–882

KeyEvent class, 880–881
keys

foreign, 1140
primary, 1083–1084

key words, 9, 10, 42
super, 626–632, 642

L
Label class, 937
Label component, JavaFX GUI,

992, 994
labels, 762, 771

See also JLabel class
displaying images in, 874–880

lambda expressions, 686,
687–690

accessing variables within, 690
declaration, parameter, 689
multiple statements in, 689
parameters, multiple, 689

languages, programming
common elements, 9–15
description of, 6–9

lastIndexOf(), 572, 573–575,
584

late binding, 659
layout managers

adding, to a container, 794
BorderLayout, 794, 797–804

defined, 793–794
FlowLayout, 794–797
GridLayout, 794, 804–809

leading whitespace, 580
leading zeros, 172–173
leaf node, scene graph, 993, 994
left-justifying numbers, 173–174
length(), 73, 74, 584
length field, array, 418, 446,

457–458
lexicographical comparison, 149
lifetime, 292
lightweight components, 763
LIKE operator, 1100–1101
line borders, 822, 823
lines

blank, 28
drawing, 943, 946
program, 11
reading, from files using

nextLine(), 238–241
wrapping, 897

links, inserting, 927–928
Linux, 5
listener

action/event, 764, 777–784
item, 817
mouse, 963
mouse motion, 963

lists
See also JList class
defined, 762, 852

ListSelectionListener interface,
853

ListSelectionModel class, 853
literals

character, 50–51
floating-point, 48–49
how to use, 39–44
integer, 42, 47
string, 30, 42

local variables, 76, 291–293
logical errors, 17
logical operators

&& (AND), 137, 138–140,
1101–1102

associativity of, 143–144
boolean expressions using, 138
! (NOT), 137, 143
numeric ranges with, 144–145
|| (OR), 137, 141–142,

1101–1102
precedence of, 143–144

long data type, 45, 46

Long.parseLong(), 96
Long wrapper class, 96, 597
look and feel (appearance),

904–906
loop(), 978
loops

body, 194
break statement in, 229
choice of, 229
conditional, 207
continue statement in, 229
control variable, 196
count-controlled, 207, 214–216
defined, 193
do-while, 204–206
enhanced for, 418–419,

476–477
for, 207–216
header, 194, 207
infinite, 196–197
iterations, 195–196
nested, 221–229
posttest, 204
pretest, 196, 210
running totals and, 216–219
sentinel values and, 219–221
user-controlled, 206, 212–213
while, 193–206

lowercase, converting characters
to, 560

M
machine language, 6–7
Mac OS, 5
main()

body of, 30
in GUI class, 769–771
header, 30

main application class, JavaFX
writing code for, 1010–1011

MalformedURLException class, 981
markup language, 920
Math class

.PI named constant, 70

.pow, 62

.sqrt, 62
mathematical functions, SQL,

1103–1105
MAX_VALUE constant, 598
memory

flash, 5
random-access, 4, 12
secondary, 4–5
storing characters in, 52

 Index 1181

menus
bar, 886
components of, 886–887
constructing, 887–894
defined, 886
items, 886
sub, 887

message(), 1049
message dialogs, displaying,

92–93
metadata, ResultSet, 1125–1128
methods

See also specific methods
abstract, 662–669
accessor, 340
arguments, passing, 279–289,

502–505
binding, 373
body, 271
calling, 73, 272–276
defined, 20, 269
defining a void, 271–272
detail section, 80
divide-and-conquer approach,

269–270
documentation comments,

278, 288–289
headers, 29–30, 233, 241,

271–272
hierarchical calls, 277–278
how to use, 269–270,

297–300
instance, 330, 343–347,

495–496
javadoc comments with, 278
local variables, 76, 291–293
modifiers, 272
mutator, 340
name, 272
object references/arguments to

methods, passing, 285–288,
502–505

overloading, 372–380
overriding, 634–639
parameter variables and, 279,

281–282
passing arrays to, 424–428,

461–463
private, 328
problem solving with, 302–307
public, 272, 328
returning a boolean value, 300
returning arrays from, 441–443
returning objects from, 505–507

return statement, 294
return type and, 294
signature of, 373
static, 272, 499–501
summary section, 80
synchronized, 592
throw exceptions, 306
value-returning, 269, 270, 271,

293–297
variable-length argument lists

and, 472–474
void, 269, 270–272

Microsoft, 7, 937, 1077
minimum field width,

168–170
minus sign (negation), 55
MIN_VALUE constant, 598
mnemonics, 880–882
modifiers, method, 272
modulus operator, 55, 56
mouse

adapter classes, 967–972
events, 963–973
listener, 963
motion listener, 963

MouseAdapter class, 967–972
mouseClicked(), 963
mouseDragged(), 964
mouseEntered(), 963
MouseEvent class, 963–964
mouseExited(), 963
MouseListener interface, methods,

963
MouseMotionAdapter class, 971
MouseMotionListener interface,

methods, 964
mouseMoved(), 964
mousePressed(), 963
mouseReleased(), 963
multi-catch, 724–725
multi-line comments, 78–79
multiple statements in, 689
multiplication operator, 55
multithreaded application, 592
mutator method, 340
MySQL, 1077

N
named constants, 69–70
names

class, 29, 44
identifiers, 42–43
method, 272
variable, 43

narrowing conversion, 66
navigation methods, 1125
negation operator, 55
nested if statements

description of, 124–131
flowcharting, 124
multiple, 128–131

nested loops, 221–229
new key word, 84, 405, 408, 413,

444, 456, 507, 584, 783
nextByte(), 86, 242
nextDouble(), 86, 242, 250
nextFloat(), 86, 242, 250
nextInt(), 86, 242, 250
nextInt(int n), 250
nextLine(), 86, 238–241
nextLong(), 86, 242, 250
nextShort(), 86, 242
no-arg constructor, 351, 632–633
nodes, scene graph,993–994
NOT (!) operator, 137, 143
null references, avoiding, 527–530
null statements, 119
NumberFormatException class, 712,

719–720, 724
numbers, converting strings to,

95–98
numeric data, data types for, 45
numeric data types, wrapper

classes for, 597–600
numeric ranges, checking with

logical operators, 144–145

O
Oak, 8
Object class

description of, 655–657
equals(), 656
toString(), 656

ObjectInputStream class, 747
object-oriented design

class collaboration, 544–548
classes, finding, 384–387
class responsibilities,

identifying, 387–390
CRC cards, 547–548
problem domain, 384

object-oriented programming
(OOP)

attributes in, 20
data hiding in, 20, 340–341
defined, 19–21
encapsulation in, 20
methods in, 20

1182 Index

ObjectOutputStream class, 747
objects

aggregation, 517–527
anonymous, 771, 783
as arguments/references,

passing, 285–288, 360–362,
502–505

ArrayList, creating and using,
475–476

arrays of, 435–439, 446–449
comparing string, 145–151
constructors, 348–352,

516–517
copy constructors, 516–517
copying, 514–516
created from classes, 70–71
creating string, 72–73
default constructor, 350–351
defined, 319
deserialization, 734, 747
examples of, 320
fields, 319
graphic, 942–956
immutable, 286, 526
out, 33–34
primitive variables versus,

323–326
returning, from a method,

505–507
returning reference to,

300–302
serialization, 746–750
state, 507
timer, 973–977

off-by-one errors, 412, 418
one-dimensional arrays, 452
OOP. See object-oriented

programming
operands, 52
operating systems, 5
operators

= (assignment), 52
+= (assignment), 64
-= (assignment), 64
*= (assignment), 64
/= (assignment), 64
%= (assignment), 64
binary, 55
cast, 66–67, 282
combined/compound

assignment, 63–64
conditional, 152–154
– (decrement), 189–192
defined, 9, 11

<> (diamond), 482
++ (increment), 189–192
instanceof, 661
LIKE, 1100–1101
ternary, 55, 152
unary, 55

operators, arithmetic
+ (addition), 55
associativity of, 58
/ (division), 55, 56
% (modulus), 55, 56
* (multiplication), 55
– (negation), 55
precedence of operations,

57–59
+ (string concatenation), 40–41
– (subtraction), 55

operators, logical
&& (AND), 137, 138–140,

1101–1102
associativity of, 143–144
boolean expressions using, 138
! (NOT), 137, 143
numeric ranges with, 144–145
|| (OR), 137, 141–142,

1101–1102
precedence of, 143–144

operators, relational
== (equal to), 113–114, 428–

429, 1096
> (greater than), 113–114,

1096
>= (greater than or equal to),

113–114, 1096
< (less than), 113–114, 1096
<= (less than or equal to),

113–114, 1096
<> (not equal to), 1096
!= (not equal to), 113–114

optical devices, 5
Oracle/Sun Microsystems, 14, 1077
ORDER BY clause, 1102–1103
ordinal value, 535
OR (||) operator, 137, 141–142,

1101–1102
out object, 33–34
output

devices, 5, 33
file, 230–248

ovals, drawing, 943, 948–950
overloading

methods and constructors,
372–380, 532

overriding versus, 639–642

overriding
overloading versus, 639–642
paint(), 944, 956
preventing, 642
superclass methods, 634–639

@Override annotation, 637

P
package access, 648–649
packages, import statement and,

382–383
paint(), overriding, 944, 956
paintComponent(), 957–962
Panel class, 937
panels

See also JPanel class
description of, 772–776
drawing on, 957–962
nesting, 801–804

parameter variables (parameters),
279

@param, 288–289
data type compatibility,

281–282
initializing local variables with,

292–293
lambda expressions, 689
list, 282
other names for, 281
scope, 282
in UML diagrams, 341–342
vararg, 472–474

parentheses, 31, 59, 153, 272
parse methods, 96, 559, 597
partially filled arrays, 439–440
Pascal, 7
passed by value, 284–285
password-protected database,

1080
peer classes, 763
percentages, calculating, 59–62
Perl, 7
PHP, 7
PI constant, 70
pixel, 766
play(), 977, 978
plug-ins, 937
polygons, drawing, 944, 952
polymorphism

defined, 658
description of, 657–662
dynamic binding, 658–660
exceptions and, 712
interfaces, 678–683

 Index 1183

portability, 13, 937–941
postfix mode, 190–192
posttest loops, 204
precedence, operator, 57–59,

143–144
precision, 167–168
preferred size, 892
prefix mode, 190–192
pretest loops, 196, 210
primary keys, 1083–1084
priming read, 201, 221
primitive data types, 44–52

conversion between, 65–68
versus objects, 323–326

primitive type variables, 71
primitive values from files,

reading, 242–244
primitive variables versus objects,

323–326
print(), 35–37

patterns with nested loops,
224–229

PrintWriter class and,
231, 232

printf(), 164–175
print1n(), 33–37

PrintWriter class and,
231–232

PrintWriter class
print(), 231, 232
print1n(), 231–232
writing data to files using,

230–236
private access specifier, 328
problem domain, 384
problem solving

extending classes from JPanel
class, 824–836

methods and, 302–307
recursion and, 1050–1054

procedural programming, 19–20
procedure, 19

stored, 1162–1163
programmer-defined names,

9, 11
programmers, role of, 2
programming

common elements, 9–15
defensive, 541
event-driven, 764
languages, 6–9
object-oriented, 19–21
process, 16–19
style, 82–83, 118, 198

programs
compiling running, 14–15
defined, 6–7
design with count-controlled

loops, 207, 214–216
design with while loop,

198–199
parts of simple, 27–31

protected access specifier,
643–649

protected members, 643–648
pseudocode, 19
public access specifier, 28, 29,

328
public modifier, 272
punctuation, 9, 11
Python, 7

Q
quotation marks, 31, 37, 40, 41

R
RadioButton component, JavaFX

GUI, 992, 994, 1019–1027
events, responding,1024–1027
isSelected(), 1021
selection of,1021–1022
Text property, 1019

radio button menu item, 886–887
See also JRadioButtonMenuItem

class
radio buttons

See also JRadioButton class
description of, 762, 810–816

ragged arrays, 463
RAM (random-access memory),

4, 12
RandomAccessFile class

constructor, 741
file pointer, 743–746
format, 741
reading and writing with,

742–743
seek(), 744

random access files, 741–746
random-access memory (RAM),

4, 12
Random class

how to use, 249–254
nextDouble(), 250
nextFloat(), 250
nextInt(), 250
nextInt(Int n), 250
nextLong(), 250

random numbers
applications, 249
generating, 249–254

range, numeric, 144–145
rangeSum(), 1055–1056
raw binary format, 735
readBoolean(), 738
readByte(), 738
readChar(), 738
readDouble(), 738
readFloat(), 738
reading

data from files, 237–238,
738–740

lines from files using
nextLine(), 238–241

primitive values from files,
242–244

RandomAccessFile class and,
741–743

strings, 740
reading(), 738
readLong(), 738
readObject(), 747
read-only text fields, 850–851
read position, 239
readShort(), 738
readUTF(), 738
Rectangle class, writing example,

326–342
rectangles, drawing, 943, 946–948
recursion

base case and, 1051
binarySearch(), 1061–1064
concentric circles, drawing,

1056–1058
defined, 1047–1050
depth, 1049
direct, 1054
factorial(), 1051–1054
Fibonacci series, 1058–1060
greatest common divisor,

finding, 1060–1061
indirect, 1054
methods, 1049–1050
problem solving with, 1050–

1054
recursive case, 1051
summing array elements with,

1055–1056
Towers of Hanoi, 1064–1069

recursiveBinarySearch(),
1061–1064

recursive case, 1051

1184 Index

reference copy, 422, 514
reference variables, 72

objects and, 324–325
reassigning array, 421–422
this, 530–532
uninitialized, 350

referential integrity, 1141
regionMatches(), 569, 571
registering event listeners, 779
regular expression, 594, 595
relational database, 1139–1161
relational operators

== (equal to), 113–114,
428–429, 1096

> (greater than), 113–114,
1096

>= (greater than or equal to),
113–114, 1096

< (less than), 113–114, 1096
<= (less than or equal to),

113–114, 1096
<> (not equal to), 1096
!= (not equal to), 113–114

relationships
“is a, “614–622, 660–661
whole-part, 521

removing items from ArrayList,
478–479

repaint(), 956–957
replace(), 579–580, 586
replacing items in ArrayList,

480–481
reserved words, 9, 10
responsibilities, identifying class,

387–390
ResultSet object, 1086–1092

metadata, 1125–1128
navigation methods, 1125
scrollable, 1124–1125

return
arrays from methods, 441–443
@return, 296–297
boolean value, 300
objects from methods, 505–507
statements, 294
type, 294

rollback, 1161
root node, scene graph, 993, 994
rows, 1081–1084
Ruby, 7
running programs, 14–15
running totals, 216–219
RuntimeException class, 705, 727,

730

S
Scanner class

characters, reading, 88
close(), 238
import statement, 87–88
mixing calls, 88–91
nextByte(), 86, 242
nextDouble(), 86, 242
nextFloat(), 86, 242
nextInt(), 86, 242
nextLine(), 86, 238–241
nextLong(), 86, 242
nextShort(), 86, 242
reading files with, 230,

237–244
reading keyboard input, 84–91

Scene Builder, and JavaFX
applications, 995–1009

main window, 997–998
starting, 996
tutorial, 998–1009

scene graph,993–995
nodes, 993

scientific notation, 49
scope

coming into, 152
instance fields, 380–381
leaving, 152
parameter variable, 282
variable, 75–77, 151–152

scrollable ResultSet, 1124–1125
scroll bar

adding to, 858–863
JTestArea class and, 896–897

SDK (Software Development Kit),
14

search algorithm
binary search, 468–470
binary search, recursive, 1061–

1064
sequential search, 449–451

secondary memory, 4–5
security

aggregate classes and, 525–527
applet, 919, 931
Java, 9

seek(), 744
selection sort algorithm, 465–468
SELECT statement, 1084–1085,

1092–1096, 1100
self-documenting program, 43
semicolons, 30–31, 119, 272
sentinel values, 219–221
separator bar (menus), 887

sequence structure, 112
sequential file access, 741
sequential search algorithm,

449–451
Serializable interface, 750
serialization, 746–750
ServiceQuote class, 389–390
set(), ArrayList, 480–481
setActionCommand(), 792
setBorder(), 820, 821, 858
setCharAt(), 586–587
setDefaultCloseOperation(), 766
setDelay(), 974
setEditable(), 850–851,

873–874
setFont(), 895, 944
setIcon(), 875
setLayout(), 794
setLength(), 328–332
setLineWrap(), 897
setListData(), 863
setLookAndFeel(), 905
setPreferredSize(), 892–893
setSelectionMode(), 853
setSize(), 766
setters, 340
setText(), 896
setTitle(), 766
setToolTipText(), 882
setVisible(), 767
setVisibleRowCount(), 858–859
setWidth(), 333–334
setWrapStyleWord(), 897
shadowing, 381, 531–532
shallow copy, 525–527
shapes, drawing. See drawing
short-circuit evaluation, 138–139
short data type, 45, 46
Short.parseShort(), 96
Short wrapper class, 96, 597
showDialog(), 885
showInputDialog(), 93
showMessageDialog(), 92–93
showOpenDialog(), 883–884
showSaveDialog(), 884
signature, 373
simple Java program, 27–31
single-line comments, 77–78
size, array

declarator, 406–407
user specified, 419–421

slash marks, 28, 31
Slider component, JavaFX GUI,

992

 Index 1185

sliders, 762, 899–904, 902
See also JSlider class

solid state drives, 4, 5
software

application, 5
categories, 5
defined, 2
engineering, 18–19

Software Development Kit (SDK),
14

sorting algorithms, selection sort,
465–468

source code, 12
source file, 12
spaces, displaying, 36
specialization, 613–614
splash screens, 836–837
split(), 593–597
spreadsheets, 5
SQLException, 1080
SQL (Structured Query

Language), 1077
data types, 1083
DELETE statement, SQL, 1110,

1115
INSERT statement, 1106–1108
mathematical functions,

1103–1105
passing SQL statements to

DBMS, 1086–1096
relational operators, 1096
SELECT statement, 1084–1085
stored procedures, 1162–1163
UPDATE and DELETE statements,

1110–1111
stack trace, 722–723
stale data, avoiding, 341
standard input device, 84
standard output device, 33
star seven device (*7), 8
start(), 974
startsWith(), 568–571
state, object, 507
statements, 11

assignment, 39
static class members, 495–501
static fields, 496–498
static methods, 272, 499–501
static modifier, 272
Stock class, 508–511
stop(), 974, 978
storage devices, types of, 4–5
stored procedures, 1162–1163
StringBuffer class, 592

StringBuilder class
append(), 584–585
charAt(), 584
constructors, 583–584
defined, 582
delete(), 586–587
deleteCharAt(), 586–587
getChars(), 584
indexOf(), 584
insert(), 585–586
lastIndexOf(), 584
length(), 584
replace(), 586
setCharAt(), 586–587
substring(), 584
toString(), 587

String class
arguments, formatting, 174–175
arrays of, 443–446
charAt(), 74
compareTo(), 148–150
compareToIgnoreCase(), 150
concat(), 579
constructor, 352
defined, 70
endsWith(), 568–571
equals(), 146–148
getChars(), 575, 576–578
how to use, 70–75
indexOf(), 572
lastIndexOf(), 572, 573–575
length(), 73, 74
objects, comparing, 145–151
objects, creating, 72–73
objects of, passed as argument,

285–288
reading, 740
regionMatches(), 569, 571
replace(), 579–580
returning a String object from

a method, 505–507
split(), 593–597
startsWith(), 568–571
substring(), 575–576
substrings, extracting, 575–578
substrings, searching for,

568–575
toCharArray(), 576–578
toLowerCase(), 74
toUpperCase(), 74
trim(), 579, 580
valueOf(), 580–581
variable declaration, 71
writing, 740

String.format(), 164, 175–177
strings

arguments, formatting,
174–175

concatenation operator, 40–41
converting, to numbers, 95–98
defined, 70
drawing, in graphics, 944,

954–956
literals, 30, 42
tokenizing, 593–600

strongly typed language, 48, 65
Structured Query Language. See

SQL
style, programming, 82–83,

118, 198
subclass, 614
submenu, 887
subscripts, 407, 451
substring(), 575–576, 584
substrings

extracting, 575–578
searching for, 568–575

subtraction operator, 55
Sun Microsystems, 7, 8, 14
SunWorld, 8
superclass, 614

constructors, 623–625,
626–633

methods, overriding, 634–639
super key word, 626–632, 642
Swing class, 761, 762–763

applets, creating with,
928–936

class hierarchy, 849–850
creating windows, 764–793
JavaFX vs., 991

switches, 4
switch statements

break, 155–157
case, 154–155
default, 155–157
description of, 154–162
enumerated data types,

540–541
symbols

\ (backslash), 36, 38, 237
{(brace, left/opening brace),

29–30, 31
} (brace, right/closing), 29, 31
/***/ (comments,

documentation), 79–81
/**/ (comments, multi-line),

78–79

1186 Index

symbols (continued)
// (comments, single-line),

77–78
currency, 43, 48
– (decrement), 189–192
<> (diamond), 482
/ (forward slash), 38, 237
++ (increment), 189–192
() (parentheses), 31, 59, 153,

272
% (percent), 59
“ “ (quotations, double), 31,

40, 41
‘‘ (quotations, single), 50
; (semicolons), 30–31,

119, 272
// (slash, double), 31, 77–78

symbols, escape sequences
\\ (backslash, double), 37, 237
\b (backspace), 37
\t (horizontal tab), 37
\n (new line), 36–37
\” (quote, double), 37
\’ (quote, single), 37
\r (return), 37

symbols, operators
= (assignment), 52
+= (assignment), 64
-= (assignment), 64
*= (assignment), 64
/= (assignment), 64
%= (assignment), 64

symbols operators (arithmetic)
+ (addition), 55
associativity of, 58
/ (division), 55, 56
% (modulus), 55, 56
* (multiplication), 55
– (negation), 55
precedence of operations,

57–59
+ (string concatenation),

40–41
– (subtraction), 55

symbols, operators (logical)
&& (AND), 137, 138–140,

1101–1102
associativity of, 143–144
boolean expressions using, 138
! (NOT), 137, 143
numeric ranges with, 144–145
|| (OR), 137, 141–142,

1101–1102

precedence of, 143–144
symbols, operators (relational)

== (equal to), 113–114, 1096
> (greater than), 113–114,

1096
>= (greater than or equal to),

113–114, 1096
< (less than), 113–114, 1096
<= (less than or equal to),

113–114, 1096
<> (not equal to), 1096
!= (not equal to), 113–114

synchronized methods, 592
syntax, 9
syntax errors, 12
System class

exit method, 94–95, 767
out object, 33–34

System.exit(), 94–95, 767
System.out.printf(), 164–178
System.out.print1n(), 837–841

T
tables, 1081–1084

displaying, 1129–1139
tags

@exception, 733–734
@param, 288–289
@return, 296–297
document structure, 920–922
text formatting, 922–924

telephone numbers, formatting
and unformatting example,
587–591

TempConverterWIndow class,
904–906

events, handling in applets,
932–936

ternary operators, 55, 152
TestScoreReader class example,

600–604
text areas, 895–899

See also JTextArea class
text breaks, creating, 924–927
text editor, 12
TextField class, 937
Textfield component, JavaFX

GUI, 992
text fields

See also JTextField class
defined, 762, 771
read-only, 850–851

text files, 230

text formatting tags, 922–924
Text property

CheckBox component JavaFX,
1027

RadioButton component
JavaFX, 1019

this reference variable, 530
calling overloaded constructor

with, 532
overcoming shadowing with,

531–532
thread, 95
three-dimensional arrays, 464
throwing exceptions, 306, 727–734
throws clause, 233, 241, 726–727,

728, 732
throw statement, 727–734
tick mark spacing, 900–901
Timer class

addActionListener(), 974
constructor, 973
getDelay(), 974
isRunning(), 974
objects, 973–977
setDelay(), 974
start(), 974
stop(), 974

time sharing, 5
titled borders, 822, 823
TitledPane component, JavaFX

GUI, 992, 994
toBinaryString(), 598
toCharArray(), 576–578
toHexString(), 598
tokenizing strings, 593–597
tokens, 593–597
toLowerCase(), 74, 566
toOctalString(), 598
tool tips, 880, 882
toString(), 477–478, 507–511,

587, 598, 656
toUpperCase(), 74, 566
toURl(), 981
Towers of Hanoi, 1064–1069
trailing else clause, 134–135
trailing whitespace, 580, 595–596
transactions, 1161–1163
trim(), 579, 580
truncated, 57, 66
truth tables

AND operator, 138
NOT operator, 143
OR operator, 141

 Index 1187

try block, 706
try statement

catch block, 706
catch clause, 706
description of, 705–709
exception handling, 719–720
finally block, 721
finally clause, 720–721
try block, 706

two-dimensional arrays
declaring, 452–456
defined, 452
displaying elements in, 459
initializing, 456–457
length field in, 457–458
passing, to methods, 461–463
ragged, 463
summing columns in,

460–461
summing elements in, 459–460
summing rows in, 460

typefaces, 898–899

U
UIManager class, 905
unary operators, 55
unboxing, 599–600
unchecked exceptions, 726–727
Unicode, 51–52, 120–121
Unicode Text Format (UTF)-8

encoding, 740
Unified Modeling Language

(UML) diagrams
abstract classes and methods,

668
access specification, 341
aggregation, 525
BankAccount class, 374
Car class, 389
chains of inheritance, 654
class design, 327
constructors, 350
Customer class, 388
data type notation, 341–342
inheritance, 622–623
interfaces, 675–676
parameter variable notation,

341–342
protected members, 648
ServiceQuote class, 390
Stock class, 508

uniform resource identifier (URI),
927, 981

uninitialized reference variable,
350

UNIX, 5
UPDATE statement

JDBC, 1111–1114
SQL, 1110–1111

uppercase, converting characters
to, 560

URI (uniform resource identifier),
927, 981

URI class, 981
USB drives, 5
user-controlled loops, 206,

212–213
UTF (Unicode Text Format)-8

encoding, 740

V
validation, input, 200–203
valueChanged(), 853
valueOf(), 580–581
value-returning method, 269, 270,

271, 293–297
boolean value, returning, 300

vararg parameter, 472–474
variable length argument lists,

472–474
variables

accessing, within lambda
expression, 690

accumulators, 217, 219, 429
assignment, 52–53
class type, 71–72, 324
counter, 208
declaration, 39, 151–152
defined, 11–12
holding one value at a time,

53–54
how to use, 39–44
initialization, 52–53
instance, 347
lifetime, 292
local, 76, 291–293
names, 43
parameter, 279, 281–282
primitive, 323–326
primitive type, 71
reference, 72, 324–325, 350,

421–422, 530–532
scope of, 75–77, 151–152,

282
shadowing, 381, 531–532
this, 530–532

vertex, 952
Visual Basic, 7
void methods, 269, 270–272

W
Web page, 917–918
Web server, 917–918
WHERE clause, 1096–1102, 1111,

1115, 1143
while loop

body of, 194
braces, 197
control variable, 196
defined, 193
do-, 204–206
header of, 194
infinite, 196–197
for input validation, 200–203
iteration, 195–196
as pretest loop, 196
program design with, 198–199
programming style, 198

whitespace, 80, 580, 595–596
whole-part relationship, 521
widening conversion, 66
wildcard import statement, 383
window decorations, 766
windows, creating, 764–793
Windows, operating system, 5
word processing, 5
word wrapping, 897
wrapper classes

autoboxing, 598–600
Byte, 96, 597
Character, 560–567
defined, 559
Double, 96, 597
Float, 96, 597
Integer, 96, 597
Long, 96, 597
MAX_VALUE constants, 598
MIN_VALUE constants, 598
numeric data types, 597–600
parse methods, 96, 559, 597
Short, 96, 597
substrings, 568–578
toBinaryString(), 598
toHexString(), 598
toOctalString(), 598
toString(), 598
unboxing, 599–600

writeBoolean(), 736
writeByte(), 736

1188 Index

writeChar(), 736
writeDouble(), 736
writeFloat(), 736
writing

classes, step-by-step
instructions, 326–342

data to files, 230–236,
735–737

RandomAccessFile class and,
742–743

strings, 740
writeInt(), 736
writeLong(), 736
writeObject(), 747
writeShort(), 736
writeUTF(), 736

X
XY coordinate system, 942

Z
zeros, padding numbers with

leading, 172–173

Structuring Data into Fields and Fixed-Length Records
Data that is written to a file is commonly structured as fields and records. In file terminol-
ogy, a field is an individual piece of data, such as a person’s name or telephone number. A
record is a collection of fields pertaining to a single item. For example, a record might con-
sist of a specific person’s name, age, address, and telephone number.

Quite often you can save the contents of an object as a record in a file. You do this by writ-
ing each of the object’s fields to the file, one after the other. When you have saved all of the
object’s fields, a complete record has been written. When the fields from multiple objects
have been saved, then multiple records have been written to the file.

Random access files are particularly useful for storing and retrieving records. However, the
sizes of the items stored in a random access file must be known in order to calculate the
position of a specific item. Records that are stored in a random access file must be the same
size and must have a fixed length. This means that the size of a record cannot change.

In Java, the sizes of the primitive data types are well documented and guaranteed to be the
same on all systems. If an object’s fields are all of the primitive data types, you can easily cal-
culate the size of the record: it will be the sum of the sizes of all the fields. However, a prob-
lem arises if an object has a field that is a String because its contents can vary in length.
You can get around this problem by making sure that a String field is always written as a
specific number of characters. The example in this appendix shows one way to do this.

First we will introduce the InventoryItem class shown in Code Listing A-1. An object of
this class can represent an item that a company might have in its inventory. This class has
two fields: description, a String that holds an item’s description, and units, an int
that holds the number of units on hand. The class also has the necessary accessor methods,
mutator methods, and two constructors.

A-1

Working with Records and
Random Access Files

A
P

P
E

N
D

IX

A

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

A-2 Appendix A Working with Records and Random Access Files

Code Listing A-1 (InventoryItem.java)

 1 /**
 2 InventoryItem class
 3 */
 4
 5 public class InventoryItem
 6 {
 7 private String description; // Item description
 8 private int units; // Units on hand
 9
10 /**
11 This constructor assigns an empty string
12 to description and 0 to units.
13 */
14
15 public InventoryItem()
16 {
17 description = "";
18 units = 0;
19 }
20
21 /**
22 This constructor assigns values
23 to the description and units fields.
24 @param d The description.
25 @param u The units on hand.
26 */
27
28 public InventoryItem(String d, int u)
29 {
30 description = d;
31 units = u;
32 }
33
34 /**
35 The setDescription method assigns a string
36 to the description field.
37 @param d The string to assign to description.
38 */
39
40 public void setDescription(String d)
41 {
42 description = d;
43 }
44
45 /**

 Structuring Data into Fields and Fixed-Length Records A-3

46 The setUnits method assigns a value
47 to the units field.
48 @param u The value to assign to units.
49 */
50
51 public void setUnits(int u)
52 {
53 units = u;
54 }
55
56 /**
57 The getDescription method returns the item’s
58 description.
59 @return The description field.
60 */
61
62 public String getDescription()
63 {
64 return description;
65 }
66
67 /**
68 The getUnits method returns the number of
69 units on hand.
70 @return The units field.
71 */
72
73 public int getUnits()
74 {
75 return units;
76 }
77 }

The InventoryItemFile class shown in Code Listing A-2 is designed to read and write
InventoryItem objects as records in a random access file. The class can also move the file
pointer to a specific record. To keep the code simple, none of the exceptions are caught.

Code Listing A-2 (InventoryItemFile.java)

 1 import java.io.*;
 2
 3 /**
 4 This class manages a random access file which contains
 5 InventoryItem records.
 6 */

A-4 Appendix A Working with Records and Random Access Files

 7
 8 public class InventoryItemFile
 9 {
 10 private final int RECORD_SIZE = 44;
 11 private RandomAccessFile inventoryFile;
 12
 13 /**
 14 The constructor opens a random access file
 15 for both reading and writing.
 16 @param filename The name of the file.
 17 @exception FileNotFoundException When the file
 18 is not found.
 19 */
 20
 21 public InventoryItemFile(String filename)
 22 throws FileNotFoundException
 23 {
 24 // Open the file for reading and writing.
 25 inventoryFile =
 26 new RandomAccessFile(filename, "rw");
 27 }
 28
 29 /**
 30 The writeInventoryItem method writes the contents
 31 of an InventoryItem object to the file at the
 32 current file pointer position.
 33 @param item The InventoryItem object to write.
 34 @exception IOException When a file error occurs.
 35 */
 36
 37 public void writeInventoryItem(InventoryItem item)
 38 throws IOException
 39 {
 40 // Get the item’s description.
 41 String str = item.getDescription();
 42
 43 // Write the description.
 44 if (str.length() > 20)
 45 {
 46 // If there are more than 20 characters in the
 47 // string, then write only the first 20.
 48 for (int i = 0; i < 20; i++)
 49 inventoryFile.writeChar(str.charAt(i));
 50 }
 51 else
 52 {
 53 // Write the description to the file.
 54 inventoryFile.writeChars(str);

 Structuring Data into Fields and Fixed-Length Records A-5

 55 // Write enough spaces to pad it out
 56 // to 20 characters.
 57 for (int i = 0; i < (20 - str.length()); i++)
 58 inventoryFile.writeChar(' ');
 59 }
 60
 61 // Write the units to the file.
 62 inventoryFile.writeInt(item.getUnits());
 63 }
 64
 65 /**
 66 The readInventoryItem method reads and returns
 67 the record at the current file pointer position.
 68 @return A reference to an InventoryItem object.
 69 @exception IOException When a file error occurs.
 70 */
 71
 72 public InventoryItem readInventoryItem()
 73 throws IOException
 74 {
 75 char[] charArray = new char[20];
 76
 77 // Read the description, character by character,
 78 // from the file into the char array.
 79 for (int i = 0; i < 20; i++)
 80 charArray[i] = inventoryFile.readChar();
 81
 82 // Store the char array in a String.
 83 String desc = new String(charArray);
 84
 85 // Trim any trailing spaces from the string.
 86 desc.trim();
 87
 88 // Read the units from the file.
 89 int u = inventoryFile.readInt();
 90
 91 // Create an InventoryItem object and initialize
 92 // it with these values.
 93 InventoryItem item =
 94 new InventoryItem(desc, u);
 95
 96 // Return the object.
 97 return item;
 98 }
 99
100 /**
101 The getByteNum method returns a record's
102 starting byte number.

A-6 Appendix A Working with Records and Random Access Files

103 @param recordNum The record number of the
104 desired record.
105 */
106
107 private long getByteNum(long recordNum)
108 {
109 return RECORD_SIZE * recordNum;
110 }
111
112 /**
113 The moveFilePointer method moves the file
114 pointer to a specified record.
115 @param recordNum The number of the record to
116 move to.
117 @exception IOException When a file error occurs.
118 */
119
120 public void moveFilePointer(long recordNum)
121 throws IOException
122 {
123 inventoryFile.seek(getByteNum(recordNum));
124 }
125
126 /**
127 The getNumberOfRecords method returns the number
128 of records stored in the file.
129 @return The number of records in the file.
130 @exception IOException When a file error occurs.
131 */
132
133 public long getNumberOfRecords() throws IOException
134 {
135 return inventoryFile.length() / RECORD_SIZE;
136 }
137
138 /**
139 The close method closes the file.
140 @exception IOException When a file error occurs.
141 */
142
143 public void close() throws IOException
144 {
145 inventoryFile.close();
146 }
147 }

 Structuring Data into Fields and Fixed-Length Records A-7

The RECORD_SIZE field, declared in line 10, is a final int variable initialized with the
value 44. This is the size, in bytes, of a record. In a moment you will see how this
 number was determined. The inventoryFile field, declared in line 11, is a RandomAccessFile
reference variable that will be used to open and work with a random access file. The
 constructor accepts a filename as a String. This filename is used to open a random access
file, referenced by the inventoryFile variable, for reading and writing.

By looking at the writeInventoryItem method, in lines 37 through 63, we can see how
the record size of 44 bytes was determined. The method accepts an InventoryItem object
as an argument, the contents of which will be written as a record to the file. In line 41 the
description field is retrieved and referenced by str, a local variable. Next, in lines 44
through 59, we write the description field to the file. To ensure that each record has the
same fixed length, this method always writes the description as 20 characters. If the descrip-
tion has more than 20 characters, then only the first 20 are written. If the description has
fewer than 20 characters, spaces are added to make up the difference. Next, in line 62, the
method writes the units field, as an int, to the file.

Now we can see how the record size of 44 bytes was determined. When a character is writ-
ten to the file, it is written as two bytes. The description field is written as 20 characters,
so that’s 40 bytes. The units field is written as an int, which uses 4 bytes. That makes a
total record size of 44 bytes.

The readInventoryItem method in lines 72 through 98 reads a record from the file and
returns an InventoryItem object containing the record’s data. In line 75 the reference vari-
able charArray is declared and a 20-element char array is created to hold the description.
Then the code in lines 79 and 80 reads the 20 characters from the file and stores them in the
array. Next, in line 83, a String object is created and the char array is passed as an
 argument. This copies the characters from the array to the String object.

If the description was less than 20 characters long, it will be padded with trailing spaces.
The statement in line 86 trims any trailing spaces that might be in the string. Then the state-
ment in line 89 reads the units field from the file and stores it in the u variable.

Now we can construct an InventoryItem object with the data we have read. This is done in
lines 93 and 94. The last step, in line 97, is to return the object.

The class also has the ability to move the file pointer to a specific record. Two methods work
together to perform this. First, getByteNum (in lines 107 through 110) is a private method
that accepts a record number as an argument, and returns the record’s starting byte number.
It calculates the starting byte number by multiplying the record size by the record number.
(The first record in the file is considered record 0.) The moveFilePointer method (in lines
120 through 124) accepts a record number as its argument, and moves the file pointer to the
specified record. This method calls the getByteNum method to determine the record’s
 starting location.

The getNumberOfRecords method appears in lines 133 through 136. This method returns
the number of records in the file. It calculates the number of records by dividing the length
of the file by the record size. The length of the file is returned by the RandomAccessFile class’s
length method.

A-8 Appendix A Working with Records and Random Access Files

The last method in the class is the close method, which closes the file. The program in
Code Listing A-3 shows a simple demonstration of this class. This program asks the user to
enter data for five items, which are stored in an array of InventoryItem objects. The
 program then saves the contents of the array elements to a file.

Code Listing A-3 (CreateInventoryFile.java)

 1 import java.io.*;
 2 import java.util.Scanner;
 3
 4 /**
 5 This program uses the InventoryFile class to create a
 6 file containing data from 5 InventoryItem objects.
 7 */
 8
 9 public class CreateInventoryFile
10 {
11 public static void main(String[] args) throws IOException
12 {
13 final int NUM_ITEMS = 5; // Number of items
14 String description; // Item description
15 int units; // Units on hand
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Create an array to hold InventoryItem objects.
21 InventoryItem[] items = new InventoryItem[NUM_ITEMS];
22
23 // Get data for the InventoryItem objects.
24 System.out.println("Enter data for " + NUM_ITEMS +
25 " inventory items.");
26
27 for (int i = 0; i < items.length; i++)
28 {
29 // Get the description.
30 System.out.print("Enter an item description: ");
31 description = keyboard.nextLine();
32
33 // Get the units on hand.
34 System.out.print("Enter the number of units: ");
35 units = keyboard.nextInt();
36
37 // Consume the remaining newline.
38 keyboard.nextLine();
39
40 // Create an InventoryItem object in the array.

 Structuring Data into Fields and Fixed-Length Records A-9

41 items[i] = new InventoryItem(description, units);
42 }
43
44 // Create an InventoryFile object.
45 InventoryItemFile file =
46 new InventoryItemFile("Inventory.dat");
47
48 // Write the contents of the array to the file.
49 for (int i = 0; i < items.length; i++)
50 {
51 file.writeInventoryItem(items[i]);
52 }
53
54 // Close the file.
55 file.close();
56
57 System.out.println("The data was written to the " +
58 "Inventory.dat file.");
59 }
60 }

Program Output with Example Input Shown in Bold

Enter data for 5 inventory items.
Enter an item description: Wrench [Enter]
Enter the number of units: 20 [Enter]
Enter an item description: Hammer [Enter]
Enter the number of units: 15 [Enter]
Enter an item description: Pliers [Enter]
Enter the number of units: 12 [Enter]
Enter an item description: Screwdriver [Enter]
Enter the number of units: 25 [Enter]
Enter an item description: Ratchet [Enter]
Enter the number of units: 10 [Enter]
The data was written to the Inventory.dat file.

The program in Code Listing A-4 demonstrates how records can be randomly read from the
file.

Code Listing A-4 (ReadInventoryFile.java)

 1 import java.io.*;
 2 import java.util.Scanner;
 3
 4 /**
 5 This program displays specified records from
 6 the Inventory.dat file.

A-10 Appendix A Working with Records and Random Access Files

 7 */
 8
 9 public class ReadInventoryFile
10 {
11 public static void main(String[] args) throws IOException
12 {
13 int recordNumber; // Record number
14 String again; // To get a Y or an N
15 InventoryItem item; // An object from the file
16
17 // Create a Scanner object for keyboard input.
18 Scanner keyboard = new Scanner(System.in);
19
20 // Open the file.
21 InventoryItemFile file =
22 new InventoryItemFile("Inventory.dat");
23
24 // Report the number of records in the file.
25 System.out.println("The Inventory.dat file has " +
26 file.getNumberOfRecords() + " records.");
27
28 // Get a record number from the user and
29 // display the record.
30 do
31 {
32 // Get the record number.
33 System.out.print("Enter the number of the record " +
34 "you wish to see: ");
35 recordNumber = keyboard.nextInt();
36
37 // Consume the remaining newline.
38 keyboard.nextLine();
39
40 // Move the file pointer to that record.
41 file.moveFilePointer(recordNumber);
42
43 // Read the record at that location.
44 item = file.readInventoryItem();
45
46 // Display the record.
47 System.out.println("\nDescription: " +
48 item.getDescription());
49 System.out.println("Units: " + item.getUnits());
50
51 // Ask the user whether to get another record.
52 System.out.print("\nDo you want to see another " +
53 "record? (Y/N): ");
54 again = keyboard.nextLine();

 Structuring Data into Fields and Fixed-Length Records A-11

55 } while (again.charAt(0) == 'Y' || again.charAt(0) == 'y');
56
57 // Close the file.
58 file.close();
59 }
60 }

Program Output with Example Input Shown in Bold

The Inventory.dat file has 5 records.
Enter the number of the record you wish to see: 4 [Enter]
Description: Ratchet
Units: 10
Do you want to see another record? (Y/N): y [Enter]
Enter the number of the record you wish to see: 2 [Enter]
Description: Pliers
Units: 12
Do you want to see another record? (Y/N): y [Enter]
Enter the number of the record you wish to see: 0 [Enter]
Description: Wrench
Units: 20
Do you want to see another record? (Y/N): y [Enter]
Enter the number of the record you wish to see: 1 [Enter]
Description: Hammer
Units: 15
Do you want to see another record? (Y/N): y [Enter]
Enter the number of the record you wish to see: 3 [Enter]
Description: Screwdriver
Units: 25
Do you want to see another record? (Y/N): n [Enter]

As a last demonstration, the program in Code Listing A-5 shows how an existing record in
the file can be overwritten with a new record.

Code Listing A-5 (ModifyRecord.java)

 1 import java.io.*;
 2 import java.util.Scanner;
 3
 4 /*
 5 This program allows the user to modify records in the
 6 Inventory.dat file.
 7 */
 8
 9 public class ModifyRecord
10 {
11 public static void main(String[] args) throws IOException

A-12 Appendix A Working with Records and Random Access Files

12 {
13 int recordNumber; // Record number
14 int units; // Units on hand
15 String again; // Want to change another one?
16 String sure; // Is the user sure?
17 String description; // Item description
18 InventoryItem item; // To reference an item
19
20 // Create a Scanner object for keyboard input.
21 Scanner keyboard = new Scanner(System.in);
22
23 // Open the file.
24 InventoryItemFile file =
25 new InventoryItemFile("Inventory.dat");
26
27 // Report the number of records in the file.
28 System.out.println("The Inventory.dat file has " +
29 file.getNumberOfRecords() + " records.");
30
31 // Get a record number from the user and
32 // allow the user to modify it.
33 do
34 {
35 // Get the record number.
36 System.out.print("Enter the number of the record " +
37 "you wish to modify: ");
38 recordNumber = keyboard.nextInt();
39
40 // Consume the remaining newline.
41 keyboard.nextLine();
42
43 // Move the file pointer to that record number.
44 file.moveFilePointer(recordNumber);
45
46 // Read the record at that location.
47 item = file.readInventoryItem();
48
49 // Display the existing contents.
50 System.out.println("Existing data:");
51 System.out.println("\nDescription: " +
52 item.getDescription());
53 System.out.println("Units: " + item.getUnits());
54
55 // Get the new data.
56 System.out.print("\nEnter the new description: ");
57 description = keyboard.nextLine();

 Structuring Data into Fields and Fixed-Length Records A-13

58 System.out.print("Enter the number of units: ");
59 units = keyboard.nextInt();
60 keyboard.nextLine(); // Consume the remaining newline.
61
62 // Store the new data in the object.
63 item.setDescription(description);
64 item.setUnits(units);
65
66 // Make sure the user wants to save this data.
67 System.out.print("Are you sure you want to save " +
68 "this data? (Y/N) ");
69 sure = keyboard.nextLine();
70 if (sure.charAt(0) == 'Y' || sure.charAt(0) == 'y')
71 {
72 // Move back to the record's starting position.
73 file.moveFilePointer(recordNumber);
74 // Save the new data.
75 file.writeInventoryItem(item);
76 }
77
78 // Ask the user whether to change another record.
79 System.out.print("\nDo you want to modify another " +
80 "record? (Y/N): ");
81 again = keyboard.nextLine();
82 } while (again.charAt(0) == 'Y' || again.charAt(0) == 'y');
83
84 // Close the file.
85 file.close();
86 }
87 }

Program Output with Example Input Shown in Bold

The Inventory.dat file has 5 records.
Enter the number of the record you wish to modify: 3 [Enter]
Existing data:
Description: Screwdriver
Units: 25
Enter the new description: Duct Tape [Enter]
Enter the number of units: 30 [Enter]
Are you sure you want to save this data? (Y/N) y [Enter]
Do you want to modify another record? (Y/N): n [Enter]

In the example running of the program, record 3 was modified. We can run the
ReadInventoryFile program in Code Listing A-4 again to verify that the record was
changed. Here is the output of that program if we run it again.

A-14 Appendix A Working with Records and Random Access Files

Program Output with Example Input Shown in Bold (ReadInventoryFile.java)

The Inventory.dat file has 5 records.
Enter the number of the record you wish to see: 3 [Enter]
Description: Duct Tape
Units: 30
Do you want to see another record? (Y/N): n [Enter]

The following table lists the first 127 Unicode character codes, which are the same as the
ASCII (American Standard Code for Information Interchange) character set. This group of
character codes is known as the Latin Subset of Unicode. The code columns show charac-
ter codes and the character columns show the corresponding characters. For example, the
code 65 represents the letter A. Note that the first 31 codes and code 127 represent control
characters that are not printable.

B-1

The ASCII/Unicode
Characters

A
P

P
E

N
D

IX

B

Code Character Code Character Code Character Code Character Code Character

 0 NUL 26 SUB 52 4 78 N 104 h
 1 SOH 27 Escape 53 5 79 O 105 i
 2 STX 28 FS 54 6 80 P 106 j
 3 ETX 29 GS 55 7 81 Q 107 k
 4 EOT 30 RS 56 8 82 R 108 l
 5 ENQ 31 US 57 9 83 S 109 m
 6 ACK 32 (Space) 58 : 84 T 110 n
 7 BEL 33 ! 59 ; 85 U 111 o
 8 Backspace 34 “ 60 < 86 V 112 p
 9 HTab 35 # 61 = 87 W 113 q
10 Line Feed 36 $ 62 > 88 X 114 r
11 VTab 37 % 63 ? 89 Y 115 s
12 Form Feed 38 & 64 @ 90 Z 116 t
13 CR 39 ‘ 65 A 91 [117 u
14 SO 40 (66 B 92 \ 118 v
15 SI 41) 67 C 93] 119 w
16 DLE 42 * 68 D 94 ^ 120 x
17 DC1 43 + 69 E 95 _ 121 y
18 DC2 44 , 70 F 96 ` 122 z
19 DC3 45 - 71 G 97 a 123 {
20 DC4 46 . 72 H 98 b 124 |
21 NAK 47 / 73 I 99 c 125 }
22 SYN 48 0 74 J 100 d 126 ~
23 ETB 49 1 75 K 101 e 127 DEL
24 CAN 50 2 76 L 102 f
25 EM 51 3 77 M 103 g

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

This page intentionally left blank

This table shows the precedence and associativity of all the Java operators. The table is
divided into groups, and each operator in a group has the same precedence. The groups of
operators are arranged from the highest precedence at the top of the table to the lowest
precedence at the bottom of the table. For example, the first group of operators shown is:

. [] () ++ --

This group of operators has the highest precedence of all the operators; and each of these
operators has the same precedence.

C-1

Operator Precedence and
Associativity

A
P

P
E

N
D

IX

C

Operator Description Associativity

. membership left-to-right

[] array subscript left-to-right

() method argument list left-to-right

++ postfix increment left-to-right

-- postfix decrement left-to-right

++ prefix increment right-to-left

-- prefix decrement right-to-left

+ unary plus right-to-left

- unary minus right-to-left

~ bitwise complement right-to-left

! logical NOT right-to-left

new object creation right-to-left
(type) cast right-to-left

* multiplication left-to-right

/ division left-to-right

% remainder left-to-right

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

C-2 Appendix C Operator Precedence and Associativity

Operator Description Associativity

+ addition left-to-right

+ string concatenation left-to-right

- subtraction left-to-right

<< left shift left-to-right

>> signed right shift left-to-right

>>> unsigned right shift left-to-right

< less than left-to-right

> greater than left-to-right

<= less than or equal to left-to-right

>= greater than or equal to left-to-right

instanceof type comparison left-to-right

== equal to left-to-right

!= not equal to left-to-right

& bitwise AND left-to-right

^ bitwise XOR left-to-right

| bitwise OR left-to-right

&& logical AND left-to-right

|| logical OR left-to-right

?: conditional right-to-left

= assignment right-to-left

+= combined assignment right-to-left

-= combined assignment right-to-left

*= combined assignment right-to-left

/= combined assignment right-to-left

<<= combined assignment right-to-left

>>= combined assignment right-to-left

>>>= combined assignment right-to-left

&= combined assignment right-to-left

^= combined assignment right-to-left

|= combined assignment right-to-left

D-1

A
p

p
e

n
d

ix

D

The following words have reserved meaning in the Java language.

abstract default goto package this

assert do if private throw

boolean double implements protected throws

break else import public transient

byte enum instanceof return true

case extends int short try

catch false interface static void

char final long strictfp volatile

class finally native super while

const float new switch

continue for null synchronized

Note that the words const and goto are reserved, but they are not used.

Java Key Words

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

This page intentionally left blank

E-1

A
p

p
e

n
d

ix

E

To write and execute Java programs, you will need to download and install the Java Develop-
ment Kit (JDK). For this book, you need the JDK Standard Edition, which is available for the
Windows, Linux, and Solaris operating systems. It can be downloaded from this Web site:

www.oracle.com/technetwork/java/javase/downloads/index.html

installing the JdK
and JdK documentation

Note: If you would rather not type this entire address into your browser, you can also
go to www.oracle.com, click Downloads, and then click Java for Developers.

On the Web page click the link to download the JDK. (You will need to accept the license
agreement, and select the appropriate file for the operating system you are using.)

Once the file is downloaded, execute it to start the installation. The installation program
installs two items to your system: the JDK and the Java Runtime Environment (JRE). First
the JDK is installed. Click the Next button on each screen to accept the default selections,
and be sure to take note of the location on your system where the JDK has been installed.
Depending on the version of the JDK that you are installing, the location will be something
similar to:

C:\Program Files\Java\jdk1.8.0_25

Once the JDK is installed, the installation process for the JRE will begin. Click the Next but-
ton on each screen to accept the default selections, and be sure to take note of the location
on your system where the JRE has been installed. Depending on the version that you are
installing, the location will be something similar to:

C:\Program Files\Java\jre1.8.0_25

Setting the Path environment Variable
If you plan to use the JDK command-line utilities to compile and run your programs, you will
probably want to edit the contents of the Path variable on your system. This will allow your
system to find the JDK utilities from any folder when you run them at the command-line.

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

http://www.oracle.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html

The Path variable contains a list of directory paths, separated by semicolons. For example,
the Path variable might contain the following string:

C:\Games;C:\Temp;C:\Program Files\MyPrograms

When you type the name of an executable file at the command line and press Enter, the system
will first look in the current folder for that file. If it cannot find the file there, it begins looking in
the folders that are listed in the Path variable. (On an actual system, the Path variable l contains
many more paths than shown in this example, but this gives you an idea of how it works.)

We mentioned earlier that during the JDK installation process, you should take note of the loca-
tion on your system where the JDK is installed. Inside that folder, there is another folder named
bin that contains the JDK utility programs. The path to that folder will be something like:

C:\Program Files\Java\jdk1.8.0_25\bin

E-2 Appendix e installing the JdK and JdK documentation

Note: Keep in mind that the actual path on your system might differ slightly from this
example, depending on the version of the JDK that you have installed.

To make it easy to execute the JDK utilities from the Windows command line, you should
add this path to the Path variable. The procedure for adding this path to the Path variable
depends on the version of Windows you are using. The steps required for Windows 8 and
Windows 7 follow.

Windows 8

In the Right bottom corner of the screen, click on the Search icon and type Control Panel.
Click on Control Panel, then click System, then click Advanced system settings. Click on the
Advanced tab, then click Environment Variables. Under System Variables, find Path, click
on it, and then click the Edit button. Add a semicolon to the end of the existing contents
and then add the path of the JDK utility programs. Click the OK buttons until all the dialog
boxes are closed and exit the control panel.

Windows 7

Click the Start button and then right-click Computer. On the pop-up menu select Properties.
In the window that appears next, click Advanced system settings. This displays the System
Properties window. Click the Environment Variables... button. In the System Variables list,
scroll to the Path variable. Select the Path variable and click the Edit button. Add a semi-
colon to the end of the existing contents and then add the path of the JDK utility programs.
Click the OK buttons until all the dialog boxes are closed and exit the control panel.

Installing the JDK Documentation
To download the JDK documentation, go to the following site:

www.oracle.com/technetwork/java/javase/downloads/index.html

 Installing the JDK Documentation E-3

Note: If you’d rather not type this entire address into your browser, you can also go
to www.oracle.com, click Downloads, and then click Java for Developers.

On this page, scroll down until you see Additional Resources. Under that, you will see a sec-
tion for the Java SE documentation. Click Download. On the next page, accept the license
agreement, and click the name of the .zip file that you need to download.

The file that you downloaded contains the JDK documentation. You can decompress the file
with any utility that supports the .zip file format. When you decompress the file, it creates a
docs folder, which contains several other folders.

Although the documentation contains an abundant amount of information on the Java
language and utilities, you will find yourself using the API documentation regularly. The
API documentation contains information on all the classes in the Java Application Program
Interface (API). The following steps guide you through the process of viewing the API docu-
mentation for the Scanner class.

Step 1: Inside the docs folder you will find another folder named api. Inside the api folder
you will find a file named index.html. Double-click this file to open it in your Web
browser. You will see a screen similar to the one shown in Figure E-1.

Figure e-1 Api documentation screen

http://www.oracle.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html

E-4 Appendix e installing the JdK and JdK documentation

Figure e-2 Scanner class documentation

Step 3: From this screen you can navigate to any part of the Scanner class’s documenta-
tion. For example, to view a list of the class’s methods, click the METHOD link
near the top of the page. To view a list of the class’s constructors, click the CON-
STR link. Explore these and other links to get a feel for the documentation.

Step 2: In the leftmost pane you will see an alphabetically ordered list of all the classes and
interfaces in the API. Scroll down in this list and click Scanner. You will see a screen
similar to Figure E-2.

F-1

A
p

p
e

n
d

ix

F

The Java JDK comes with a utility named javadoc, which you can use to automatically gen-
erate documentation for the classes, interfaces, and methods that you write. The javadoc
utility produces HTML documentation with the same structure as the Java API documenta-
tion. To generate this documentation, there are two general steps necessary:

 1. Write documentation comments in the Java source code file that you wish to document.
 2. Run the javadoc utility, passing the name of the Java source code file as a command-

line argument.

Let’s take a closer look at each step.

Writing Documentation Comments
In the first step you write into a Java source file special comments known as documentation
comments. You typically do this as you are writing the Java code. A documentation com-
ment may precede a class header, an interface header, or a method header. Each one contains
information about the class, interface, or method that it precedes.

A documentation comment begins with /** and ends with */. Between these two symbols
you write information that the javadoc utility can use to generate documentation. This
information can contain regular text descriptions, as well as special javadoc tags which
begin with the @ symbol. When you run the javadoc utility, it searches for these documenta-
tion comments and processes them.

To see examples of documentation comments, we will look at the BankAccount class that
was first presented in Chapter 6. This class uses simple documentation comments for the class
and its methods. First, here is the documentation for the class, followed by the class header:

/**
 The BankAccount class simulates a bank account.
*/

public class BankAccount

Using the javadoc Utility

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

F-2 Appendix F Using the javadoc Utility

The text in a documentation comment for a class should contain a brief description of the
class. This is the text that will be used to describe the class in the HTML file. Notice in this
example that the description inside the documentation comment is indented with spaces.
Any whitespace characters at the beginning of a line are ignored by the javadoc utility. In
addition to whitespace characters, javadoc ignores all asterisk characters at the beginning
of a line. For example, the following documentation comment will produce the same results
as the previous one:

/**
 *
 * The BankAccount class simulates a bank account.
 *
 */

public class BankAccount

Although the extra asterisks are ignored by javadoc, they help the comment to visually
stand out for any person reading the code.

A documentation comment for a method is structured in the following way:

•	 After	 the	/** symbol a brief description of the method appears. This text will be
used to describe the method in the HTML documentation file. In addition, the first
sentence of this description will be used as a summary of the method.

•	 If	the	method	has	parameters,	documentation	for	each	parameter	will	appear	in	the	
comment. A parameter’s documentation begins with the @param tag, followed by the
name of the parameter, followed by a description of the parameter.

•	 If	the	method	returns	a	value,	a	description	of	the	return	value	will	appear	in	the	com-
ment. This description must begin with the @return tag, followed by a description of
the return value.

•	 If	 the	method	 throws	exceptions,	documentation	 for	 each	exception	will	 appear	 in	
the comment. Documentation for each exception begins with the @exception tag,
followed by the name of the exception, followed by a description of the events that
cause the exception.

For example, here is one of the BankAccount constructors, preceded by its documentation
comment:

 /**
 This constructor sets the starting balance
 to the value passed as an argument.
 @param startBalance The starting balance.
 */

public BankAccount(double startBalance)
{
 balance = startBalance;
}

The documentation comment for this constructor is relatively simple, containing only a
brief one-sentence description and one @param tag.

In the HTML file that is produced by javadoc, each method will have two major sections
of documentation: a summary section and a detail section. The first sentence in the method’s
documentation comment is used as the summary of the method. Note that javadoc consid-
ers the end of the sentence as a period followed by a whitespace character. For this reason,
when a method description contains more than one sentence, you should always end the
first sentence with a period followed by a whitespace character. The method’s detail section
will contain all of the text from the beginning of the comment to the first tag, or the end of
the comment if it contains no tags.

The @param tag
When the javadoc utility sees an @param tag inside of a method’s documentation com-
ments, it knows that the documentation for a parameter variable appears next. Each param-
eter should have its own @param tag, and follow this general format:

@param parameterName Description

In the general format, parameterName is the name of the parameter and Description is a
brief description of the parameter. When a method’s documentation comments contain one
or more @param tags, the javadoc utility will create a Parameters section in the method’s
documentation. This is where the descriptions of the method’s parameters will be listed.
Remember the following points about @param tag comments:

•	 All	@param tags in a method’s documentation comment must appear after the general
description of the method.

•	 The	description	can	span	several	lines.	It	ends	at	the	end	of	the	documentation	com-
ment (the */ symbol), or at the beginning of another tag.

The @return Tag
Here is another method from the BankAccount class, which has a return value:

/**
 The getBalance method returns the
 account balance.
 @return The value in the balance field.
*/

public double getBalance()
{
 return balance;
}

Because this method returns a value, the documentation comment contains an @return tag.
The documentation for the return value follows this general format:

@return Description

In the general format, Description is a brief description of the return value. When a
method’s documentation comments contain an @return tag, the javadoc utility will

 The @return Tag F-3

F-4 Appendix F Using the javadoc Utility

 create a Returns section in the method’s documentation. This is where the description of
the method’s return value will be listed. Remember the following points about @return
tag comments:

•	 The	@return tag in a method’s documentation comment must appear after the gen-
eral description of the method.

•	 The	description	can	span	several	lines.	It	ends	at	the	end	of	the	documentation	com-
ment (the */ symbol), or at the beginning of another tag.

The @exception Tag
Recall that in Chapter 11 we discussed a version of the BankAccount class with a construc-
tor that throws a NegativeStartingBalance exception. Here is the code for that construc-
tor, with its documentation comment:

/**
 This constructor sets the starting balance
 to the value passed as an argument.
 @param startBalance The starting balance.
 @exception NegativeStartingBalance When
 startBalance is negative.
*/

public BankAccount(double startBalance)
 throws NegativeStartingBalance
{
 if (startBalance < 0)
 throw new NegativeStartingBalance(startBalance);

 balance = startBalance;
}

Notice that this method’s documentation comments have an @exception tag. The general
format of an @exception tag comment is:

@exception ExceptionName Description

ExceptionName is the name of an exception and Description is a description of the cir-
cumstances that cause the exception. When a method’s documentation comments contain an
@exception tag, the javadoc utility will create a Throws section in the method’s documen-
tation. This is where the description of the method’s return value will be listed. Remember
the following points about @exception tag comments:

•	 The	@exception tag in a method’s documentation comment must appear after the
general description of the method.

•	 The	description	can	span	several	lines.	It	ends	at	the	end	of	the	documentation	com-
ment (the */ symbol), or at the beginning of another tag.

Running javadoc
After creating one or more source code files containing documentation comments, your next
step is to run the javadoc utility. You run javadoc from the operating system command
prompt. Here is the general format of the javadoc command:

javadoc SourceFileList

SourceFileList is one or more names of source code files. The files specified as argu-
ments will be read by javadoc and documentation will be produced for each of them. For
example, the following command will produce documentation for the BankAccount class:

javadoc BankAccount.java

After this command executes, several HTML files will be created in the same directory as
the source code file. One of these files will have the same name as the class file. In this case,
it will be named BankAccount.html. This is the file that you open in your Web browser to
view the documentation. Figure F-1 shows the documentation for the BankAccount class.

Figure F-1 BankAccount Class documentation

If you want to produce documentation for multiple source code files, simply separate the
names of the files with spaces. Here is an example:

javadoc Student.java CompSciStudent.java

After this command executes, the resulting HTML files will contain documentation for the
Student and CompSciStudent classes. One of the HTML files will be named index.html.

 Running javadoc F-5

F-6 Appendix F Using the javadoc Utility

You can open this file in your web browser to view the documentation for each class. Figure
F-2 shows an example. This document displays a frame on the left side of the screen contain-
ing links to each class’s documentation.

Figure F-2 A documentation file for multiple classes

The @author and @version Tags
The @author tag may be used in a class’s documentation comment to identify the author or
authors of the class. The general format of the tag is:

@author AuthorName

If there is more than one author, you use a separate tag for each author.

The @version tag may also be used in a class’s documentation comment to identify the ver-
sion of the class. The general format of the tag is:

@version VersionNumber

Here is an example of the BankAccount class’s documentation comment, modified to use
these tags:

/**
 The BankAccount class simulates a bank account.
 @author Herbert Dorfmann
 @version 1.0
*/

public class BankAccount

When you use these tags, you must also provide the –author and –version options on the
command line when invoking the javadoc utility. Here is an example:

javadoc –author –version BankAccount.java

This will cause the resulting HTML documentation to contain the author name(s) and the
version number. If you do not provide these command line options, javadoc will ignore the
@author and @version tags.

Embedding HTML in Documentation Comments
You can embed HTML tags in documentation comments and javadoc will include those
tags when it generates the documentation files. For example, the following code shows a
method with the <code></code> and <i></i> tags embedded. The <code></code> tag
causes its enclosed text to be displayed in code font, and the <i></i> tag causes its enclosed
text to be displayed in italics.

/**
 The <code>addInterest</code> method adds the interest
 for the <i>month</i> to the <code>balance</code> field.
*/

public void addInterest()
{
 interest = balance * interestRate;
 balance = balance + interest;
}

The -public, -private and -protected
Command Line Options
By default, the javadoc utility generates documentation only for public and protected
classes, interfaces, and members. You can alter this, however, by using a command line
option.

The -public option causes javadoc to generate documentation only for public classes,
interfaces, and members. Here is an example:

javadoc -public Class1.java Class2.java Class3.java

If any of the classes or any of the class members are not public, javadoc will not generate
documentation for them.

The -private option causes javadoc to generate documentation for all classes, interfaces,
and members. Here is an example:

javadoc -private Class1.java Class2.java Class3.java

 The -public, -private, and -protected Command Line Options F-7

F-8 Appendix F Using the javadoc Utility

This command will generate documentation for all the classes and their members, regardless
of their access specification.

The -protected option causes javadoc to generate documentation only for public and
protected classes, interfaces, and members. This is the same as javadoc’s default behavior.
Here is an example:

javadoc -protected Class1.java Class2.java Class3.java

The Java Math class is a collection of static methods for performing specific mathematical
operations. This class is in the java.lang package, so there is no need for an import state-
ment to use it.

In Chapter 2 you were introduced to the Math.pow method, which returns the value of a
number raised to a power. Table G-1 describes several of the Math class’s methods.

G-1

More about the
Math Class

A
P

P
E

N
D

IX

G

Table G-1 Several Math class methods

Method Example Usage Description

abs y = Math.abs(x); Returns the absolute value of the argument. This
method can accept and return values of the double,
float, int, and long data types.

acos y = Math.acos(x); Returns the arc-cosine of the argument. The argu-
ment should be the cosine of an angle. (The argu-
ment’s value must be in the range from –1.0 through
1.0.) The return type and the argument are doubles.

asin y = Math.asin(x); Returns the arc-sine of the argument. The argument
should be the sine of an angle. (The argument’s value
must be in the range from −1.0 through 1.0.) The
return type and the argument are doubles.

atan y = Math.atan(x); Returns the arc-tangent of the argument. The argu-
ment should be the tangent of an angle. The return
type and the argument are doubles.

cbrt y = Math.cbrt(x); Returns the cube root of the argument. The return
type and argument are doubles. Note: This method
was introduced in Java 5.

(table continues next page)

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

G-2 Appendix G More about the Math Class

Method Example Usage Description

ceil y = Math.ceil(x); Returns the smallest number that is greater than or
equal to the argument. The return type and the argu-
ment are doubles.

cos y = Math.cos(x); Returns the cosine of the argument. The argument
should be an angle expressed in radians. The return
type and the argument are doubles.

exp y = Math.exp(x); Computes the exponential function of the argument,
which is ex. The return type and the argument are
doubles.

floor y = Math.floor(x); Returns the largest number that is less than or equal
to the argument. The return type and the argument
are doubles.

hypot c = Math.hypot(a, b); Returns the length of the hypotenuse of a right trian-
gle. The arguments a and b are the lengths of the
other two sides of the triangle. The return type and
the argument are doubles. Note: This method was
introduced in Java 5.

log y = Math.log(x); Returns the natural logarithm of the argument. The
return type and the argument are doubles.

pow y = Math.pow(x, z); Returns the value of the first argument raised to the
power of the second argument. The return type and
the argument are doubles.

round y = Math.round(x); Returns the value of the argument, as an integer,
rounded to the nearest whole number. The argument
is expected to be a double or a float. If the argu-
ment is a double, the return type is long. If the argu-
ment is a float, the return type is int.

sin y = Math.sin(x); Returns the sine of the argument. The argument
should be an angle expressed in radians. The return
type and the argument are doubles.

sqrt y = Math.sqrt(x); Returns the square root of the argument. The return
type and the argument are doubles.

tan y = Math.tan(x); Returns the tangent of the argument. The argument
should be an angle expressed in radians. The return
type and the argument are doubles.

toDegrees y = Math.toDegrees(x); Accepts as an argument an angle in radians. The
angle converted to degrees is returned. The argument
and return values are both doubles.

toRadians y = Math.toRadians(x); Accepts as an argument an angle in degrees. The
angle converted to radians is returned. The argument
and return values are both doubles.

Table G-1 Several Math class methods (continued)

 Appendix G More about the Math Class G-3

We will not cover all of these methods in depth, but let’s take a closer look at some of them.
The Math.abs method returns the absolute value of its argument. The following code seg-
ment shows an example of how it is used.

double x = -4.2, y = 4.2, a, b;
a = Math.abs(x);
b = Math.abs(y);

After this code executes, both the variables a and b will contain the value 4.2. The argument
to the Math.abs method can be of the double, float, int, or long data type. This is because
there are several overloaded versions of the method. The method’s return value will be of
the same data type as the argument.

Here is a program segment that demonstrates the Math.sqrt method, which returns the
square root of a number:

num = 25.0;
s = Math.sqrt(num);
System.out.println("The square root of " + num + " is " + s);

The output of this program segment is

The square root of 25.0 is 5.0

The Math.round method returns the value of its argument rounded to the nearest whole
number. The following code segment shows an example.

double x = 4.2, y = 4.8;
long a, b;
a = Math.round(x);
b = Math.round(y);

After this code executes, a will contain 4 and b will contain 5.

In addition to these and other methods, the Math class defines two static final variables,
which are listed in Table G-2.

Table G-2 The E and PI constants

Method Example Usage Description

E y = x * Math.E; This is the mathematical constant known
as e (for Euler’s number). It is defined as
2.7182818284590452354.

PI area = Math.PI *
radius * radius;

This is the mathematical constant Pi, or π. It is
defined as 3.14159265358979323849.

Both of these final variables are public, so you can access them directly from the class.

This page intentionally left blank

So far, you have been storing the classes you have created in the same folder or directory as
the program that uses them. That is where the compiler looks for classes by default. In real-
world application development, however, this approach is less than ideal. If you are devel-
oping more than one application that uses the same set of classes, you would have to make
separate copies of the classes and store them in the same disk location as each application.
A better approach is to have the classes stored in a central location available to all applica-
tions. Only one copy of the classes is needed, regardless of the number of applications you
develop using them. In Java, this can be accomplished by using packages.

A package, which is also called a library, is a named group of related classes. Packages are
stored in their own folder or directory on the computer’s disk. The compiler is informed
of the package’s location, so it can find it regardless of where the application that uses the
package may be stored.

Let’s look at a simple example. Suppose we create two classes: Car and Truck. Both classes
are part of a package named vehicles. Code Listing H-1 shows the listing for the Car class,
and Code Listing H-2 shows the listing for the Truck class.

H-1

Packages

A
P

P
E

N
D

IX

H

Note: To use this appendix you must understand how your operating system uses
directories, or folders. In addition, you must know how to set the value of an environ-
ment variable. The process of setting an environment variable differs among operating
systems.

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

H-2 Appendix H Packages

Code Listing H-1 (Car.java)

 1 package vehicles;
 2
 3 /**
 4 This class is in the vehicles package.
 5 */
 6
 7 public class Car
 8 {
 9 private int passengers; // Number of passengers
10 private double topSpeed; // Top speed
11
12 /**
13 Constructor
14 @param passengers The number of passengers.
15 @param topSpeed The car's top speed.
16 */
17
18 public Car(int passengers, double topSpeed)
19 {
20 this.passengers = passengers;
21 this.topSpeed = topSpeed;
22 }
23
24 /**
25 The toString method returns a string showing
26 the number of passengers and top speed.
27 @return A reference to a String.
28 */
29
30 public String toString()
31 {
32 return "Passengers: " + passengers +
33 "\nTop speed: " + topSpeed +
34 " miles per hour";
35 }
36 }

 Appendix H Packages H-3

Code Listing H-2 (Truck.java)

 1 package vehicles;
 2
 3 /**
 4 This class is in the vehicles package.
 5 */
 6
 7 public class Truck
 8 {
 9 private double mpg; // Fuel economy
10 private double tons; // Hauling capacity
11
12 /**
13 Constructor
14 @param mpg The truck's miles-per-gallon.
15 @param tons The truck's hauling capacity
16 in tons.
17 */
18
19 public Truck(double mpg, double tons)
20 {
21 this.mpg = mpg;
22 this.tons = tons;
23 }
24
25 /**
26 The toString method returns a string showing
27 the fuel economy and hauling capacity.
28 @return A reference to a String.
29 */
30
31 public String toString()
32 {
33 return "Fuel economy: " + mpg +
34 " miles per gallon" +
35 "\nHauling capacity: " +
36 tons + " tons";
37 }
38 }

H-4 Appendix H Packages

Notice that the first line of each file reads:

package vehicles;

The word package is a key word in Java, and vehicles is the name of the package to which
the class belongs. Notice the statement is terminated by a semicolon. This statement informs
the compiler that the contents of the file belong to the vehicles package.

Note: The compiler expects the package statement to be the first statement in a file.
Only comments and blank lines may be placed before it.

When a class is part of a package, the compiler expects the class file to be stored in a direc-
tory with the same name as the package. For example, the Car and Truck classes are part of
the vehicles package, so they must be stored in a directory named vehicles. Typically, the
vehicles directory would be stored under another directory that acts as the base directory
for packages. Figure H-1 depicts an example directory structure on a Windows system. The
mypackages directory is the base directory for packages. Under mypackages, the vehicles
directory appears, which holds the Car.java and Truck.java files.

Figure H-1 Example directory structure for storing a package

Once a package has been created, the Java compiler must be informed of its location. The
exact process that you use depends on your Java compiler and your operating system. You
should consult your instructor for precise details, but we will give a general overview of
what needs to be done when using the Sun JDK under Windows and UNIX or Linux.

The Sun JDK uses an operating system environment variable named CLASSPATH to deter-
mine where the base directory for your packages is located. The CLASSPATH environment
variable holds a string that consists of one or more pathnames, separated by a delimiting
character. To inform the compiler of your base directory’s location, simply add its pathname
to the contents of the CLASSPATH environment variable.

 Setting CLASSPATH under UNIX or Linux H-5

Setting CLASSPATH under Windows
The following is an example command that can be used at the command line in Windows
to set the CLASSPATH environment variable.

set CLASSPATH=C:\mypackages;

There are no spaces before or after the = sign. In Windows, multiple pathnames stored in the
variable are separated by a semicolon. This command stores two pathnames in the CLASSPATH
environment variable: C:\mypackages and the . symbol, which represents the current direc-
tory. This tells Java to search two locations for packages: C:\mypackages and the current
directory. Here is another example:

set CLASSPATH=C:\mypackages;C:\project;

This command stores three pathnames in the CLASSPATH environment variable:
C:\myPackages, C:\project, and the . symbol, which represents the current directory. This
tells Java to search these three locations when looking for packages.

Setting CLASSPATH under UNIX or Linux

Note: The UNIX and Linux instructions in this appendix assume you are using the
bash shell.

The following is an example command that can be used in UNIX or Linux to set the
CLASSPATH environment variable.

export CLASSPATH=/home/tsmith/mypackages:

In UNIX and Linux, multiple pathnames stored in the variable are separated by a colon.
This command stores two pathnames in the CLASSPATH environment variable:
/home/tsmith/mypackages and the . symbol, which represents the current directory. This
tells Java to search two locations for packages: /home/tsmith/mypackages and the current
directory. Here is another example:

export CLASSPATH=/home/tsmith/mypackages:/home/tsmith/project;

This command stores three pathnames in the CLASSPATH environment variable:
/home/tsmith/mypackages, /home/tsmith/project, and the . symbol, which repre-
sents the current directory. This tells Java to search these three locations when looking for
packages.

Note: You should always include the dot symbol, which represents the current direc-
tory, as a pathname in the CLASSPATH variable. If you do not, your programs will not run
correctly.

H-6 Appendix H Packages

Using the import Statement
When a package has been created and stored on the disk as previously described and the
CLASSPATH variable has been set with the pathname of the base directory for your packages,
you are ready to create programs that use your package. Code Listing H-3 uses both the Car
and Truck classes.

Code Listing H-3 (CarTruckDemo.java)

 1 import vehicles.*;
 2
 3 /**
 4 This program demonstrates the Car and Truck
 5 classes which are part of the vehicles package.
 6 */
 7
 8 public class CarTruckDemo
 9 {
10 public static void main(String[] args)
11 {
12 Car roadster = new Car(2, 155);
13 Truck pickUp = new Truck(18, 2);
14
15 System.out.println("Here's information " +
16 "about the car:");
17 System.out.println(roadster);
18 System.out.println();
19 System.out.println("Here's information " +
20 "about the truck:");
21 System.out.println(pickUp);
22 }
23 }

Program output

Here's information about the car:
Passengers: 2
Top speed: 155.0 miles per hour

Here’s information about the truck:
Fuel economy: 18.0 miles per gallon
Hauling capacity: 2.0 tons

Notice that line 1 contains an import statement. The word import is a key word in
Java. The name that follows import is the name of a package the program intends to use.
The .* that follows the package name means to import all the classes that are part of

 Using Fully Qualified Class Names H-7

that package. This statement tells the compiler to make all the classes that are part of the
vehicles package available to the program. If we wanted to make only the Truck class
available, we could have used the following import statement:

import vehicles.Truck;

In this case the compiler would make only the Truck class available. Any references to the
Car class would cause an error. Likewise, we could use the following statement to make
only the Car class available:

import vehicles.Car;

You will recall that you have previously used the following import statement in programs
that use the Scanner class:

import java.util.Scanner;

This statement tells the compiler to use the Scanner class, which is part of the java.util
package. The java.util package is also part of the Java standard class library. At this point,
it might be helpful to summarize the steps necessary to create and use a package:

 1. Place an appropriate package statement in each class file that is to be part of the pack-
age. The package statement must be the first line of the file or preceded only by com-
ments and/or blank lines.

 2. You should have a base directory on your system for storing your packages. Under
this directory, create a directory that bears the same name as the package. Store the
package’s class files in this folder.

 3. Add the pathname of the package base directory to the CLASSPATH environment
 variable.

 4. Place an appropriate import statement in each program that intends to use the
 package.

Using Fully Qualified Class Names
It is not required that you use the import statement to access classes in a package. Without
the import statement, however, you must use the classes’ fully qualified names. The fully
qualified names of the Car and Truck classes in the vehicle package are vehicles.Car and
vehicles.Truck. Code Listing H-4 is a version of Code Listing H-3, which uses fully quali-
fied class names instead of the import statement.

Code Listing H-4 (CarTruckDemo2.java)

 1 /**
 2 This program demonstrates the Car and Truck
 3 classes by using their fully qualified names

H-8 Appendix H Packages

 4 instead of an import statement.
 5 */
 6
 7 public class CarTruckDemo2
 8 {
 9 public static void main(String[] args)
10 {
11 vehicles.Car roadster =
12 new vehicles.Car(2, 155);
13 vehicles.Truck pickUp =
14 new vehicles.Truck(18, 2);
15
16 System.out.println("Here's information " +
17 "about the car:");
18 System.out.println(roadster);
19 System.out.println();
20 System.out.println("Here's information " +
21 "about the truck:");
22 System.out.println(pickUp);
23 }
24 }

Program output

Same as Code Listing H-3.

Notice that every occurrence of the Car and Truck class names must be written as
vehicles.Car and vehicles.Truck. Obviously it is more convenient to use the import
 statement.

Using Package Subdirectories
You have learned that the Java compiler locates packages by searching the directories listed
by the CLASSPATH environment variable. It is possible to create subdirectories in these loca-
tions and store packages there as well. For example, suppose we create a set of classes for
calculating the pay of employees. The first step would be to create a folder to hold the pack-
ages. Figure H-2 shows the employees directory has been added to the mypackages directory.

Under the employees directory are two other directories: hourly and salaried. Figure H-3
shows the contents of the hourly directory.

The files Clerical.java and AssemblyLine.java contain code for classes that calculate the
hourly pay for clerical staff and assembly line workers. If we looked at the Clerical.java
file, we would see something similar to the following:

 Using Package Subdirectories H-9

package employees.hourly;

/**
 This class is part of the employees.hourly package.
*/

public class Clerical
{
 Details of this class are omitted.
}

Figure H-2 employees directory added to the mypackages directory

Figure H-3 Directory structure showing the contents of the hourly directory

H-10 Appendix H Packages

If we looked in the AssemblyLine.java file, we would see something similar to the
 following:

package employees.hourly;

/**
 This class is part of the employees.hourly package.
*/

public class AssemblyLine
{
 Details of this class are omitted.
}

Notice the first line of both files is the following package statement:

package employees.hourly;

The files are stored in the hourly directory. Because hourly is a subdirectory of employees,
the two names are separated by a period. This makes the package name employees.hourly.
The following import statement could then be added to any program that needs to use the
Clerical or AssemblyLine classes:

import employees.hourly.*;

This statement makes all of the classes that are part of the employees.hourly package acces-
sible. As before, individual classes can be specifically named in the import statement. For
example, the following statement will make only the Clerical class accessible:

import employees.hourly.Clerical;

Access Specifiers and Packages
So far you have learned that class members may be declared as either public or private.
Members that are declared as public may be accessed by statements outside the class
as well as inside the class. Members that are declared as private, however, may only be
accessed by statements inside the class.

In addition to public and private, Java also allows class members to be declared with no
access specifier at all. When a class member is declared with no access specifier, it is acces-
sible by any statement within the same package. For example, consider the following sce-
nario. Class A and class B are in the same package. The variable x is a member of class A and
is declared with no access specifier. Because x is declared with no access specifier, the meth-
ods in class B have access to it (as if it were public). Statements that are outside the package,
however, cannot access x. Table H-1 summarizes the effect of access specifiers, as they per-
tain to what you have learned so far.

 The Standard Java Packages H-11

the Standard Java Packages
The standard Java classes that make up the API are organized into packages. Table H-2 lists
a few of them.

table H-1 The effect of access specifiers

Access Attribute Description

No attribute May be applied to classes and class members (variables or methods). This
makes a class or class member accessible within the package.

public May be applied to classes and class members (variables or methods). This
makes a class or class member accessible to all statements in the program
(inside or outside the package).

private May be applied only to member variables and member methods. A private
variable or method is only accessible by statements in the same class.

table H-2 A few of the standard Java packages

Package Description

java.applet Provides the classes necessary to create an applet.

java.awt Provides classes for the Abstract Windowing Toolkit. These classes are used
in drawing images and creating graphical user interfaces.

java.io Provides classes that perform various types of input and output.

java.lang Provides general classes for the Java language. This package is automatically
imported.

java.net Provides classes for network communications.

java.security Provides classes that implement security features.

java.sql Provides classes for accessing databases using structured query language.

java.text Provides various classes for formatting text.

java.util Provides various utility classes.

javax.swing Provides classes for creating graphical user interfaces.

To use a class from a Java package, you must have an appropriate import statement in your
program. For example, you have used the Random class, which is in the java.util package.
This class requires the following import statement:

import java.util.Random;

H-12 Appendix H Packages

You have also used various classes from the java.io package to perform file input and out-
put. To import all of the classes from the java.io package, you use the following import
statement:

import java.io.*;

The java.lang package is the only package that does not require an import statement. This
package contains general classes, such as String and System, that are fundamental to the
Java programming language. The java.lang package is automatically imported by all Java
programs.

I-1

A
p

p
e

n
d

ix

I

In Chapter 2 you learned how to use the JOptionPane class to display message dialog boxes
and input dialog boxes. This appendix provides a more detailed discussion of the dialog
boxes you can create using JOptionPane. We will discuss the following types of dialog
boxes and how you can display them.

•	 Message Dialog. This is a dialog box that displays a message. An OK button is also
displayed.

•	 Input Dialog. This is a dialog box that prompts the user for input. It provides a text
field where input is typed. An OK button and a Cancel button are also displayed.

•	 Confirm Dialog. This is a dialog box that asks the user a Yes/No question. A Yes but-
ton, a No button, and a Cancel button are displayed.

Figure I-1 shows an example of each type of dialog box.

Figure I-1 Message dialog, input dialog, and Confirm dialog

More about JOptionPane
dialog Boxes

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

I-2 Appendix i More about JOptionPane dialog Boxes

The JOptionPane class, which is in the javax.swing package, provides static methods to
display each type of dialog box.

More about Message Dialogs
The showMessageDialog method is used to display a message dialog. There are several
overloaded versions of this method. Table I-1 describes two of the versions.

Table I-1 The showMessageDialog Method

Method Descriptions

void showMessageDialog This method displays a message dialog. The argument passed
 (Component parent, into parent is a reference to the graphical component that
 Object message) the dialog box should be displayed within. If you pass null
 to this parameter, the dialog box appears in the center of the

screen. The object passed to the message parameter contains
the message that is to be displayed.

void showMessageDialog This method displays a message dialog. The argument passed
 (Component parent, into parent is a reference to the graphical component that
 Object message, the dialog box should be displayed within. If you pass null
 String title, to this parameter, the dialog box appears in the center of the
 int messageType) screen. The object passed to the message parameter contains

the message that is to be displayed. The string passed to the
title parameter is displayed in the dialog box’s title bar. The
value passed to messageType indicates the type of icon to dis-
play in the message box.

Here is a statement that calls the first version of the method:

JOptionPane.showMessageDialog(null, "Hello World");

Figure I-2 Message dialog box

The first argument can be a reference to a graphical component. The dialog box is displayed
inside that component. In this statement we pass null as the first argument. This causes the
dialog box to be displayed in the center of the screen. The second argument is the message
that we wish to display. This code causes the dialog box in Figure I-2 to appear.

Notice that by default the dialog box in Figure I-2 has the string "Message" displayed in its
title bar, and an information icon (showing the letter “i”) is displayed. You can control the
text that is displayed in the title bar and the type of icon that is displayed with the second
version of the showMessageDialog method. Here is an example:

JOptionPane.showMessageDialog(null, "Invalid Data",
 "My Message Box",
 JOptionPane.ERROR_MESSAGE);

In this method call, the third argument is a string that is displayed in the dialog box’s
title bar. The fourth argument is a constant that specifies the type of message that is being
displayed, which determines the type of icon that appears in the dialog box. The constant
JOptionPane.ERROR_MESSAGE specifies that an error icon is to be displayed. This statement
displays the dialog box shown in Figure I-3.

Figure I-3 Message dialog with specified title and icon

The constants that you may use for the message type are JOptionPane.ERROR_MESSAGE,
JOptionPane. INFORMATION_MESSAGE, JOptionPane.WARNING_MESSAGE, JOptionPane.
QUESTION_MESSAGE, and JOptionPane.PLAIN_MESSAGE. The following statements call the
method with each type of message. Figure I-4 shows the dialog boxes displayed by these
messages.

// Display an error message.
JOptionPane.showMessageDialog(null, "Error Message",
 "Error",
 JOptionPane.ERROR_MESSAGE);

// Display an information message.
JOptionPane.showMessageDialog(null, "Information Message",
 "Information",
 JOptionPane.INFORMATION_MESSAGE);

// Display a warning message.
JOptionPane.showMessageDialog(null, "Warning Message",
 "Warning",
 JOptionPane.WARNING_MESSAGE);

// Display a question message.
JOptionPane.showMessageDialog(null, "Question Message",
 "Question",
 JOptionPane.QUESTION_MESSAGE);

 More about Message dialogs I-3

I-4 Appendix i More about JOptionPane dialog Boxes

// Display a plain message.
JOptionPane.showMessageDialog(null, "Plain Message",
 "Message",
 JOptionPane.PLAIN_MESSAGE);

Figure I-4 different types of messages

If the previous code were written into a program just as it appears and then executed, the
five dialog boxes shown in Figure I-4 would be displayed one at a time. The user would have
to click the OK button on the first dialog box to close it before the second dialog box would
appear. The same would be true for all of the dialog boxes that follow.

The dialog boxes displayed by the JOptionPane class are modal dialog boxes. A modal
dialog box suspends execution of any other statements until the dialog box is closed. For
example, when the JOptionPane.showMessageDialog method is called, the statements
that appear after the method call do not execute until the user closes the message box. This
is illustrated in Figure I-5.

Figure I-5 execution of statement after displaying a modal dialog box

More about Input Dialogs
An input dialog is a quick and simple way to ask the user to enter data. Table I-2 describes
two overloaded versions of the static showInputDialog method, which displays an input
dialog.

The following code calls the first version of the showInputDialog method:

String name;
name = JOptionPane.showInputDialog("Enter your name.");

Table I-2 The showInputDialog Method

Method Description

String showInputDialog This method displays an input dialog that
 (Object message) provides a text field for the user to type input. The object passed

to the message parameter contains the message that is to be dis-
played. If the user clicks on the OK button, this method returns
the string that was entered by the user. If the user clicks on the
Cancel button, this method returns null.

String showInputDialog This method displays an input dialog that provides a text
 (Component parent, input field for the user to type input. The argument
 Object message, passed into parent is a reference to the graphical
 String title, component that the dialog box should be displayed within.
 int messageType) If you pass null to this parameter, the dialog box appears in the

center of the screen. The object passed to the message parameter
contains the message that is to be displayed. The string passed
to the title parameter is displayed in the dialog box’s title bar.
The value passed to messageType indicates the type of icon to
display in the message box. If the user clicks on the OK button,
this method returns the string that was entered by the user. If the
user clicks on the Cancel button, this method returns null.

The argument passed to the method is the message to display. This statement causes the
dialog box shown in Figure I-6 to be displayed in the center of the screen. If the user clicks
on the OK button, name references the string value entered by the user into the text field. If
the user clicks the Cancel button, name references null.

Figure I-6 input dialog box

 More about input dialogs I-5

I-6 Appendix i More about JOptionPane dialog Boxes

By default the input dialog box has the string “Input” in its title bar and displays a ques-
tion icon. The second version of the method shown in Table I-2 allows you to control the
text displayed in the input dialog’s title bar and the type of icon displayed. It takes the same
arguments as the second version of the showMessageDialog method in Table I-1. Here is
an example:

String value;
value = JOptionPane.showInputDialog(null, "Enter the value again.",
 "Enter Carefully!",
 JOptionPane.WARNING_MESSAGE);

This statement displays the input dialog shown in Figure I-7. If the user clicks on the OK
button, value references the string value entered by the user into the text field. If the user
clicks on the Cancel button, value references null.

Figure I-7 input dialog box

Displaying Confirm Dialogs
A confirm dialog box typically asks the user a Yes or No question. By default a Yes button,
a No button, and a Cancel button are displayed. The showConfirmDialog method is used
to display a confirm dialog box. There are several overloaded versions of this method. Table
I-3 describes two of them.

The following code calls the first version of the method:

int value;
value = JOptionPane.showConfirmDialog(null, "Are you sure?");

The first argument can be a reference to a graphical component, and the dialog box is dis-
played inside that component. In this statement we pass null, which causes the dialog box
to be displayed in the center of the screen. The second argument is the message that we wish
to display. This code causes the dialog box in Figure I-8 to appear.

By default the confirm dialog box displays Select an Option in its title bar, a Yes button,
a No button, and a Cancel button. The showConfirmDialog method returns an inte-
ger that represents the button clicked by the user. You can determine which button the
user clicked by comparing the method’s return value to one of the following constants:
JOptionPane.YES_OPTION, JOptionPane.NO_OPTION, or JOptionPane.CANCEL_OPTION.

Table I-3 The showConfirmDialog Method

Method Description

int showConfirmDialog The argument passed into parent is a reference to the
 (Component parent, graphical component that the dialog box should be displayed
 Objectƒmessage) within. If you pass null to this parameter, the dialog box

appears in the center of the screen. The object passed to the
message parameter contains the message that is to be displayed.
The method returns an integer that represents the button clicked
by the user.

int showConfirmDialog The argument passed into parent is a reference to the graphical
 (Component parent, component that the dialog box should be displayed within. If
 Object message, you pass null to this parameter, the dialog box appears in
 String title, the center of the screen. The object passed to the message
 int optionType) parameter contains the message that is to be displayed. The string

passed to the title parameter is displayed in the dialog box’s
title bar. The value passed to optionType indicates the types
of buttons to display in the dialog box. The method returns an
integer that represents the button clicked by the user.

Figure I-8 Confirm dialog box

Here is an example:

int value;
value = JOptionPane.showConfirmDialog(null, "Are you sure?");
if (value == JOptionPane.YES_OPTION)
{
 If the user clicked Yes, the code here is executed.
}
else if (value == JOptionPane.NO_OPTION)
{
 If the user clicked No, the code here is executed.
}
else if (value == JOptionPane.CANCEL_OPTION)
{
 If the user clicked Cancel, the code here is executed.
}

 displaying Confirm dialogs I-7

I-8 Appendix i More about JOptionPane dialog Boxes

The second version of the method shown in Table I-3 allows you to control the text displayed
in the confirm dialog’s title bar and the type of buttons that are displayed. The first three argu-
ments are the-same as those used for the second version of the showMessageDialog method
in Table I-1. The fourth argument specifies the types of buttons that are to appear in the dia-
log box. You may use one of the following constants: JOptionPane.YES_ NO_OPTION or
JOptionPane.YES_NO_CANCEL_OPTION. For example, the following code displays a con-
firm dialog box with only a Yes button and a No button, as shown in Figure I-9.

int value;
value = JOptio nPane.showConfirmDialog(null, "Are you sure?",

"Please Confirm", JOptionPane.YES_NO_OPTION);

Figure I-9 Confirm dialog box with a Yes button and a No button

An Example Program
The program in Code Listing I-1 displays each of the types of dialog boxes we have
discussed.

Code Listing I-1 (TestAverageDialog.java)

 1 /**
 2 This program demonstrates different types of
 3 dialog boxes.
 4 */
 5
 6 import javax.swing.JOptionPane;
 7
 8 public class TestAverageDialog
 9 {
10 public static void main(String [] args)
11 {
12 String input; // User input
13 int score1, score2, score3; // test scores
14 double average; // Average test score
15 int repeat; // Confirm dialog button clicked
16
17 do
18 {

19 // Get the three test scores.
20 input = JOptionPane.showInputDialog(null,
21 "Enter score #1.");
22 score1 = Integer.parseInt(input);
23
24 input = JOptionPane.showInputDialog(null,
25 "Enter score #2.");
26 score2 = Integer.parseInt(input);
27
28 input = JOptionPane.showInputDialog(null,
29 "Enter score #3.");
30 score3 = Integer.parseInt(input);
31
32 // Calculate and display the average test score.
33 average = (score1 + score2 + score3) / 3.0;
34 JOptionPane.showMessageDialog(null,
35 "The average is " + average);
36
37 // Does the user want to average another set?
38 repeat = JOptionPane.showConfirmDialog(null,
39 "Would you like to average another " +
40 "set of test scores?", "Please Confirm",
41 JOptionPane.YES_NO_OPTION);
42
43 } while (repeat == JOptionPane.YES_OPTION);
44
45 System.exit(0);
46 }
47 }

When this program executes, the dialog boxes shown in Figure I-10 are displayed, one at a
time.

Notice the last statement in this program, in line 45:

System.exit(0);

Figure I-10 dialog boxes displayed by the TestAverageDialog program

 An example program I-9

I-10 Appendix i More about JOptionPane dialog Boxes

This statement causes the program to end and is required in any GUI program. Unlike a
console program, a GUI program does not automatically stop executing when the end of
the main method is reached. This is because Swing generates a thread, which is a process
running in the computer. If the System.exit method is not called, this thread continues to
execute, even after the end of the main method has been reached.

The System.exit method requires an integer argument. This argument is an exit code that
is passed back to the operating system. Although this code is usually ignored, it can be used
outside the program to indicate whether the program ended successfully or as the result of a
failure. The value 0 traditionally indicates that the program ended successfully.

Chapter 1
 1.1 Because the computer can be programmed to do so many different tasks.

 1.2 The Central Processing Unit (CPU), main memory, secondary storage devices,
input devices, output devices.

 1.3 Arithmetic and Logic Unit (ALU), and Control Unit

 1.4 Fetch: The CPU’s control unit fetches the program’s next instruction from main
memory.

 Decode: The control unit decodes the instruction, which is encoded in the form of
a number. An electrical signal is generated.

 Execute: The signal is routed to the appropriate component of the computer,
which causes a device to perform an operation.

 1.5 A unique number assigned to each section of memory. The address is used to
 identify a location in memory.

 1.6 Program instructions and data are stored in main memory while the program is
operating. Main memory is volatile, and loses its contents when power is removed
from the computer. Secondary storage holds data for long periods of time—even
when there is no power to the computer.

 1.7 It means that an operating system is capable of running multiple programs at
once.

 1.8 A key word has a special purpose, and is defined as part of a programming language.
A programmer-defined symbol is a word or name defined by the programmer.

 1.9 Operators perform operations on one or more operands. Punctuation symbols
mark the beginning or ending of a statement, or separates items in a list.

 1.10 A line is a single line as it appears in the body of a program. A statement is a
complete instruction that causes the computer to perform an action.

 1.11 Because their contents may be changed.

J-1

Answers to Checkpoints

A
P

P
E

N
D

IX

J

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

J-2 Appendix J Answers to Checkpoints

 1.12 The original value is overwritten.

 1.13 A compiler is a program that translates source code into an executable form.

 1.14 Syntax errors are mistakes that the programmer has made that violate the rules of
the programming language. These errors must be corrected before the compiler
can translate the source code.

 1.15 The Java compiler translates Java source code into byte code, which is an interme-
diate language. The Java Virtual Machine executes the byte code instructions.

 1.16 The Java Virtual Machine (JVM) is a program that reads Java byte code instructions
and executes them as they are read. In other words, it interprets byte code instruc-
tions. You can think of the JVM as a program that simulates a computer whose
machine language is Java byte code.

 1.17 The program’s purpose, input, process, and output.

 1.18 Before you create a program on the computer, it is often a good idea to imagine
what the computer screen will look like while the program is running. If it helps,
draw pictures of the screen, with sample input and output, at various points in the
program.

 1.19 A cross between human language and a programming language. Pseudocode is
especially helpful when designing an algorithm. Although the computer can’t
understand pseudocode, programmers often find it helpful to write an algorithm
in a language that’s “almost” a programming language, but still very similar to
natural language.

 1.20 A compiler translates source code into an executable form.

 1.21 A runtime error is an error that occurs while the program is running. These are
usually logical errors, such as mathematical mistakes.

 1.22 Syntax errors are found by the compiler.

 1.23 You can provide sample data and predict what the output should be. If the
 program does not produce the correct output, a logical error is present in the
 program.

 1.24 Data and the code that operates on the data.

 1.25 The data contained in an object.

 1.26 The procedures, or behaviors, that an object performs.

 1.27 Encapsulation refers to the combining of data and code into a single object.

 1.28 Data hiding refers to an object’s ability to hide its data from code that is outside
the object. Only the object’s methods may then directly access and make changes
to the object’s data. An object typically hides its data, but allows outside code to
access the methods that operate on the data.

 Chapter 2 J-3

Chapter 2
 2.1 // A crazy mixed up program

public class Columbus
{
 public static void main(String[] args)
 {
 System.out.println("In 1492 Columbus sailed the ocean blue.");
 }
}

 2.2 Columbus.java

 2.3 public class Hello
{
 public static void main(String[] args)
 {
 System.out.println("Hello World");
 }
}

 2.4 // Example
// August 22, 2013
public class MyName
{
 public static void main(String[] args)
 {
 System.out.println("Herbert Dorfmann");
 }
}

 2.5 C

 2.6 A

 2.7 // Its a mad, mad program
public class Success
{
 public static void main(String[] args)
 {
 System.out.print("Success\n");
 System.out.print("Success ");
 System.out.print("Success\n");
 System.out.println("\nSuccess");
 }
}

 2.8 The works of Wolfgang
include the following
The Turkish March and Symphony No. 40 in G minor.

J-4 Appendix J Answers to Checkpoints

 2.9 // August 22, 2013
public class PersonalInfo
{
 public static void main(String[] args)
 {
 System.out.println("Herbert Dorfmann");
 System.out.println("123 Elm Street");
 System.out.println("My Town, NC 21111");
 System.out.println("919-555-1234");
 }
}

 2.10 Variables:
little
big

Literals:
2
2000
"The little number is "
"The big number is "

 2.11 The value is number

 2.12 99bottles is illegal because it starts with a number.
 r&d is illegal because the & character is illegal.

 2.13 They are not the same because one begins with an uppercase S while the other
begins with a lowercase s. Variable names are case-sensitive.

 2.14 a) short
b) int
c) 22.1 because it is stored as a double.

 2.15 6.31E17

 2.16 Append the F suffix to the numeric literal, such as:

number = 7.4F;

 2.17 true and false

 2.18 a) char letter;
b) letter = 'A';
c) System.out.println(letter);

 2.19 The code for ‘C’ is 67.
 The code for ‘F’ is 70.
 The code for ‘W’ is 87.

 2.20 'B' is a character literal.

 2.21 You cannot assign a string literal to a char variable. The statement should be:

 char letter = 'Z';

 Chapter 2 J-5

 2.22 Expression Value
6 + 3 * 5 21
12 / 2 - 4 2
9 + 14 * 2 - 6 31
5 + 19 % 3 - 1 5
(6 + 2) * 3 24
14 / (11 - 4) 2
9 + 12 * (8 - 3) 69

 2.23 Integer division. The value 23.0 will be stored in portion.

 2.24 a) x += 6;
b) amount -= 4;
c) y *= 4;
d) total /= 27;
e) x %= 7;

 2.25 a) No
b) Because the result of basePay + bonus results in an int value, which cannot be

stored in the short variable totalPay. You can fix the problem by declaring
totalPay as an int, or casting the result of the expression to a short.

 2.26 a = (float)b;

 2.27 String city = "San Francisco";

 2.28 stringLength = city.length();

 2.29 oneChar = city.charAt(0);

 2.30 upperCity = city.toUpperCase();

 2.31 lowerCity = city.toLowerCase();

 2.32 To write a single line comment you begin the comment with //. To write a multi-line
comment you begin the comment with /* and end it with */. To write a documen-
tation comment you begin the comment with /** and end it with */.

 2.33 Documentation comments can be read and processed by a program named
javadoc. The javadoc program can read Java source code files and generate
attractively formatted HTML documentation files. If the source code files contain
any documentation comments, the information in the comments becomes part of
the HTML documentation.

 2.34 A message dialog box is used to display a message to the user. An input dialog box
is used to gather keyboard input from the user.

 2.35 a) JOptionPane.showMessageDialog(null, "Greetings Earthling.");
b) str = JOptionPane.showInputDialog("Enter a number.");

 2.36 String str;
int age;
str = JOptionPane.showInputDialog("Enter your age.");
age = Integer.parseInt(str);

 2.37 import javax.swing.JOptionPane;

J-6 Appendix J Answers to Checkpoints

Chapter 3
 3.1 if (y == 20)

 x = 0;

 3.2 if (hours > 40)
 payRate *= 1.5;

 3.3 if (sales >= 10000)
 commission = 0.2;

 3.4 if (max)
 fees = 50;

 3.5 if (x > 100)
{
 y = 20;
 z = 40;
}

 3.6 if (a < 10)
{
 b = 0;
 c = 1;
}

 3.7 if (myCharacter == 'D')
 System.out.println("Goodbye");

 3.8 if (x > 100)
 y = 20;
else
 y = 0;

 3.9 if (y == 100)
 x = 1;
else
 x = 0;

 3.10 if (sales >= 50000.0)
 commission = 0.2;
else
 commission = 0.1;

 3.11 if (a < 10)
{
 b = 0;
 c = 1;
}
else
{
 b = -99;
 c = 0;
}

 Chapter 3 J-7

 3.12 1 1

 3.13 If the customer purchases this many coupons are
this many books . . . given.
 1 1
 2 1
 3 2
 4 2
 5 3
 10 3

 3.14 if (amount1 > 10)
 {
 if (amount2 < 100)
 {
 if (amount1 > amount2)
 System.out.println(amount1);
 else
 System.out.println(amount2);
 }
 }

 3.15 if (x > 0)
{
 if (y < 20)
 {
 z = 1;
 }
 else
 {
 z = 0;
 }
}

 3.16 Logical Expression Result (true or false)
true && false false
true && true true
false && true false
false && false false
true || false true
true || true true
false || true true
false || false false
!true false
!false true

 3.17 T, F, T, T, T

 3.18 if (speed >= 0 && speed <= 200)
 System.out.println("The number is valid");

J-8 Appendix J Answers to Checkpoints

 3.19 if (speed < 0 || speed > 200)
 System.out.println("The number is not valid");

 3.20 if (name.equals("Timothy"))
 System.out.println("Do I know you?");

 3.21 if (name1.compareTo(name2) < 0)
 System.out.println(name1 + " " + name2);
else
 System.out.println(name2 + " " + name1);

 3.22 if (name.equalsIgnoreCase("Timothy"))
 System.out.println("Do I know you?");

 3.23 a) z = x > y ? 1 : 20;
b) population = temp > 45 ? base * 10 : base * 2;
c) wages = hours > 40 ? wages * 1.5 : wages * 1;
d) System.out.println(result >=0 ? "The result is positive" :
 "The result is negative");

 3.24 // Here is the switch statement.
switch(userNum)
{
 case 1 : System.out.println("One");
 break;
 case 2 : System.out.println("Two");
 break;
 case 3 : System.out.println("Three");
 break;
 default: System.out.println("Error: invalid number.");
}

 3.25 switch(selection)
{
 case 'A' : System.out.println("You selected A.");
 break;
 case 'B' : System.out.println("You selected B.");
 break;
 case 'C' : System.out.println("You selected C.");
 break;
 case 'D' : System.out.println("You selected D.");
 break;
 default : System.out.println("Not good with letters, eh?");
}

 3.26 Because it uses greater-than and less-than operators in the comparisons.

 3.27 The case expressions must be a literal or a final variable, which must be of the
char, byte, short, int, or String types. In this code, relational expressions are used.

 3.28 That is serious.

 Chapter 4 J-9

 3.29 System.out.printf("%,.2f", number);

 3.30 System.out.printf("%10.1f", number);

 3.31 System.out.printf("%08.1f", number);

 3.32 System.out.printf("%,10d", number);

 3.33 System.out.printf("%-,20.2f", number);

 3.34 System.out.printf("%20s", name);

Chapter 4
 4.1 a) 2

b) 2
c) 1
d) 8

 4.2 0 times

 4.3 This must be a trick question. The statement that prints “I love Java program-
ming!” is not in the body of the loop. The only statement that is in the body of the
loop is the one that prints “Hello World”. Because there is no code in the loop to
change the contents of the count variable, the loop will execute infinitely, printing
“Hello World”. So, “I love Java programming!” is never printed.

 4.4 Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number in the range of 10 - 24: ");
number = keyboard.nextInt();
while (number < 10 || number > 24)
{
 System.out.println("That number is not in the range.");
 System.out.print("Enter a number in the range of 10 - 24: ");
 number = keyboard.nextInt();
}

 4.5 String input;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter Y, y, N, or n: ");
input = keyboard.nextLine();
ch = input.charAt(0);
while (ch != 'Y' && ch != 'y' && ch != 'N' && ch != 'n')
{
 System.out.println("Try again.");
 System.out.print("Enter Y, y, N, or n: ");
 input = keyboard.nextLine();
 ch = input.charAt(0);
}

J-10 Appendix J Answers to Checkpoints

 4.6 String str;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter Yes or No: ");
str = keyboard.nextLine();
while ((!str.equals("Yes")) && (!str.equals("No")))
{
 System.out.print("Please enter Yes or No: ");
 str = keyboard.nextLine();
}

 4.7 Initialization, test, and update.

 4.8 a) count = 1
b) count <= 50
c) count++
d) for (int count = 1; count <= 50; count++)
 System.out.println("I love to program");

 4.9 a) 0
 2
 4
 6
 8
 10

b) -5
 -4
 -3
 -2
 -1
 0
 1
 2
 3
 4

c) 5
 8
 11
 14
 17

 4.10 // This is how Chloe Ashlyn would write the loop.
for (int i = 1; i <= 10; i++)
 System.out.println("Chloe Ashlyn");

 4.11 for (int i = 1; i <= 49; i += 2)
 System.out.println(i);

 4.12 for (int i = 0; i <= 100; i += 5)
 System.out.println(i);

 Chapter 4 J-11

 4.13 Scanner keyboard = new Scanner(System.in);
int number = 0, total = 0;
for (int i = 1; i <= 7; i++)
{
 System.out.print("Enter a number: ");
 number = keyboard.nextInt();
 total += number;
}

 4.14 The variable x is the loop control variable and y is the accumulator.

 4.15 You should be careful to choose a value that cannot be mistaken as a valid input
value.

 4.16 Data is read from an input file, and data is written to an output file.

 4.17 import java.io.*;

 4.18 PrintWriter

 4.19 // This is how Kathryn would write the code.
PrintWriter outputFile = new PrintWriter("MyName.txt");
outputFile.println("Kathryn");
outputFile.close();

 4.20 File and Scanner

 4.21 File file = new File("MyName.txt");
Scanner inputFile = new Scanner(file);
if (inputFile.hasNext())
{
 String str = inputFile.nextLine();
 System.out.println(str);
}
inputFile.close();

 4.22 You create an instance of the FileWriter class to open the file. You pass the name
of the file (a string) as the constructor’s first argument, and the boolean value true
as the second argument. Then, when you create an instance of the PrintWriter
class, you pass a reference to the FileWriter object as an argument to the
PrintWriter constructor. The file will not be erased if it already exists and new
data will be written to the end of the file.

 4.23 throws IOException

 4.24 It assigns the variable x a random integer in the range −2,147,483,648 to
+2,147,483,647.

 4.25 It assigns the variable x a random integer in the range 0 through 99.

 4.26 It assigns the variable x a random integer in the range 1 through 9.

 4.27 It assigns the variable x a random number in the range 0.0 to 1.0.

J-12 Appendix J Answers to Checkpoints

Chapter 5
 5.1 A value-returning method returns a value back to the code that called it, and a

void method does not.

 5.2 Method call

 5.3 Method header

 5.4 If the user enters 5 the program will display Able was I. If the user enters 10 the
program will display I saw Elba. If the user enters 100 the program will display
I saw Elba.

 5.5 // This is how Mary Catherine Jones would write it.
public static void myName()
{
 System.out.println("Mary Catherine Jones");
}

 5.6 An argument is a value that is passed into a method. A parameter is a special variable
that holds the value being passed into the method.

 5.7 b and c will cause a compiler error because the values being sent as arguments
(a double and a long) cannot be automatically converted to an int.

 5.8 Only d is written correctly.

 5.9 Only a copy of an argument’s value is passed into a parameter variable. A method’s
parameter variables are separate and distinct from the arguments that are listed
inside the parentheses of a method call. If a parameter variable is changed inside a
method, it has no effect on the original argument.

 5.10 99 1.5
99 1.5
0 0.0
99 1.5

 5.11 double

 5.12 public static int days(int years, int months, int weeks)

 5.13 public static double distance(double rate, double time)

 5.14 public static long lightYears(long miles)

Chapter 6
 6.1 To store data

 6.2 Operations that the object can perform

 6.3 It serves a purpose similar to that of the blueprint for a house. The blueprint itself
is not a house, but rather a detailed description of a house. When we use the blue-
print to build an actual house, we could say that we are building an instance of
the house described by the blueprint. A class is not an object, but a description of
an object. When a program is running, it can use the class to create, in memory, as

 Chapter 6 J-13

many objects of a specific type as needed. Each object that is created from a class
is called an instance of the class.

 6.4 In the Java API

 6.5 The new operator creates an object in memory, and returns that object’s memory
address.

 6.6 It holds an object’s memory address.

 6.7 In order to fly a kite, you need a spool of string attached to it. When the kite is
airborne, you use the spool of string to hold on to the kite and control it. This is
similar to the relationship between an object and the variable that references the
object. Think of the object as the kite, and the reference variable as the spool of
string.

 6.8 Classes are the blueprints.

 6.9 The kite represents an object.

 6.10 The memory address of the object.

 6.11 A String object.

 6.12 a) Car
b) make and yearModel
c) setMake, setYearModel, getMake, and getYearModel
d) make and yearModel
e) setMake, setYearModel, getMake, and getYearModel

 6.13 limo.setMake("Cadillac");

 6.14 Creates an instance of an object in memory.

 6.15 An accessor is a method that gets a value from a class’s field but does not change
it. A mutator is a method that stores a value in a field or in some other way
changes the value of a field.

 6.16 When the value of an item is dependent on other data and that item is not
updated when the other data is changed, it is said that the item has become stale.

 6.17

r1 address

A Rectangle object

width: 20

length: 5

r2 address

A Rectangle object

width: 15

length: 10

 6.18 It has the same name as the class.

 6.19 It has no return type, not even void.

J-14 Appendix J Answers to Checkpoints

 6.20 a) ClassAct
b) ClassAct myact = new ClassAct(25);

 6.21 Overloaded methods must have different parameter lists. Their return types do
not matter.

 6.22 A method’s signature consists of the method’s name and the data types of the
method’s parameters, in the order that they appear.

 6.23 This is the second version of the method.
This is the first version of the method.

 6.24 Only one.

 6.25 The problem domain is the set of real-world objects, parties, and major events
related to a problem.

 6.26 Someone who has an adequate understanding of the problem. If you adequately
understand the nature of the problem you are trying to solve, you can write a
description of the problem domain yourself. If you do not thoroughly understand
the nature of the problem, you should have an expert write the description for
you.

 6.27 Identify all the nouns (including pronouns and noun phrases) in the problem
domain description. Each of these is a potential class. Then, refine the list to
include only the classes that are relevant to the problem.

 6.28 A class’s responsibilities are the things that the class is responsible for knowing
and the actions that the class is responsible for doing.

 6.29 It is often helpful to ask the questions “In the context of this problem, what must
the class know? What must the class do?”

 6.30 No. Often responsibilities are discovered through brainstorming.

Chapter 7
 7.1 a) int[] employeeNumbers = new int[100];

b) double[] payRates = new double[25];
c) float[] miles = new float[14];
d) char[] letters = new char[1000];

 7.2 An array’s size declarator must be a non-negative integer expression. The first
statement is incorrect because the size declarator is negative. The second statement
is incorrect because the size declarator is a floating-point number.

 7.3 0 through 3

 7.4 The size declarator specifies the number of elements in the array. A subscript iden-
tifies a specific element in the array.

 7.5 The subscript is outside the range of valid subscripts for the array.

 7.6 When the statement executes, it crashes the program and displays a runtime error
message.

 Chapter 7 J-15

 7.7 1
2
3
4
5

 7.8 double[] array = { 1.7, 6.4, 8.9, 3.1, 9.2 };
 There are five elements in the array.

 7.9 result = numbers1[0] * numbers2[3];

 7.10 for (int i = 0; i < array.length; i++)
 array[i] = -1;

 7.11 // Assume keyboard references a Scanner object.
int size;
System.out.print("Enter the size of the array: ");
size = keyboard.nextInt();
values = new double[size];

 7.12 for (int i = 0; i < a.length; i++)
 b[i] = a[i];

 7.13 myMethod(numbers);

 7.14 public static void zero(int[] array)
{
 for (int i = 0; i < array.length; i++)
 array[i] = 0;
}

 7.15 a) String[] planets = { "Mercury", "Venus", "Earth", "Mars" };
b) for (int i = 0; i < planets.length; i++)
 System.out.println(planets[i]);
c) for (int i = 0; i < planets.length; i++)
 System.out.println(planets[i].charAt(0));

 7.16 Rectangle[] rectArray = new Rectangle[5];
for (int i = 0; i <= rectArray.length; i++)
{
 // Initialize each rectangle with the values
 // i and i+1 for length and width.
 rectArray[i] = new Rectangle(i, i+1);
}

 7.17 final int RACKS = 50;
final int SHELVES = 10;
final int VIDEOS = 25;
// Create an array to hold video numbers.
int videoNumbers[][][] = new int[RACKS][SHELVES][VIDEOS];

 7.18 The selection sort first looks for the smallest value in the array. When it finds it, it
moves it to element 0.

J-16 Appendix J Answers to Checkpoints

 7.19 Only once.

 7.20 The sequential search steps through each element of the array, starting at element 0,
looking for the search value. The binary search requires that the array be sorted in
ascending order. It starts by looking at the middle element. If it is not the search
value, and is greater than the search value, then the lower half of the array is
searched next. If the middle element is not the search value, and is less than the
search value, the upper half of the array is searched next. This same technique is
repeated on the half of the array being searched until the element is either found
or there are no more elements to search.

 7.21 10,000 comparisons

 7.22 Move the items that are frequently searched for to the beginning of the array.

 7.23 import java.util.ArrayList;

 7.24 ArrayList frogs = new ArrayList();

 7.25 ArrayList<String> lizards = new ArrayList<String>();

 7.26 You use the add method.

 7.27 The ArrayList class has a remove method that removes an item at a specific index.
You pass the index as an argument to the method.

 7.28 The ArrayList class has a get method that retrieves an item at a specific index.
You pass the index as an argument to the method.

 7.29 Inserting means adding an item at a specific index. The ArrayList class has an
overloaded version of the add method that allows you to add an item at a specific
index.

 7.30 The ArrayList class has a size method that returns the number of items stored in
the ArrayList.

 7.31 An ArrayList’s size is the number of items stored in the ArrayList object. An
ArrayList’s capacity is the number of items the ArrayList object can hold without
having to increase its size.

Chapter 8
 8.1 Each instance of a class has its own copy of the class’s instance fields. A static field

does not belong to any instance of the class, and there is only one copy of a static
field in memory, regardless of the number of instances of the class.

 8.2 It isn’t necessary for an instance of the class to be created in order to execute the
method.

 8.3 They cannot directly refer to non-static members of the class. This means that any
method called from a static method must also be static. It also means that if the
method uses any of the class’s fields, they must be static as well.

 Chapter 9 J-17

 8.4 The this variable will reference the stock2 object.

 8.5 a) Flower
b) The ordinal value for Rose is 0. The ordinal value for DAISY is 1. The ordinal

value for PETUNIA is 2.
c) Flower.Rose, Flower.DAISY, Flower.PETUNIA
d) Flower flora = Flower.PETUNIA;

 8.6 HOBBIT ELF DRAGON

 8.7 Z is not greater than X.

Chapter 9
 9.1 little = Character.toLowerCase(big);

 9.2 if (Character.isDigit(ch))
 System.out.println("digit");
else
 System.out.println("Not a digit");

 9.3 A

 9.4 String input;
char ch;
Scanner keyboard = new Scanner(System.in);
System.out.print("Do you want to repeat the " +
 "program or quit? (R/Q)");
input = keyboard.nextLine();
ch = input.charAt(0);
ch = Character.toUpperCase(ch);
while (ch != 'R' && ch != 'Q')
{
 System.out.print("Do you want to repeat the " +
 "program or quit? (R/Q)");
 input = keyboard.nextLine();
 ch = input.charAt(0);
 ch = Character.toUpperCase(ch);
}

 9.5 $

 9.6 int total = 0;
for (int i = 0; i < str.length(); i++)
{
 if (Character.isUpperCase(str.charAt(i)))
 total++;
}

J-18 Appendix J Answers to Checkpoints

 9.7 public static boolean endsWithGer(String str)
{
 boolean status;

 if (str.endsWith("ger"))
 status = true;
 else
 status = false;
 return status;
}

 9.8 public static boolean endsWithGer(String str)
{
 boolean status;
 String strUpper = str.toUpperCase();

 if (strUpper.endsWith("GER"))
 status = true;
 else
 status = false;
 return status;
}

 9.9 You would use the substring method.

 9.10 The indexOf method searches for a character or substring, starting at the begin-
ning of a string. The lastIndexOf method searches for a character or substring,
starting at the end of a string. This means that the indexOf method returns the
index of the first occurrence of a character or substring, and the lastIndexOf
method returns the index of the last occurrence of a character or substring.

 9.11 The substring method returns a reference to a substring. The getChars method
stores a substring in a char array.

 9.12 The concat method.

 9.13 The toCharArray method returns all of the characters in the calling object as a
char array.

 9.14 The fellow student is wrong. The replace method will return a reference to a
String which is a copy of str1, in which all of the o characters have been replaced
with u characters. The original string in str1 will not be changed, however. The
code will produce the following output:

To be, or not to be
Tu be, ur nut tu be

 9.15 WilliamtheConqueror

 9.16 str = String.valueOf(number);

 9.17 Once you create a String object, you cannot change the object’s value.

 9.18 It would be more efficient to use StringBuilder objects because they are not
immutable. Making a change to a StringBuilder object does not cause a new
object to be created.

 Chapter 10 J-19

 9.19 StringBuilder city = new StringBuilder("Asheville");

 9.20 The append method.

 9.21 The insert method.

 9.22 The deleteCharAt method.

 9.23 The setCharAt method.

 9.24 While the String class’s replace method replaces the occurrences of one character
with another character, the StringBuilder class’s replace method replaces a speci-
fied substring with a string.

 9.25 The tokens are “apples”, “pears”, and “bananas”. The delimiter is the space character.

 9.26 4 will be stored in x.

 "one" will be stored in stuff.

 9.27 String str = "/home/rjones/mydata.txt"
String[] tokens = str.split("/");

 9.28 String str = "dog$cat@bird%squirrel"
String[] tokens = str.split("[$@%]");

 9.29 str = Integer.toString(i);

 9.30 The toBinaryString, toHexString, and toOctalString methods are static mem-
bers of the Integer and Long wrapper classes.

 9.31 These variables hold the minimum and maximum values for a particular data
type.

Chapter 10
 10.1 Vehicle is the superclass and Truck is the subclass.

 10.2 a) Shape is the superclass, Circle is the subclass.
b)

- area: double

+ setArea(a : double) : void
+ getArea() : double

Shape

- radius : double

+ setRadius(r : double) : void
+ getRadius() : double

Circle

J-20 Appendix J Answers to Checkpoints

c) setArea, getArea, setRadius, getradius
d) area
e) c.setRadius(10.0); legal
 s.setRadius(10.0); illegal
 System.out.println(c.getArea()); legal
 System.out.println(s.getArea()); legal

 10.3 The superclass constructor (class A) will execute first, then the subclass construc-
tor (class B) will execute.

 10.4 You are on the ground.
You are in the sky.

 10.5 The ground is green
The sky is blue

 10.6 When the superclass method is inadequate for the subclass’s purpose.

 10.7 A subclass may call an overridden superclass method by prefixing its name with
the super key word and a dot (.).

 10.8 It overrides the superclass method.

 10.9 It overloads the superclass method.

 10.10 You declare the method with the final modifier.

 10.11 Protected members of class may be accessed by methods in a subclass, and by
methods in the same package as the class.

 10.12 Private members may be accessed only by methods in the same class. A protected
member of a class may be directly accessed by methods of the same class or meth-
ods of a subclass. In addition, protected members may be accessed by methods of
any class that are in the same package as the protected member’s class.

 10.13 Because any other class that inherits from the class, or is in the same package, has
unrestricted access to the protected member.

 10.14 Private members may be accessed only by methods in the same class. Any method
in the same package as the class may directly access the class’s members that have
package access.

 10.15 When you accidentally leave out the access specifier, the member will have pack-
age access.

 10.16 ClassD still inherits from Object, because all classes ultimately inherit from Object.

 10.17 Because those methods are members of the Object class.

 10.18 a) Legal, because a Cube is a Rectangle.
b) System.out.println(r.getLength()); Legal
 System.out.println(r.getWidth()); Legal
 System.out.println(r.getHeight()); Illegal
 System.out.println(r.getSurfaceArea()); Illegal
c) Illegal, because a Rectangle is not a Cube. The Cube class has capabilities

beyond those of the Rectangle class, so a Cube variable cannot reference a
Rectangle object.

 Chapter 11 J-21

 10.19 Abstract methods are used to ensure that a subclass implements the method.

 10.20 Override the abstract method.

 10.21 An abstract class serves as a superclass for other classes. It represents the generic
or abstract form of all the classes that inherit from it.

 10.22 An abstract class cannot be instantiated. It must serve as a superclass.

 10.23 To specify behavior for other classes.

 10.24 It cannot be instantiated.

 10.25 An interface only specifies methods; it does not define them. In addition, all mem-
bers of an interface are public.

 10.26 As final and static.

 10.27 public class Customer implements Relatable

 10.28 public class Employee implements Payable, Listable

Chapter 11
 11.1 An exception is an object that is generated as the result of an error or an unex-

pected event.

 11.2 To throw an exception means to generate an exception object.

 11.3 Unless an exception is detected by the application and dealt with, it causes the
application to halt.

 11.4 The Throwable class.

 11.5 Classes that extend the Error class are for exceptions that are thrown when a crit-
ical error occurs, such as an internal error in the Java Virtual Machine or running
out of memory. An application should not try to handle these exceptions. Excep-
tion classes that extend the Exception class are general exceptions that an applica-
tion can handle.

 11.6 A try block is one or more statements that are executed and can potentially throw
an exception. A catch block is code that appears immediately after a catch clause,
and is executed in response to a particular exception.

 11.7 The program will resume with the code that appears after the entire try/catch
construct.

 11.8 Each exception object has a method named getMessage that can be used to
retrieve the error message for the exception.

 11.9 When an exception is thrown by code in the try block, the JVM begins searching
the try statement for a catch clause that can handle it. It searches the catch
clauses from top to bottom and passes control of the program to the first catch
clause with a parameter that is compatible with the exception.

 11.10 Statements in the finally block are always executed after the try block has exe-
cuted and after any catch blocks have executed if an exception was thrown. The
finally block executes whether an exception is thrown or not.

J-22 Appendix J Answers to Checkpoints

 11.11 A call stack is an internal list of all the methods that are currently executing.
A stack trace is a list of all the methods in the call stack.

 11.12 Because method B does not handle the exception, control is passed back to
method A. Method A doesn’t handle the exception either, so control is passed
back to method main. Because main doesn’t handle the exception, the program is
halted and the default exception handler handles the exception.

 11.13 Unchecked exceptions are those that are extended from the Error class or the
RuntimeException class. A program should not attempt to handle unchecked
exceptions. All the remaining exceptions are checked exceptions. Either a checked
exception must be handled by the program, or applicable throws clauses must be
used with all of the methods that can potentially throw the checked exception.

 11.14 When code in the method can potentially throw a checked exception, but does not
handle the exception.

 11.15 The throw statement causes an exception object to be created and thrown.

 11.16 The argument contains a custom error message that can be retrieved from the
exception object’s getMessage method. If you do not pass a message to the con-
structor, the exception will have a null message.

 11.17 The throw statement causes an exception to be thrown. The throws clause informs
the compiler that a method throws one or more exceptions.

 11.18 No. If the method throws an unchecked exception, it does not have to have a
throws clause.

 11.19 You can create a checked exception by extending its class from Exception. You
can create an unchecked exception by extending its class from Error.

 11.20 All of the data stored in a text file is formatted as text. Numeric data is converted
to text when it is stored in a text file. You can view the data stored in a text file by
opening it with a text editor, such as Notepad. In a binary file, data is not format-
ted as text. Subsequently, you cannot view a binary file’s contents with a text editor.

 11.21 To write data to a binary file you use the FileOutputStream and DataOutputStream
classes. To read data from a file you use the FileInputStream and
DataInputStream classes.

 11.22 With sequential access, when a file is opened for input, its read position is at the
very beginning of the file. This means that the first time data is read from the file,
the data will be read from its beginning. As the reading continues, the file’s read
position advances sequentially through the file’s contents. In random file access, a
program may immediately jump to any location in the file without first reading
the preceding bytes.

 11.23 RandomAccessFile

 11.24 The two modes are “r” for reading, and “rw” for reading and writing. When a file
is opened with “r” as the mode, the program can only read from the file. When a
file is opened with “rw” as the mode, the program can read from the file and write
to it.

 Chapter 12 J-23

 11.25 The class must implement the Serializable interface. You can then use the
ObjectOutputStream class’s writeObject method to serialize objects of the class.

Chapter 12
 12.1 A frame is a basic window that has a border around it, a title bar, and a set of but-

tons for minimizing, maximizing, and closing the window. In a Swing application,
you create a frame from the JFrame class.

 12.2 With the setSize method.

 12.3 With the setVisible method.

 12.4 A content pane is a container that is part of every JFrame object. You cannot see
the content pane and it does not have a border, but any component that is added
to a JFrame must be added to its content pane.

 12.5 Panels cannot be displayed by themselves.

 12.6 It is an object that responds to events.

 12.7 The class must implement the ActionListener interface, and it must have a
method named actionPerformed. The method is executed when the user clicks the
button.

 12.8 With the addActionListener method.

 12.9 You use the setBackground method to set the color of a component, and the
setForeground method to set the color of text displayed on a component.

 12.10 By calling the container’s setLayout method and passing a reference to a layout
manager object as the argument.

 12.11 BorderLayout

 12.12 FlowLayout

 12.13 GridLayout

 12.14 Only one, in both cases.

 12.15 By placing the component in a panel, then adding the panel to the region. The lay-
out manager resizes the panel, not the component inside the panel.

 12.16 By calling the pack method.

 12.17 BorderLayout is the default layout manager for a JFrame object’s content pane.
FlowLayout is the default layout manager for a JPanel object.

 12.18 Radio buttons

 12.19 Check boxes

 12.20 A ButtonGroup object can contain radio buttons. It creates a mutually exclusive
relationship between the radio buttons that it contains.

 12.21 Radio buttons.

J-24 Appendix J Answers to Checkpoints

 12.22 An action event.

 12.23 An item event.

 12.24 You use the isSelected method to determine whether a JRadioButton component
is selected. The method returns a boolean value. If the check box is selected, the
method returns true. Otherwise, it returns false.

 12.25 You use the isSelected method to determine whether a JCheckBox component is
selected. The method returns a boolean value. If the check box is selected, the
method returns true. Otherwise, it returns false.

 12.26 setBorder

 12.27 You should use the BorderFactory class to create them for you. The
BorderFactory class has static methods that return various types of borders.

Chapter 13
 13.1 You call its setEditable method and pass false as the parameter. To store text in

the text field, use the setText method.

 13.2 The index of the first item is 0. The index of the twelfth item would be 11.

 13.3 You use the getSelectedValue method to retrieve the selected item, and the
getSelectedIndex method to get the index of the selected item.

 13.4 First, set the number of visible rows for the list component. Next, create a scroll
pane object and add the list component to it.

 13.5 You use the getSelectedItem method to retrieve the selected item, and the
getSelectedIndex method to get the index of the selected item.

 13.6 An uneditable combo box combines a button with a list and allows the user to
select only items from its list. An editable combo box combines a text field and a
list. In addition to selecting items from the list, the user may also type input into
the text field. The default type of combo box is uneditable.

 13.7 To display an image, you first create an instance of the ImageIcon class, which can
read the contents of an image file. Next, you display the image in a label by pass-
ing the ImageIcon object as an argument to the JLabel constructor. You can create
a JLabel with both an image and text by creating the JLabel in the usual way,
with the text passed to the constructor. Then, you can use the setIcon method to
display an image.

 13.8 To display an image, you first create an instance of the ImageIcon class, which can
read the contents of an image file. Next, you display the image in a button by
passing the ImageIcon object as an argument to the JButton constructor. To create
a button with an image and text, pass a String and an ImageIcon object to the
constructor.

 13.9 setIcon

 Chapter 13 J-25

 13.10 A mnemonic is a key on the keyboard that you press in combination with the a
key to quickly access a component such as a button. These are sometimes referred
to as short-cut keys, or hot keys. You assign an access key to a component
through the component’s setMnemonic method.

 13.11 A tool tip is text that is displayed in a small box when the user holds the mouse
cursor over a component. The box usually gives a short description of what the
component does. You assign a tool tip to a component with the setToolTipText
method.

 13.12 a) Menu bar. At the top of the window, just below the title bar, is a menu bar.
The menu bar lists the names of one or more menus.

b) Menu item. A menu item can be selected by the user. When a menu item is
selected, some type of action is usually performed.

c) Check box menu item. A check box menu item appears with a small box
beside it. The item may be selected or deselected. When it is selected, a check
mark appears in the box. When it is deselected, the box appears empty. Check
box menu items are normally used to turn an option on or off. The user tog-
gles the state of a check box menu item each time he or she selects it.

d) Radio button menu item. A radio button menu item may be selected or dese-
lected. A small circle appears beside it that is filled in when the item is selected
and appears empty when the item is deselected. Like a check box menu item, a
radio button menu item can be used to turn an option on or off. When a set of
radio button menu items are grouped with a ButtonGroup object, only one of
them can be selected at a time. When the user selects a radio button menu
item, the one that was previously selected is deselected.

e) Submenu. A menu within a menu is called a submenu. Some of the commands
on a menu are actually the names of submenus. You can tell when a command
is the name of a submenu because a small right arrow appears to its right.
Activating the name of a submenu causes the submenu to appear.

f) Separator bar. A separator bar is a horizontal bar used to separate groups of
items on a menu. Separator bars are used only as a visual aid and cannot be
selected by the user.

 13.13 The JMenuItem class. You pass a string, which is displayed on the menu item.

 13.14 The JRadioButtonMenuItem class. You pass a string to the constructor, which is
displayed on the menu item. To cause it to be initially selected, you pass true as
an optional second argument to the constructor.

 13.15 You add them to a ButtonGroup.

 13.16 The JCheckBoxMenuItem class. You pass a string to the constructor, which is dis-
played on the menu item. To cause it to be initially selected, you pass true as an
optional second argument to the constructor.

 13.17 The JMenu class. You pass a string to the constructor, which is displayed on the
menu.

 13.18 The JMenuBar class.

 13.19 With the JFrame object’s setJMenuBar method.

J-26 Appendix J Answers to Checkpoints

 13.20 Action events.

 13.21 With the setPreferredSize method.

 13.22 The first argument to the Dimension class constructor is the component’s width,
and the second argument is the component’s height.

 13.23 One constructor accepts the size of the text area, in rows and columns. Another
constructor accepts the string that is to be displayed initially in the text area, as
well as the size of the text area in rows and columns.

 13.24 With the getText method.

 13.25 JTextArea components do not automatically display scroll bars. To display scroll
bars on a JTextArea component, you must add it to the scroll pane.

 13.26 Line wrapping causes text to automatically wrap to the next line when a line is
filled. There are two different styles of line wrapping: word wrapping and charac-
ter wrapping. When word wrapping is performed, the line breaks always occur
between words, never in the middle of a word. When character wrapping is per-
formed, lines are broken between characters. You use the JTextArea class’s
setLineWrap method to turn line wrapping on. The method accepts a boolean
argument. If you pass true, then line wrapping is turned on. If you pass false,
line wrapping is turned off. You specify the style of line wrapping that you prefer
with the JTextArea class’s setWrapStyleWord method. This method accepts a
boolean argument. If you pass true, then the text area will perform word wrap-
ping. If you pass false, the text area will perform character wrapping.

 13.27 A Font object.

 13.28 The first argument is the name of a font. The second argument is an int that rep-
resents the style of the text. The third argument is the size of the text in points.

 13.29 It generates a change event.

 13.30 a) setMajorTickSpacing
b) setMinorTickSpacing
c) setPaintTicks
d) setPaintLabels

Chapter 14
 14.1 When a user accesses a Web page with his or her browser, any applet associated

with the Web page is transmitted to the user’s system. The applet is then executed
on the user’s system.

 14.2 To prevent malicious code from attacking or spying on unsuspecting users.

 14.3 <html> marks the beginning and </html> marks the end.

 14.4 <head></head>

 14.5 You would use: <title>My Web Page</title>
 This would go in the document head section.

 Chapter 14 J-27

 14.6 <body></body>

 14.7 <h1>Student Roster</h1>

 14.8 <center>My Resume</center>

 14.9 <i>Hello World</i>

 14.10 The
 tag causes a line break. The <p /> tag causes a paragraph break. The
<hr /> tag displays a horizontal rule.

 14.11 Click Here

 14.12 JApplet

 14.13 init

 14.14 Because the browser creates an instance of the class automatically.

 14.15 <applet code="MyApplet.class" width=400 height=200>

 14.16 Applet

 14.17 You simply add them to the Frame or Applet object. These classes have an add
method.

 14.18 You should override the paint method.

 14.19 You override the paintComponent method.

 14.20 These methods are automatically called when the component is first displayed and
are called again any time the component needs to be redisplayed.

 14.21 The superclass’s paint or paintComponent method should be called.

 14.22 Call the repaint method.

 14.23 A rectangle.

 14.24 The first array contains the X coordinates for each vertex, and the second array
contains the Y coordinates for each vertex.

 14.25 a) drawLine
b) fillRect
c) fillOval
d) fillArc
e) setColor

f) drawRect
g) drawOval
h) drawArc
i) drawString
j) setFont

 14.26 A mouse press event indicates that the mouse button was pressed. A mouse click
event indicates that the mouse button was pressed, and then released.

 14.27 To handle a mouse click event: MouseListener
 To handle a mouse press event: MouseListener
 To handle a mouse dragged event: MouseMotionListener
 To handle a mouse release event: MouseListener
 To handle a mouse move event: MouseMotionListener

http://java.sun.com

J-28 Appendix J Answers to Checkpoints

 14.28 They accept MouseEvent objects. The getX and getY methods return the mouse’s X
and Y coordinates.

 14.29 No, they cannot be left out. Empty definitions can be written, or an adapter class
can be used.

 14.30 An adapter class implements an interface and provides empty definitions for all of
the required methods. When you extend a class from an adapter class, it inherits
the empty methods. In your subclass, you can override the methods you want and
forget about the others.

 14.31 Action events

 14.32 In milliseconds.

 14.33 By calling its start method.

 14.34 By calling its stop method.

 14.35 The play method.

 14.36 The Applet class’s play method loads a sound file, plays it one time, and then
releases it for garbage collection. If you need to load a sound file to be played
multiple times, you should use an AudioClip object. An AudioClip object loads a
sound file and retains it in memory. It provides methods for playing, looping, and
stopping the audio play.

 14.37 The play method plays the sound file. The loop method plays the sound file
repeatedly. The stop method stops the sound file from playing.

 14.38 The getDocumentBase method returns a URL object containing the location of the
HTML file that invoked the applet. The getCodeBase method returns a URL
object containing the location of the applet’s .class file.

Chapter 15
 15.1 A GUI is a graphical window or a system of graphical windows presented by an

application for interaction with the user.

 15.2 JavaFX is a Java library for developing rich applications that employ graphics.

 15.3 An item in a GUI that presents data to the user and/or allows interaction with the
application.

 15.4 An event is an action that takes place within a program, such as the clicking of a
button. An event listener is a method that automatically executes when a specific
event occurs.

 15.5 A scene graph is a tree-like hierarchical data structure that is used to organize the
components in a JavaFX GUI.

 15.6 Root node, branch nodes, and leaf nodes

 15.7 The root node and branch nodes can have children. Leaf nodes cannot have
children.

 Chapter 16 J-29

 15.8 FXML is a markup language that describes the components in a JavaFX scene
graph.

 15.9 Scene Builder saves a GUI to an .FXML file.

 15.10 Library panel

 15.11 Content panel

 15.12 Hierarchy panel

 15.13 Inspector panel

 15.14 A name that identifies a component in the FXML file that you will generate when
you save your GUI.

 15.15 Loads the FXML file, builds the scene graph in memory, and displays the GUI.

 15.16 The controller class is responsible for handling events that occur while the appli-
cation is running.

 15.17 A method that automatically executes when a specific event occurs.

 15.18 Here are the steps:
	 	 •	 Select	the	root	node	in	the	Hierarchy	panel.
	 	 •	 Open	the	Code	section	of	the	Inspector	panel.
	 	 •	 	Near	the	top	of	the	Code	section,	you	will	see	a	dropdown	list	for	the	control-

ler class. Click the dropdown list and select the controller class.

 15.19 Here are the steps to register a Button component:
	 	 •	 Select	the	component	in	the	Hierarchy	panel.
	 	 •	 Open	the	Code	section	of	the	Inspector	panel.
	 	 •	 	In	the	Code	section,	you	will	see	a	dropdown	list	named	On	Action.	Click	the	

dropdown list and select the method. (In the list, the method name will begin
with a # character.)

 15.20 Radio buttons

 15.21 Check boxes

 15.22 A toggle group allows only one radio button in the group to be selected at a time.

 15.23 Radio buttons

 15.24 The Image property

 15.25 You call the ImageView component’s setImage method.

Chapter 16
 16.1 A recursive algorithm requires multiple method calls. Each method call requires

several actions to be performed by the JVM. These actions include allocating
memory for parameters and local variables, and storing the address of the pro-
gram location where control returns after the method terminates. All of these
actions are known as overhead. In an iterative algorithm, which uses a loop, such
overhead is unnecessary.

J-30 Appendix J Answers to Checkpoints

 16.2 A case in which the problem can be solved without recursion.

 16.3 Cases in which the problem is solved using recursion.

 16.4 When it reaches the base case.

 16.5 In direct recursion, a recursive method calls itself. In indirect recursion, method A
calls method B, which in turn calls method A.

Chapter 17
 17.1 Traditional text and binary files are not practical when a large amount of data

must be stored and manipulated. Many businesses keep hundreds of thousands, or
even millions, of data items in files. When a text or binary file contains this much
data, simple operations such as searching, inserting, and deleting become cumber-
some and inefficient.

 17.2 The DBMS handles the actual reading, writing, and searching of data. The Java
application programmer needs only to know how to communicate with the
DBMS.

 17.3 JDBC, or Java Database Connectivity

 17.4 SQL, or Structured Query Language

 17.5 A string listing the protocol that should be used to access a database, the name of
the database, and potentially other items

 17.6 jdbc:derby:InventoryDB

 17.7 DriverManager.getConnection

 17.8 The data that is stored in a table is organized into rows and columns. A row is a
complete set of information about a single item. The data that is stored in a row is
divided into columns. Each column is an individual piece of information about the
item.

 17.9 A primary key is a column that holds a unique value for each row, and can be
used to identify specific rows.

	17.10	 •	 int
	 	 •	 int
	 	 •	 float
	 	 •	 String
	 	 •	 String
	 	 •	 String
	 	 •	 double

 17.11 A ResultSet is an object that contains the results of an SQL statement.

 17.12 a) The table is Account.
b) The column is Id.

 17.13 a) SELECT * FROM Inventory
b) SELECT ProductID FROM Inventory

c) SELECT ProductID, QtyOnHand FROM Inventory
d) SELECT ProductID FROM Inventory
 WHERE Cost < 17.00
e) SELECT * FROM Inventory
 WHERE ProductID LIKE '%ZZ'

 17.14 The LIKE operator can be used in a search criterion to search for a string that con-
tains a pattern of characters.

 17.15 The % symbol represents any sequence of 0 or more characters. The underscore
character (_) represents only a single character.

 17.16 You use the ORDER BY clause.

 17.17 Connection conn = DriverManager.getConnection(DB_URL);
Statement stmt = conn.createStatement();
ResultSet result = stmt.executeQuery(sql);
stmt.close();
conn.close();

 17.18 You create a Statement object (Statement in an interface in java.sql), and you
pass a string containing the SELECT statement to the Statement object’s
executeQuery method.

 17.19 The cursor initially points before the first row. To move it forward you call the
ResultSet object’s next method.

 17.20 You call the ResultSet object’s getString method, passing 3 as an argument.

 17.21 INSERT INTO Coffee
 (Description, ProdNum, Price)
VALUES
 ('Eastern Blend', '30-001', 18.95)

 17.22 INSERT INTO Coffee
 (Description, ProdNum, Price)
VALUES
 ('Honduran Dark', '22-001', 8.65)

 17.23 UPDATE Coffee
SET Price = 4.95
WHERE Description Like '%Decaf%'

 17.24 DELETE FROM Coffee WHERE Description LIKE '%Decaf%'

 17.25 CREATE TABLE Book
(Publisher CHAR(25),
Author, CHAR(25),
Pages INTEGER,
Isbn CHAR(10))

 17.26 DROP TABLE Book

 Chapter 17 J-31

This page intentionally left blank

Chapter 1

Multiple Choice

 1. b

 3. a

 5. b

 7. c

 9. a

 11. a

 13. b

Find the Error

 1. The algorithm performs the math operation at the wrong time. It multiplies width by
length before getting values for those variables.

Algorithm Workbench

1. Display “What is the customer’s maximum amount of credit?”
 Input maxCredit.
 Display “What is the amount of credit used by the customer?”
 Input creditUsed.
 availableCredit 5 maxCredit 2 creditUsed.
 Display availableCredit.

3. Display “What is the account’s starting balance?”
 Input startingBalance.
 Display “What is the total amount of the deposits made?”
 Input deposits.

K-1

Answers to Odd-Numbered
Review Questions

A
P

P
E

N
D

IX

K

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

K-2 Appendix K Answers to Odd-Numbered Review Questions

 Display “What is the total amount of the withdrawals made?”
 Input withdrawals.
 Display “What is the monthly interest rate?”
 Input interestRate.
 balance 5 startingBalance 1 deposits 2 withdrawals.
 interest 5 balance * interestRate.
 balance 5 balance 1 interest.
 Display balance.

Predict the Result

 1. 7

Short Answer

 1. Main memory, or RAM, holds the sequences of instructions in the programs that
are running and the data those programs are using. Main memory, or RAM, is
usually volatile. Secondary storage is a type of memory that can hold data for
long periods of time—even when there is no power to the computer.

 3. An operating system is a set of programs that manages the computer’s hardware
devices and controls their processes. Windows and UNIX are examples of operat-
ing systems. Application software refers to programs that make the computer
 useful to the user. These programs solve specific problems or perform general
operations that satisfy the needs of the user. Word processing, spreadsheet, and
database packages are all examples of application software.

 5. Because machine language programs are streams of binary numbers, and high-
level language programs are made up of words.

 7. Syntax errors are mistakes that the programmer has made that violate the rules
of the programming language. Logical errors are mistakes that cause the program
to produce erroneous results.

 9. A program that translates source code into executable code.

 11. Because the browser executes them in a restricted environment.

 13. Machine language code is executed directly by the CPU. Byte code is executed by
the JVM.

 15. Object-oriented programming

 17. The object’s methods.

 19. No

 21. javac LabAssignment.java

 Chapter 2 K-3

Chapter 2

Multiple Choice and True/False

 1. c

 3. a

 5. a, c, and d

 7. c

 9. a

 11. b

 13. a

 15. a

 17. True

 19. True

 21. False

Predict the Output

 1. 0
100

 3. I am the incrediblecomputing
machine
and I will
amaze
you.

 5. 23
 1

Find the Error

	 •	 The	comment	symbols	in	the	first	line	are	reversed.	They	should	be	/* and */.

	 •	 The	word	class is missing in the second line. It should read
public class MyProgram.

	 •	 The	main header should not be terminated with a semicolon.

	 •	 The	fifth	line	should	have	a	left	brace,	not	a	right	brace.

	 •	 The	first	four	lines	inside	the	main method are missing their semicolons.

	 •	 The	comment	in	the	first	line	inside	the	main method should begin with forward
slashes (//), not backward slashes.

K-4 Appendix K Answers to Odd-Numbered Review Questions

	 •	 The	last	line	inside	the	main method, a call to println, uses a string literal, but the
literal is enclosed in single quotes. It should be enclosed in double quotes, like this:
"The value of c is".

	 •	 The	last	line	inside	the	main method passes C to println, but it should pass c
 (lowercase).

	 •	 The	class	is	missing	its	closing	brace.

Algorithm Workbench

 1. double temp, weight, age;

 3. a. b = a + 2;
b. a = b * 4;
c. b = a / 3.14;
d. a = b - 8;
e. c = 'K';
f. c = 66;

 5. a. 3.287E6
b. -9.7865E12
c. 7.65491E-3

 7. 10 20 1

 9. a

 11. int speed, time, distance;
speed = 20;
time = 10;
distance = speed * time;
System.out.println(distance);

 13. double income;
// Create a Scanner object for keyboard input.
Scanner keyboard = new Scanner(System.in);
// Ask the user to enter his or her desired income
System.out.print("Enter your desired annual income: ");
income = keyboard.nextDouble();

 15. total = (float)number;

Short Answer

 1. Multi-line style

 3. A self-documenting program is written in such a way that you get an understanding
of what the program is doing just by reading its code.

 5. The print and println methods are members of the out object. The out object is
a member of the System class. The System class is part of the Java API.

 7. You should always choose names for your variables that give an indication of
what they are used for. The rather nondescript name, x, gives no clue as to what
the variable’s purpose is.

 Chapter 3 K-5

 9. In both cases you are storing a value in a variable. An assignment statement can
appear anywhere in a program. An initialization, however, is part of a variable
declaration.

 11. Programming style refers to the way a programmer uses spaces, indentations, blank
lines, and punctuation characters to visually arrange a program’s source code.
An inconsistent programming style can create confusion for a person reading
the code.

 13. javadoc SalesAverage.java

Chapter 3

Multiple Choice and True/False

 1. b

 3. a

 5. c

 7. a

 9. a

 11. a

 13. c

 15. c

 17. True

 19. True

 21. True

Find the Error

 1. Each if clause is prematurely terminated by a semicolon.

 3. The conditionally executed blocks of code should be enclosed in braces.

 5. The ! operator is only applied to the variable x, not the expression. The code
should read:

if (!(x > 20))

 7. The statement should use the || operator instead of the && operator.

 9. The equalsIgnoreCase method should be used instead of the equals method.

Algorithm Workbench

 1. if (y == 0)
x = 100;

K-6 Appendix K Answers to Odd-Numbered Review Questions

 3. if (sales < 10000)
 commission = .10;
else if (sales <= 15000)
 commission = .15;
else
 commission = .20;

 5. if (amount1 > 10)
{
 if (amount2 < 100)
 {
 if (amount1 > amount2)
 {
 System.out.println(amount1);
 }
 else
 {
 System.out.println(amount2);
 }
 }
}

 7. if (temperature >= -50 && temperature <= 150)
 System.out.printn("The number is valid.");

 9. if (title1.compareTo(title2) < 0)
 System.out.println(title1 + " " + title2);
else
 System.out.println(title2 + " " + title1);

 11. C, A, B

 13. System.out.printf("%,.2f", number);

Short Answer

 1. Conditionally executed code is executed only under a condition, such as an
expression being true.

 3. By indenting the conditionally executed statements, you are causing them to stand
out visually. This is so you can tell at a glance what part of the program the if
statement executes.

 5. A flag is a boolean variable that signals when some condition exists in the program.
When the flag variable is set to false, it indicates the condition does not yet exist.
When the flag variable is set to true, it means the condition does exist.

 7. It takes two boolean expressions as operands and creates a boolean expression
that is true only when both subexpressions are true.

 9. They determine whether a specific relationship exists between two values. The
relationships are greater-than, less-than, equal-to, not equal-to, greater-than or
equal-to, and less-than or equal-to.

 Chapter 4 K-7

Chapter 4

Multiple Choice and True/False

 1. a

 3. c

 5. a

 7. b

 9. c

 11. a

 13. a

 15. d

 17. d

 19. True

 21. False

 23. False

 25. True

Find the Error

 1. The conditionally executed statements should be enclosed in a set of braces.
Also, the again variable should be initialized with either ‘y’ or ‘Y’.

 3. The expression being tested by the do-while loop should be choice == 1. Also,
the do-while loop must be terminated by a semicolon.

Algorithm Workbench

 1. Scanner keyboard = new Scanner(System.in);
int product = 0, num;
while (product < 100)
{
 num = keyboard.nextInt();
 product = num * 10;
}

 3. The following code simply prints the numbers, separated by spaces.

 for (int x = 0; x <= 1000; x += 10)
 System.out.print(x + " ");

 The following code prints the numbers separated by commas.

 for (int x = 0; x <= 1000; x += 10)
{
 if (x < 1000)

K-8 Appendix K Answers to Odd-Numbered Review Questions

 System.out.print(x + ", ");
 else
 System.out.print(x);
}

 5. double total = 0;
for (int num = 1, denom = 30; num <= 30; num++, denom--)
 total += num / denom;

 7. Scanner keyboard = new Scanner(System.in);
int x;
do
{
 System.out.print("Enter a number: ");
 x = keyboard.nextInt();
} while (x > 0);

 9. for (int count = 0; count > 50; count++)
 System.out.println("count is " + count);

 11. int number;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter a number in the range " +
 "of 1 through 4: ");
number = keyboard.nextInt();
while (number < 1 || number > 4)
{
 System.out.print("Invalid number. Enter a " +
 "number in the range " +
 "of 1 through 4: ");
 number = keyboard.nextInt();
}

 13. for (int r = 7; r > 0; r--)
{
 for (int c = 0; c < r; c++)
 {
 System.out.print("*");
 }
 System.out.println();
}

 15. import java.util.Random;
public class ReviewQuestion15
{
 public static void main(String[] args)
 {
 Random rand = new Random();
 System.out.println(rand.nextInt(10) + 1);
 }
}

 Chapter 4 K-9

 17. PrintWriter outFile = new PrintWriter("NumberList.txt");
for (int i = 1; i <= 100; i++)
 outFile.println(i);
outFile.close();

 19. File file = new File("NumberList.txt");
Scanner inFile = new Scanner(file);
String input;
int number, total = 0;
while (inFile.hasNext())
{
 input = inFile.nextLine();
 number = Integer.parseInt(input);
 total += number;
}
System.out.println("The total is " + total);
inFile.close();

Short Answer

 1. In postfix mode the operator is placed after the operand. In prefix mode
the operator is placed before the variable operand. Postfix mode causes the
increment or decrement operation to happen after the value of the variable
is used in the expression. Prefix mode causes the increment or decrement to
happen first.

 3. A pretest loop tests its test expression before each iteration. A posttest loop tests
its test expression after each iteration.

 5. The while loop is a pretest loop and the do-while loop is a posttest loop.

 7. The do-while loop.

 9. An accumulator is used to keep a running total of numbers. In a loop, a value
is usually added to the current value of the accumulator. If it is not properly
initialized, it will not contain the correct total.

 11. There are many possible examples. A program that asks the user to enter a
business’s daily sales for a number of days, and then displays the total sales is
one example.

 13. Sometimes the user has a list of input values that is very long, and doesn’t
know the number of items there are. When the sentinel value is entered, it
signals the end of the list, and the user doesn’t have to count the number of
items in the list.

 15. There are many possible examples. One example is a program that asks for the
average temperature for each month, for a period of five years. The outer loop
would iterate once for each year and the inner loop would iterate once for each
month.

 17. Closing a file writes any unsaved data remaining in the file buffer.

K-10 Appendix K Answers to Odd-Numbered Review Questions

 19. After the println method writes its data, it writes a newline character. The print
method does not write the newline character.

 21. The file does not exist.

 23. You create an instance of the FileWriter class to open the file. You pass the
name of the file (a string) as the constructor’s first argument, and the boolean
value true as the second argument. Then, when you create an instance of the
PrintWriter class, you pass a reference to the FileWriter object as an argument
to the PrintWriter constructor. The file will not be erased if it already exists and
new data will be written to the end of the file.

Chapter 5

Multiple Choice and True/False

 1. b

 3. a

 5. b

 7. b

 9. c

 11. True

 13. False

 15. True

 17. False

 19. False

Find the Error

 1. The header should not be terminated with a semicolon.

 3. The method should have a return statement that returns a double value.

Algorithm Workbench

 1. doSomething(25);

 3. The value 3 will be stored in a, 2 will be stored in b, and 1 will be stored in c.

 5. result = cube(4);

 7. public static double timesTen(double num)
{
 return num * 10.0;
}

 Chapter 6 K-11

 9. // Assume java.util.Scanner has been imported.
public static String getName()
{
 String name;
 Scanner keyboard = new Scanner(System.in);
 System.out.print("Enter your first name: ");
 name = keyboard.nextLine();
 return name;
}

Short Answer

 1. A large complex problem is broken down into smaller manageable pieces. Each
smaller piece of the problem is then solved.

 3. An argument is a value that is passed into a method when the method is called. A
parameter variable is a variable that is declared in the method header, and receives
the value of an argument when the method is called.

 5. When an argument is passed to a method, only a copy of the argument is passed.
The method cannot access the actual argument.

Chapter 6

Multiple Choice and True/False

 1. a

 3. d

 5. b

 7. d

 9. b

 11. c

 13. b

 15. True

 17. False

 19. False

Find the Error

 1. The constructor cannot have a return type, not even void.

 3. The parentheses are missing. The statement should read:

Rectangle box = new Rectangle();

 5. The square methods must have different parameter lists. Both accept an int.

K-12 Appendix K Answers to Odd-Numbered Review Questions

Algorithm Workbench

 1. a. UML diagram:

Pet

- name : String
- animal : String
- age : int

+ setName(n : String) : void
+ setAnimal(a : String) : void
+ setAge(a : int) : void
+ getName() : String
+ getAnimal() : String
+ getAge() : int

 b. Class code:

 public class Pet
 {
 private String name; // The pet's name
 private String animal; // The type of animal
 private int age; // The pet's age

 /**
 setName method
 @param n The pet's name.
 */
 public void setName(String n)
 {
 name = n;
 }

 /**
 setAnimal method
 @param a The type of animal.
 */

 public void setAnimal(String a)
 {
 animal = a;
 }

 /**
 setAge method
 @param a The pet's age.
 */

 public void setAge(int a)
 {
 age = a;
 }

 Chapter 6 K-13

 /**
 getName method
 @return The pet's name.
 */

 public String getName()
 {
 return name;
 }

 /**
 getAnimal method
 @return The type of animal.
 */

 public String getAnimal()
 {
 return animal;
 }

 /**
 getAge method
 @return The pet's age.
 */

 public int getAge()
 {
 return age;
 }
 }

 3. a. public Square()
 {
 sideLength = 0.0;
 }

 b. public Square(double s)
 {
 sideLength = s;
 }

Short Answer

 1. A class is a collection of programming statements that specify the attributes and
methods that a particular type of object may have. You should think of a class as
a “blueprint” that describes an object. An instance of a class is an actual object
that exists in memory.

 3. An accessor method is a method that gets a value from a class’s field but does not
change it. A mutator method is a method that stores a value in a field or in some
other way changes the value of a field.

 5. Methods that are members of the same class.

K-14 Appendix K Answers to Odd-Numbered Review Questions

 7. It looks in the current folder or directory for the file Customer.class. If that file
does not exist, the compiler searches for the file Customer.java and compiles it.
This creates the file Customer.class, which makes the Customer class available.
The same procedure is followed when the compiler searches for the Account class.

 9. If you do not write a constructor for a class, Java automatically provides one.

 11. By their signatures, which include the method name and the data types of the
method parameters, in the order that they appear.

Chapter 7

Multiple Choice and True/False

 1. b

 3. b

 5. c

 7. b

 9. d

 11. c

 13. a

 15. False

 17. True

 19. True

 21. False

 23. True

Find the Error

 1. The size declarator cannot be negative.

 3. The loop uses the values 1 through 10 as subscripts. It should use 0 through 9.

 5. A subscript should be used with words, such as words[0].toUpperCase().

Algorithm Workbench

 1. for (int i = 0; i < 20; i++)
 System.out.println(names[i]);

 3. a. String[] scientists = {"Einstein", "Newton",
 "Copernicus", "Kepler"};

 b. for (int i = 0; i < scientists.length; i++)
 System.out.println(scientists[i]);

 Chapter 7 K-15

 c. int total = 0;
 for (int i = 0; i < scientists.length; i++)
 total += scientists[i].length();
 System.out.println("The total length is " + total);

 5. a. // Define the arrays.
 int[] id = new int[10];
 double[] weeklyPay = new double[10];
b. // Display each employee's gross weekly pay.

 for (int i = 0; i < 10; i++)
 {
 System.out.println("The pay for employee " +
 id[i] + " is $" + weeklyPay[i]);

 }

 7. final int NUM_ROWS = 30;
final int NUM_COLS = 10;
int total = 0;
double average;
for (int row = 0; row < grades.length; row++)
{
 for (int col = 0; col < grades[row].length; col++)
 {
 total += grades[row][col];
 }
}
average = (double) total / (NUM_ROWS * NUM_COLS);

 9. double total = 0.0; // Accumulator
// Sum the values in the array.
for (int row = 0; row < 10; row++)
{
 for (int col = 0; col < 20; col++)
 total += values[row][col];
}

 11. // Create an ArrayList.
ArrayList<String> cars = new ArrayList<String>();
// Add three car names to the ArrayList.
cars.add("Porsche");
cars.add("BMW");
cars.add("Jaguar");
// Display the contents of cars.
for (String str : cars)
 System.out.println(str);

Short Answer

 1. The size declarator is used in a definition of an array to indicate the number of
elements the array will have. A subscript is used to access a specific element in
an array.

K-16 Appendix K Answers to Odd-Numbered Review Questions

 3. a. 2
b. 14
c. 8

 5. Because this statement merely makes array1 reference the same array that array2
references. Both variables will reference the same array. To copy the contents of
array2 to array1, the contents of array2’s individual elements will have to be
assigned to the elements of array1.

 7. It will have to read all 10,000 elements to find the value stored in the last element.

Chapter 8

Multiple Choice and True/False

 1. c

 3. a

 5. b

 7. d

 9. c

 11. b

 13. False

 15. False

 17. True

Find the Error

 1. The static method setValues cannot refer to the non-static fields x and y.

Algorithm Workbench

 1. a. public String toString()
 {
 String str;
 str = "Radius: " + radius + " Area: " + getArea();
 return str;
 }

 b. public boolean equals(Circle c)
 {
 boolean status;
 if (c.getRadius() == radius)
 status = true;
 else
 status = false;
 return status;
 }

 Chapter 9 K-17

 c. public boolean greaterThan(Circle c)
 {
 boolean status;
 if (c.getArea() > getArea())
 status = true;
 else
 status = false;
 return status;
 }

 3. enum Pet { DOG, CAT, BIRD, HAMSTER }

Short Answer

 1. Access a non-static member.

 3. When a variable is passed as an argument, a copy of the variable’s contents is
passed. The receiving method does not have access to the variable itself. When an
object is passed as an argument, a reference to the object (which is the object’s
address) is passed. This allows the receiving method to have access to the object.

 5. It means that an aggregate relationship exists. When an object of class B is a
 member of class A, it can be said that class A “has a” class B object.

 7. It is not advisable because it will allow access to the private fields. The exception
to this is when the field is a String object. This is because String objects are
immutable, meaning that they cannot be changed.

 9. a) Color
b) Color.RED, Color.ORANGE, Color.GREEN, Color.BLUE
c) Color myColor = Color.BLUE;

 11. When there are no references to it.

Chapter 9

Multiple Choice and True/False

 1. c

 3. a

 5. a

 7. b

 9. d

 11. a

 13. d

 15. False

 17. False

K-18 Appendix K Answers to Odd-Numbered Review Questions

 19. True

 21. True

 23. False

Find the Error

 1. The valueOf method is static. It should be called like this:

 str = String.valueOf(number);

 3. The very first character is at position 0, so the statement should read:

 str.setCharAt(0, 'Z');

Algorithm Workbench

 1. if (Character.toUpperCase(choice) == 'Y')

 or

 if (Character.toLowerCase(choice) == 'y')

 3. int total = 0;
for (int i = 0; i < str.length(); i++)
{
 if (Character.isDigit(str.charAt(i)))
 total++;
}

 5. public static boolean dotCom(String str)
{
 boolean status;
 if (str.endsWith(".com"))
 status = true;
 else
 status = false;
 return status;
}

 7. public static void upperT(StringBuilder str)
{
 for (int i = 0; i < str.length(); i++)
 {
 if (str.charAt(i) == 't')
 str.setCharAt(i, 'T');
 }
}

 9. if (d <= Integer.MAX_VALUE)
 i = (int) d;

 Chapter 10 K-19

Short Answer

 1. This will improve the program’s efficiency by reducing the number of String
objects that must be created and then removed by the garbage collector.

 3. Converts a number to a string.

Chapter 10

Multiple Choice and True/False

 1. b

 3. d

 5. a

 7. c

 9. a

 11. a

 13. c

 15. c

 17. c

 19. d

 21. c

 23. True

 25. False

 27. False

 29. True

 31. True

 33. True

Find the Error

 1. The Car class header should use the word extends instead of expands.

 3. Because the Vehicle class does not have a default constructor or a no-arg
constructor, the Car class constructor must call the Vehicle class constructor.

Algorithm Workbench

 1. public class Poodle extends Dog

 3. public abstract class B
{
 private int m;
 protected int n;

K-20 Appendix K Answers to Odd-Numbered Review Questions

 public void setM(int value)
 {
 m = value;
 }

 public void setN(int value)
 {
 n = value;
 }

 public int getM()
 {
 return m;
 }

 public int getN()
 {
 return n;
 }

 public abstract double calc();
}

public class D extends B
{
 private double q;
 protected double r;

 public void setQ(double value)
 {
 q = value;
 }

 public void setR(double value)
 {
 r = value;
 }

 public double getQ()
 {
 return q;
 }

 public double getR()
 {
 return r;
 }

 Chapter 11 K-21

 public double calc()
 {
 return q * r;
 }
}

 5. setValue(10);

 or

 super.setValue(10);

 7. public class Stereo extends SoundSystem
 implements CDPlayable,
 TunerPlayable,
 CassettePlayable

 9. Computable half = x -> x / 2;

Short Answer

 1. When an “is a” relationship exists between objects, it means that the specialized
object has all of the characteristics of the general object, plus additional character-
istics that make it special.

 3. Dog is the superclass and Pet is the subclass.

 5. No.

 7. Overloading is when a method has the same name as one or more other methods,
but a different parameter list. Although overloaded methods have the same name,
they have different signatures. When a method overrides another method, however,
they both have the same signature.

 9. At runtime.

 11. An abstract class is not instantiated itself, but serves as a superclass for other
classes. The abstract class represents the generic or abstract form of all the classes
that inherit from it.

 13. The class must implement an interface, or extend a superclass.

 15. An expression that creates an object that implements a functional interface.

Chapter 11

Multiple Choice and True/False

 1. b

 3. a

 5. b

 7. d

 9. c

 11. c

K-22 Appendix K Answers to Odd-Numbered Review Questions

 13. d

 15. c

 17. True

 19. False

 21. True

 23. False

Find the Error

 1. The try block must appear first.

 3. The catch (Exception e) statement and its block should appear after the other
catch blocks, because this is a more general exception than the others.

Algorithm Workbench

 1. B
D

 3. public static int arraySearch(int[] array, int value)
 throws Exception
{
 int i; // Loop control variable
 int element; // Element the value is found at
 boolean found; // Flag indicating search results

 // Element 0 is the starting point of the search.
 i = 0;

 // Store the default values element and found.
 element = -1;
 found = false;

 // Search the array.
 while (!found && i < array.length)
 {
 if (array[i] == value)
 {
 found = true;
 element = i;
 }
 i++;
 }
 if (element == -1)
 throw new Exception("Element not found.");
 else
 return element;
}

 Chapter 11 K-23

 5. public class NegativeNumber extends Exception
{
 /**
 No-arg constructor
 */

 public NegativeNumber()
 {
 super("Error: Negative number");
 }

 /**
 The following constructor accepts the number that
 caused the exception.
 @param n The number.
 */
 public NegativeNumber(int n)
 {
 super("Error: Negative number: " + n);
 }
}

 7. public int getValueFromFile() throws IOException, FileNotFoundException

 9. FileOutputStream fstream =
 new FileOutputStream("Configuration.dat");

 11. FileOutputStream outStream =
 new FileOutputStream("ObjectData.dat");
ObjectOutputStream objectOutputFile =
 new ObjectOutputStream(outStream);
objectOutputFile.writeObject(r);

Short Answer

 1. An exception object has been created in response to an error that has occurred.

 3. Control of the program is passed to the previous method in the call stack (that is,
the method that called the offending method). If that method cannot handle the
exception, then control is passed again, up the call stack, to the previous method.
This continues until control reaches the main method. If the main method does
not handle the exception, then the program is halted and the default exception
handler handles the exception.

 5. The first statement after that try/catch construct.

 7. Any object that inherits from the Throwable class.

 9. Unchecked exceptions are those that inherit from the Error class or the
RuntimeException class. You should not handle these exceptions because the
conditions that cause them can rarely be dealt with within the program. All
of the remaining exceptions (that is, those that do not inherit from Error or

K-24 Appendix K Answers to Odd-Numbered Review Questions

RuntimeException) are checked exceptions. These are the exceptions that you
should handle in your program.

 11. All of the data stored in a text file is formatted as text. Even numeric data is con-
verted to text when it is stored in a text file. You can view the data stored in a text file
by opening it with a text editor, such as Notepad. In a binary file, data is not format-
ted as text. Subsequently, you cannot view a binary file’s contents with a text editor.

 13. When an object is serialized it is converted to a series of bytes, which are written
to a file. When the object is deserialized, the series of bytes are converted back
into an object.

Chapter 12

Multiple Choice and True/False

 1. c

 3. c

 5. d

 7. b

 9. b

 11. a

 13. False

 15. True

 17. False

 19. False

Find the Error

 1. The x is missing in the package name. The statement should read:

import javax.swing.*;

 3. The arguments passed to the GridLayout constructor are reversed. This state-
ment creates 10 rows and 5 columns.

 5. You do not create an instance of BorderFactory. Instead you call one of its static
methods to create a Border object. The statement should read:

panel.setBorder(BorderFactory.createTitledBorder("Choices"));

Algorithm Workbench

 1. myWindow.setSize(500, 250);

 3. myWindow.setVisible(true);

 5. setLayout(new FlowLayout(FlowLayout.LEFT));

 7. panel.add(button, BorderLayout.WEST);

 9. panel.setBorder(BorderFactory.createLineBorder(Color.blue, 2));

 Chapter 13 K-25

Short Answer

 1. The window is hidden from view, but the application does not end.

 3. Radio buttons are normally used to select one of several possible items. Because
a mutually exclusive relationship usually exists between radio buttons, only one
of the items may be selected. Check boxes, which may appear alone or in groups,
allow the user to make yes/no or on/off selections. Because there is not usually a
mutually exclusive relationship between check boxes, the user can select any
 number of them when they appear in a group.

Chapter 13

Multiple Choice and True/False

 1. d

 3. b

 5. a

 7. c

 9. b

 11. c

 13. a

 15. b

 17. a

 19. b

 21. a

 23. False

 25. False

 27. True

 29. True

 31. True

 33. False

 35. True

Find the Error

 1. The argument false should have been passed to the setEditable method.

 3. You should pass list as an argument to the JScrollPane constructor:

 JScrollPane scrollPane = new JScrollPane(list);

K-26 Appendix K Answers to Odd-Numbered Review Questions

 5. The second statement should read:

label.setIcon(image);

 7. The statement should read:

JTextArea textArea = new JTextArea (5, 20);

Algorithm Workbench

 1. JTextField textField = new JTextField(20);
textField.setEditable(false);

 3. dayList.setVisibleRowCount(4);
JScrollPane scrollPane = new JScrollPane(dayList);

 5. selectionIndex = myComboBox.getSelectedIndex();

 7. ImageIcon image = new ImageIcon("picture.gif");
label.setIcon(image);

 9. JFileChooser fileChooser = new JFileChooser();
int status = fileChooser.showOpenDialog(null);
if (status == JFileChooser.APPROVE_OPTION)
{
 File selectedFile = fileChooser.getSelectedFile();
 String filename = selectedFile.getPath();
}

 11. // Create an Open menu item.
JMenuItem openItem = new JMenuItem("Open");
openItem.setMnemonic(KeyEvent.VK_O);
openItem.addActionListener(new OpenListener());

// Create a Print menu item.
JMenuItem printItem = new JMenuItem("Print");
printItem.setMnemonic(KeyEvent.VK_P);
printItem.addActionListener(new PrintListener());

// Create an Exit menu item.
JMenuItem exitItem = new JMenuItem("Exit");
exitItem.setMnemonic(KeyEvent.VK_X);
exitItem.addActionListener(new ExitListener());

// Create a JMenu object for the File menu.
JMenu fileMenu = new JMenu("File");
fileMenu.setMnemonic(KeyEvent.VK_F);

// Add the menu items to the File menu.
fileMenu.add(openItem);
fileMenu.add(printItem);
fileMenu.add(exitItem);

 Chapter 14 K-27

// Create the menu bar.
JMenuBar menuBar = new JMenuBar();

// Add the file menu to the menu bar.
menuBar.add(fileMenu);

// Set the window's menu bar.
setJMenuBar(menuBar);

Short Answer

 1. Single selection mode

 3. An uneditable combo box combines a button with a list, and allows the user to
select only items from its list. An editable combo box combines a text field and a
list. In addition to selecting items from the list, the user may also type input into
the text field. The default type of combo box is uneditable.

 5. A mnemonic is a key on the keyboard that you press in combination with the a

key to quickly access a component such as a button. When you assign a mne-
monic to a button, the user can click the button by holding down the a key and
pressing the mnemonic key.

 7. A tool tip is text that is displayed in a small box when the user holds the mouse
cursor over a component. The box usually gives a short description of what the
component does.

 9. The item is deselected, which causes the check mark to disappear. The checked
menu item component also generates an action event.

 11. Because, as the user moves the JSlider component’s knob, it will only take on
 values within its established range.

Chapter 14

Multiple Choice and True/False

 1. c

 3. b

 5. b

 7. d

 9. c

 11. a

 13. d

 15. c

 17. c

K-28 Appendix K Answers to Odd-Numbered Review Questions

 19. c

 21. b

 23. True

 25. True

 27. False

 29. True

 31. True

 33. False

 35. False

Find the Error

 1. The tag should specify the file MyApplet.class instead of MyApplet.java.

 3. Call repaint instead of paint.

 5. The class must provide all of the methods specified by the MouseListener
 interface.

Algorithm Workbench

 1. <center><h1>My Home Page</h1></center>

 3. Line 1: Change JFrame to JApplet
 Line 3: Change to public void init()
 Line 5: Delete
 Line 6: Delete
 Line 8: Delete
 Line 9: Delete
 Line 15: Delete
 Line 16: Delete
 Line 17: Delete

 5. private class MyMouseMotionListener extends MouseAdapter
{
 public void mouseMoved(MouseEvent e)
 {
 mouseMovements += 1;
 }
}

Short Answer

 1. It is executed by the user’s system.

 3. Applets are important because they can be used to extend the capabilities of a
Web page. Web pages are normally written in Hypertext Markup Language
(HTML). HTML is limited, however, because it merely describes the content and

 Chapter 15 K-29

layout of a Web page, and creates links to other files and Web pages. HTML does
not have sophisticated abilities such as performing math calculations and interact-
ing with the user. A programmer can write a Java applet to perform these types of
operations and associate it with a Web page.

 5. Some browsers, such as Microsoft Internet Explorer and older versions of
Netscape Navigator, do not directly support the Swing classes in applets. These
browsers require a plug-in in order to run applets that use Swing components. If
you are writing an applet for other people to run on their computers, there is no
guarantee that they will have the required plug-in. If this is the case, you should
use the AWT classes instead of the Swing classes for the components in your
applet.

 7. When the component is first displayed and is called again any time the component
needs to be redisplayed.

 9. If you want to load the sound file and keep it in memory so it can be played more
than once, or if you want to play the sound file repeatedly.

Chapter 15

Multiple Choice and True / False

 1. b

 3. a

 5. c

 7. c

 9. d

 11. b

 13. b

 15. c

 17. a

 19. True

 21. False

 23. False

 25. False

Find the Error

 1. The package names should begin with javafx instead of java. The import state-
ments should appear as follows:

import javafx.fxml.FXML;
import javafx.scene.control.Button;
import javafx.scene.control.Label;

K-30 Appendix K Answers to Odd-Numbered Review Questions

Algorithm Workbench

 1.
 1 import javafx.application.Application;
 2 import javafx.fxml.FXMLLoader;
 3 import javafx.scene.Parent;
 4 import javafx.scene.Scene;
 5 import javafx.stage.Stage;
 6
 7 public class MyGUI extends Application
 8 {
 9 public void start(Stage stage) throws Exception
 10 {
 11 // Load the FXML file.
 12 Parent parent = FXMLLoader.load(
 13 getClass().getResource("MyGUI.fxml"));
 14
 15 // Build the scene graph.
 16 Scene scene = new Scene(parent);
 17
 18 // Display our window, using the scene graph.
 19 stage.setTitle("This is My GUI");
 20 stage.setScene(scene);
 21 stage.show();
 22 }
 23
 24 public static void main(String[] args)
 25 {
 26 // Launch the application.
 27 launch(args);
 28 }
 29 }

 3. if (radio1.isSelected())
 outputLabel.setText("Selected");
 else
 outputLabel.setText("Not Selected");

Short Answer

 1. A scene graph is a tree-like hierarchical data structure that is used to organize the
components in a JavaFX GUI.

 3. FXML is a markup language that describes the components in a JavaFX scene graph.

 5. The main application class loads the FXML file, builds the scene graph in mem-
ory, and displays the GUI.

 7. A method that automatically executes when a specific event occurs.

 9. So only one of the RadioButtons in the group can be selected at a time.

 Chapter 16 K-31

Chapter 16

Multiple Choice and True/False

 1. b

 3. d

 5. d

 7. True

 9. False

Find the Error

 1. The recursive method, myMethod, has no base case. So, it has no way of stopping.

Algorithm Workbench

 1. public static void main(String [] args)
{
 String str = "test string";
 display(str, 0);
}

public static void display(String str, int pos)
{
 if (pos < str.length())
 {
 System.out.print(str.charAt(pos));
 display(str, pos + 1);
 }
}

 3. 10

 5. 55

 7. public static int factorial(int num)
{
 int fac = 1;
 for (int i = 1; i <=num; i++)
 {
 fac = fac * i;
 }
 return fac;
}

Short Answer

 1. An iterative algorithm uses a loop to solve the problem, while a recursive algo-
rithm uses a method that calls itself.

K-32 Appendix K Answers to Odd-Numbered Review Questions

 3. For Question 3 the base case is reached when arg is equal to 10. For Question 4
the base case is also reached when arg is equal to 10. For Question 5 the base case
is reached when num is less than or equal to 0.

 5. Recursive algorithms are usually less efficient than iterative algorithms. This is
because a method call requires several actions to be performed by the JVM, such
as allocating memory for parameters and local variables, and storing the address
of the program location where control returns after the method terminates.

 7. The value of an argument is usually reduced.

Chapter 17

Multiple Choice and True/False

 1. b

 3. a

 5. d

 7. b

 9. a

 11. c

 13. b

 15. d

 17. c

 19. True

 21. False

 23. False

Find the Error

 1. The string “French Roast Dark” should be enclosed in single quotes instead of
double quotes.

 3. The last statement should call the executeQuery method instead of the execute
method.

Algorithm Workbench

 1. • INTEGER or INT
 • REAL

 • CHARACTER(n) or CHAR(n) or VARCHAR(n)
 • DOUBLE

 3. SELECT * FROM Stock

 5. SELECT TradingSymbol, NumShares FROM Stock

 7. SELECT * FROM Stock
WHERE TradingSymbol LIKE 'SU%'

 9. SELECT TradingSymbol, NumShares FROM Stock
WHERE SellingPrice > PurchasePrice AND
NumShares > 100
ORDER BY NumShares

 11. UPDATE Stock
SET TradingSymbol = 'ABC'
WHERE TradingSymbol = 'XYZ'

 13. Connection conn = DriverManager.getConnection(DB_URL);

 15. ResultSet result = stmt.executeQuery(sqlStatement);

 17. CREATE TABLE Car
(Manufacturer CHAR(25),
 Year INTEGER,
 VehicleID CHAR(20))

Short Answer

 1. Traditional text and binary files are not practical when a large amount of data
must be stored and manipulated. Many businesses keep hundreds of thousands, or
even millions, of data items in files. When a text or binary file contains this much
data, simple operations such as searching, inserting, and deleting become cumber-
some and inefficient.

 3. The data that is stored in a database is organized into one or more tables. Each
table holds a collection of related data. The data that is stored in a table is then
organized into rows and columns. A row is a complete set of information about a
single item. The data that is stored in a row is divided into columns. Each column
is an individual piece of information about the item.

 5. A result set is an object that is somewhat similar to a collection, and contains the
results of an SQL statement.

 7. The first row is row 1. The first column is column 1.

 9. A foreign key is a column in one table that references a primary key in another
table.

 Chapter 17 K-33

This page intentionally left blank

Alice is an innovative software system that allows you to create 3D animations and computer
games while learning fundamental programming concepts. With Alice you place graphical
objects such as people, animals, buildings, cars, and so on inside 3D virtual worlds. Then
you create programming statements that make the objects perform actions. Alice’s drag-
and-drop program editor makes it easy to create animations with rich interactions between
objects.

This appendix serves as a quick reference for using Alice versions 2.0 or 2.2. If you need a
complete text that teaches programming using the Alice software, see Starting Out with
Alice: A Visual Introduction to Programming, also published by Pearson Addison-Wesley.

Downloading and Installing Alice
Alice is free software, available from Carnegie Mellon University. You can download the
latest version from http://www.alice.org. When you download Alice 2.2 to your system, you
get a file named Alice2.2.zip. There is no installation wizard with Alice; you simply extract
the contents of this file in the location where you want to install the software.

When you extract the contents of Alice2.2.zip you will get a folder named Alice2.2. Inside
this folder you will find an executable file named Alice.exe. Double-click this file to run Alice.

Getting Started with Alice

A
P

P
E

N
D

IX

L

TIp: You will probably want to create a shortcut to the Alice.exe file on your desktop.
Right-click the file and then select Send–ToDesktop (create shortcut) from the menu.
To start Alice double-click the shortcut that appears on the desktop.

Using the Welcome to Alice! Dialog Box
When you start Alice the splash screen shown in Figure L-1 will display for a few seconds.
When the software is fully loaded you should see the Welcome to Alice! dialog box, as
shown in Figure L-2.

L-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

http://www.alice.org

L-2 Appendix L Getting Started with Alice

Figure L-1 The Alice splash screen

Figure L-2 The Welcome to Alice! dialog box

NoTe: If you do not see the Welcome to Alice! dialog box on your system, then Alice
has been configured so it will not display the dialog box at startup, which might be the
case in a shared computer lab. You can display the dialog box by clicking File on the menu
bar, and then clicking the New World or Open World… menu item.

Note that at the bottom of the Welcome to Alice! dialog box there is a Show this dialog
at start check box. Make sure this check box is checked so the dialog box will be dis-
played each time you start Alice.

 The Alice Environment L-3

Near the top of the Welcome to Alice! dialog box you will see a set of tabs labeled Tutorial,
Recent Worlds, Templates, Examples, and Open a world. The following are brief descrip-
tions of what you get when you click these tabs:

Tutorial—Click this tab and you will see a set of four Alice worlds that work as tutorials.
These tutorial worlds guide you through the basic features of Alice. If you want to run the
tutorials, click the Start the Tutorial button to execute them in order, or select and open any
of the worlds individually.

Recent Worlds—Click this tab and you will see thumbnail images of the worlds that were
most recently opened on your system. You can quickly open any world shown in this tab by
selecting its thumbnail image and then clicking the Open button. You will not see any
worlds listed here if you have not yet opened any worlds.

Templates—Click this tab and you will see a set of templates that you can use to create a
new world. The templates are named dirt, grass, sand, snow, space, and water. Each tem-
plate gives you a ground surface and a sky color.

Examples—Click this tab and you will see thumbnail images of example worlds that have
been created by the developers of Alice.

Open a world—Click this tab and you will see a dialog box that allows you to open an Alice
world. With this tab you can browse your local system or any attached network drive for
Alice worlds. Note that Alice worlds are saved in files that end with the .a2w extension. (The
.a2w extension signifies that the file contains an Alice version 2.0 or 2.2 world.)

The Alice environment
In Alice the screen that you work with is referred to as the Alice environment. The Alice
environment is divided into the following areas: the Toolbar, the World View Window, the
Object Tree, the Details Panel, the Method Editor, and the Events Editor. In addition, the
toolbar area provides a trashcan icon and one or more clipboard icons. The locations of
these different areas and icons are shown in Figure L-3. In the figure, SnowLove, one of the
example worlds, is opened. Brief descriptions of each area in the Alice environment follow:

Toolbar—The toolbar provides a Play button that plays your virtual world, an Undo but-
ton that undoes the previous operation, and a Redo button that repeats the operation that
was most recently undone.

Trashcan—Next to the buttons on the toolbar there is a trashcan icon. You delete items by
dragging them to the trashcan.

Clipboards—The clipboard provides a place to store a copy of something. In Alice clip-
boards you can store copies of objects, instructions, methods, and events. To store a copy of
an item in a clipboard, you click and drag the item to the clipboard. When a clipboard con-
tains an item, it appears as if it has a white sheet of paper on it. To paste the item that is
stored in a clipboard, you click and drag the clipboard icon to the location where you want
to paste the item. If you want to empty a clipboard, you click and drag it to the trashcan.

L-4 Appendix L Getting Started with Alice

By default, Alice shows only one clipboard. To change the number of available clipboards
you click the Edit menu and then click Preferences. On the dialog box that appears, you
click the Seldom Used tab and then change the number that appears next to number of
clipboards.

World View Window—The World View Window shows a view of your virtual world. Each
virtual world has a camera; the World View Window acts as the camera’s viewfinder and
also provides controls for moving and rotating the camera.

Object Tree—The Object Tree holds a list of all the objects in the world. Each object in the
world is represented by a tile, which is simply a small rectangular icon. Tiles are used exten-
sively in the Alice environment to represent numerous things.

Details Panel—The Details Panel shows detailed information about an object that has been
selected in the World View Window or in the Object Tree.

Method Editor—The Method Editor is where you create methods (a set of instructions
that causes some action to take place). You create methods by arranging tiles in the Method
Editor.

Events Editor—An event is some action that takes place while the world is playing, such as
clicking the mouse or pressing a key. Alice is able to detect when various events take place.
You can use the Events Editor to specify an action that is to take place when a specific
event occurs.

Object tree

Details panel

World View window Events Editor

Method Editor

Toolbar

Trashcan

Clipboard

Figure L-3 Parts of the Alice environment

 Playing a World L-5

playing a World
When you click the Play button, a separate World Running… window appears and the
world’s animation will play out in that window. For example, Figure L-4 shows the Snow-
Love example world playing.

Figure L-4 The SnowLove world playing

Notice the toolbar at the top of the World Running… window. The following are brief
descriptions of the items that appear on the toolbar:

Speed Slider Control—This controls the speed at which the world is played. When the
slider is set to 1×, the world plays at normal speed. Moving the slider to the right increases
the speed up to 10 times its normal speed.

Pause Button—Clicking the Pause button causes the world to pause.

Play Button—Once a world has been paused with the Pause button, you can click the Play
button to resume playing.

Restart Button—Clicking the Restart button causes the world to start playing again.

Stop Button—Clicking the Stop button causes the world to stop playing and closes the
World Running… window.

Take Picture Button—Clicking the Take Picture button captures an image from the world
and saves it in a file. The dialog box that appears when you click the Take Picture button
reports the name and path of the file containing the image.

L-6 Appendix L Getting Started with Alice

Creating a New World and Adding objects to It
To create a new world, you click File on the menu bar and then click the New World… menu
item. This displays the Welcome to Alice! dialog box, as shown in Figure L-2. (By default,
this dialog box is also displayed when you start Alice.) Make sure the Templates tab is
selected, as shown in Figure L-5.

The Templates tab shows a set of templates named dirt, grass, sand, snow, space, and water
that you can use to create a new world. When you select a template from this dialog box
and then click the Open button, Alice will create a ground surface and set the color of the sky.
For example, Figure L-6 shows a world that was created with the sand template.

Figure L-5 The Welcome to Alice! dialog box

Figure L-6 shows the Add Objects button just below the World View Window. When you
click this button the Alice environment changes to scene editor mode and opens a gallery, as
shown in Figure L-7. A gallery is an assortment of different types of objects and is organized
into various collections of objects such as animals, buildings, furniture, and people.

Alice provides two galleries: a local gallery and a Web gallery. The local gallery is stored on
your computer and is installed with the Alice software. It provides a good sampling of object
types and should be adequate for many of your projects. The Web gallery is maintained by
the creators of Alice and may be accessed if your computer is connected to the Internet. It
provides a much more extensive collection of object types than the local gallery.

 Creating a New World and Adding Objects to It L-7

Click the Add Objects button
to add objects to the world.

Figure L-6 A world created with the sand template

The navigation bar
indicates we are

in the local gallery.

The collections
in the gallery

are shown here.

Figure L-7 Alice in scene editor mode

L-8 Appendix L Getting Started with Alice

Figure L-7 points out a navigation bar that indicates which gallery and collection is cur-
rently displayed. Below the navigation bar are thumbnail images for the collections in the
gallery. To open a collection and see the object types it contains, you click the collection’s
thumbnail image. For example, one of the collections is named People. It contains various
types of people objects, as shown in Figure L-8.

Figure L-8 Some of the object types in the People collection

One way to add an object to the world is to click the thumbnail for that object type. You
will then see an information window for the object. For example, if you click the thumbnail
for the Coach object type, you will see the information window shown, as shown in Figure
L-9. Click the Add instance to world button to add an object of this type to the world.

Figure L-9 Information window for the Coach object type

Another way to add an object to the world is to click and drag the thumbnail for the object
type into the World View Window. When you release the mouse button (with the mouse
pointer inside the World View Window) an object will be created.

After you add an object to a world, you should see a tile for the object in the Object Tree, as
shown in Figure L-10. Each object in a world has a name, and the object’s tile will show the
name that Alice assigned to the object. You can rename the object by right-clicking its tile
and then selecting rename on the menu that appears.

 Moving the Camera in the Alice Environment L-9

Moving the Camera in the Alice environment
The three camera controls shown in Figure L-11 appear just below the World View Window.
You use these controls to move the camera around in the world and point it in different
directions. The control on the left moves the camera up, down, left, and right. The control
in the center moves the camera forward and backward, and rotates the camera left and
right. The control on the right tilts the camera up and down.

An object is added to the world.

A tile representing
the object is added
to the Object Tree.

Figure L-10 An object is added to the world

This control moves the
camera forward and backward,

and rotates it left and right.

This control moves
the camera up, down,

left, and right.

This control tilts
the camera up

and down.

Figure L-11 Camera controls

Notice that each of the controls shows a set of arrows. You manipulate these controls by
clicking and dragging the arrow that points in the direction that you want to move, rotate,
or tilt the camera. You can make the camera move faster by dragging the mouse pointer
away from the center of the camera control. The farther you drag the pointer away from the
center of the camera control, the faster the camera will move.

L-10 Appendix L Getting Started with Alice

Selecting objects
To work with an object in the Alice environment, often you first have to select the object.
The following are the ways to select an object:

•	 Click	its	tile	in	the	Object	Tree
•	 Click	the	object	in	the	World	View	Window

When you select an object, a box appears around it in the World View Window, as shown
in Figure L-12. (On your screen the box will be yellow.) This bounding box indicates that
the object is selected. Also, the object’s tile in the Object Tree will appear highlighted, as
shown in the figure.

Figure L-12 The coach object is selected

object Subparts

Objects are commonly made of other objects, which are referred to as subparts. When a plus
sign appears next to an object tile in the Object Tree, it means that the object is made of
subparts. For example, look at the Object Tree shown in Figure L-12 and notice that a plus
sign appears next to the tile for the coach object. You can click the plus sign next to an
object to expand the tree and see the tiles for the subparts. The plus sign then turns into a
minus sign, which hides the inner objects when clicked.

Figure L-13 shows the Object Tree expanded to reveal that the coach object is composed of
numerous subparts. One of these subparts, the head, is selected.

properties
Each object in an Alice world has properties, which are values that specify the object’s char-
acteristics. Once you have placed an object in an Alice world, you can adjust its properties
until it has the characteristics you desire. To change an object’s property you perform the
following steps:

•	 Select	the	object
•	 In	the	Details	Panel	select	the	properties tab, as shown in Figure L-14
•	 Change	 the	value	of	 the	desired	property	 (to	change	a	property’s	value,	click	 the	

 down-arrow that appears next to the property’s value)

 Primitive Methods L-11

primitive Methods
A method is a set of instructions that causes some action to take place. In Alice all objects
have a common set of built-in methods for performing basic actions. These methods, which
are known as primitive methods, cause objects to move, turn, change size, and do other
fundamental operations.

While you are creating an Alice world you can immediately execute an object’s primitive
methods by right-clicking the object in the World View Window or the object’s tile in the
Object Tree. Then you select methods from the menu that appears. Another menu appears
showing a list of methods that you can immediately execute in the World View Window.
Figure L-15 shows an example of these menus. Table L-1 describes each of the primitive
methods shown on the menu.

This subpart
is selected.

Figure L-13 An object subpart selected

Figure L-14 Properties displayed in the Details Panel

L-12 Appendix L Getting Started with Alice

Figure L-15 Selecting a primitive method

Table L-1 Primitive methods

Method Name Description

move This method causes the object to move up, down, left, right, forward,
or backward. You specify the direction and distance that you want
the object to move.

turn This method causes the object to turn toward the left, right, forward,
or backward. You specify the amount you want the object to turn in
revolutions.

roll This method causes the object to roll toward the left or the right.
You specify the amount you want the object to roll in revolutions.

resize This method changes the object’s size by a specified amount.

say This method causes a cartoon-like speech bubble containing a
 message to be displayed, as if the object were saying the message.

think This method causes a cartoon-like thought bubble containing words
to be displayed, as if the object were thinking the words.

play sound This method plays a sound. You can specify one of the sounds that
Alice provides or you can import any MP3 or WAV file.

(table continues next page)

 Primitive Methods L-13

Method Name Description

move to This method causes the object to move to another object. When the
method completes, both objects’ center points will be in the same
location.

move toward This method causes the object to move in the direction of another
object. You specify the distance to move in meters.

move away from This method causes the object to move away from another object.
You specify the distance to move in meters.

orient to This method orients the object in the same direction as another
specified object. When this method executes the object will turn so
its up, right, and forward axes are aligned with the axes of the
specified object.

turn to face This method causes the object to turn so it is facing another object.

point at This method is similar to the turn to face method, except the
object will be tilted so its forward axis is “aiming” at the specified
object’s center point.

set point of view to This method sets the object’s point of view to that of another object.
It is commonly used with the camera to move it to the location of
another object, and give a view from that object’s point of view.

set pose Alice allows you to position an object and its subparts in a certain
way and then capture that as a pose. This method causes the object
to assume a pose that was previously captured.

stand up This method makes the object “stand up” by aligning the object’s up
axis with the world’s up axis.

set color to This method sets the object’s color property to a specified color,
making the object appear in that color.

set opacity to This method sets the object’s opacity property, which determines
the object’s transparency. You set this property to some value
between 0 percent and 100 percent, where 0 is completely invisible
and 100 is completely opaque.

set vehicle to This method sets the object’s vehicle property. The vehicle property
couples the object with another object. When the other object moves,
this object moves with it.

set skin texture to This method sets the object’s skin texture property. The skin
texture property specifies a graphic image to be displayed on the
object.

set fillingStyle to The fillingStyle property determines how the object is displayed.
It has three settings: solid, wireframe, and points. The default setting
is solid, which causes the object to be displayed as a solid. When the
fillingStyle property is set to wireframe, the object is displayed as
a wire skeleton that you can see through. When the fillingStyle
property is set to points, the object is displayed as a set of points.

Table L-1 Primitive methods (continued)

L-14 Appendix L Getting Started with Alice

Most of the primitive methods require that you specify additional pieces of information. For
example, the move method causes the object to move, and it requires that you specify two
pieces of information: a direction and an amount. These pieces of information are known as
arguments—pieces of information that a method requires in order for it to execute.

Deleting objects
You can delete an object in an Alice world by performing any of the following operations:

•	 Right-click	the	object	 in	the	World	View	Window	and	then	select	delete	from	the	
menu that appears

•	 Right-click	the	object’s	tile	in	the	Object	Tree	and	then	select	delete	from	the	menu	
that appears

•	 Click	and	drag	the	object’s	tile	from	the	Object	Tree	to	the	trashcan

Modifying objects in Scene editor Mode
When you click the Add Objects button, which appears below the World View Window,
Alice goes into scene editor mode, in which you can use the mouse to modify the objects in
your Alice world. For example, you can use the mouse to move objects, resize objects, rotate
objects, and copy objects. Figure L-16 shows the location of the mouse mode buttons, which
determine the action that can be performed with the mouse.

Mouse mode
buttons

Figure L-16 Location of the mouse mode buttons

 Modifying Objects in Scene Editor Mode L-15

Figure L-17 shows the purposes of the buttons. The following are brief descriptions of each:

Move Freely—When this button is selected the mouse can be used to move an object
freely in the world. Here are the actions that you can perform:
– To move an object horizontally within the world you simply click and drag it
– To move an object straight up or down, you hold down the s key while clicking

and dragging the object
– To rotate an object left or right, you hold down the ∏ key while clicking and

dragging the object
– To tumble an object (rotate it left, right, forward, backward, or any combination

of these directions), you hold down the ∏ and s keys while clicking and
dragging the object

Move Up and Down—When this button is selected you can move an object straight
up or straight down by clicking and dragging the object.

Turn Left and Right—When this button is selected you can rotate an object toward
the left or the right by clicking and dragging the object.

Turn Forward and Backward—When this button is selected you can rotate an object
forward or backward by clicking and dragging the object.

Tumble—When this button is selected you can tumble an object by clicking and drag-
ging the object. This means you can rotate the object right, left, forward, backward, or
in any combination of these directions.

Resize—When this button is selected you can make an object larger or smaller by
clicking and dragging the object.

Copy—When this button is selected you can make a copy of an object by clicking the
object.

Move
freely

Turn left
and right Tumble

Copy

Turn forward
and backward

Move up
and down

Resize
When this is checked

you can modify an
object that is a subpart

of another object.

Figure L-17 The purposes of the mouse mode buttons

L-16 Appendix L Getting Started with Alice

Notice that just below the buttons a check box labeled affect subparts appears. By default,
this is not checked. When it is not checked the modifications that you make to an object
using the mouse mode buttons are applied to the entire object. However, if you check the
affect subparts check box, the modifications are applied only to one of the object’s subparts.

Single View and Quad View Modes
When Alice is in scene editor mode, you can switch the display of the world between single
view mode and quad view mode. So far we have been using single view mode, which is the
default display mode. In single view mode you have one view of the world—the World View
Window. In quad view mode you have four views of the world: the World View Window, a
view from the top, a view from the right, and a view from the front. Figure L-18 shows an
example of these views and points out the quad view button, which you click to switch to
quad view mode.

You can use the mouse to modify objects in any of the views. If you look carefully at the
mouse mode buttons while in quad view mode, you’ll notice that the Move Up and Down
button no longer appears because the right and front viewing windows support up and
down movement. If you want to move an object up or down while in quad view mode, you
simply select the Move Objects Freely button and then move the object up or down in either
the right view or the front view.

You will also notice that two new buttons appear while in quad view mode: The Scroll
View button and the Zoom button . Often, when you switch to quad view mode the
objects in the world will not be fully visible in all of the views. To remedy this you can use
the Scroll View button to scroll the top, right, or front view. To use the button, follow
these steps:

Click here to switch to quad view.

Figure L-18 Quad view

 Writing Methods in Alice L-17

 1. Select the Scroll View button; the mouse pointer changes into a hand tool
 2. Move the mouse pointer into the view you wish to scroll
 3. Click and drag the view in the direction you wish to scroll

The Zoom button allows you to zoom into or out of the top, right, and front views. To use
it, follow these steps:

 1. Select the Zoom button; the mouse pointer changes into a zoom tool
 2. Move the mouse pointer into the desired view and position it over the point that you

wish to zoom into or zoom out from
 3. Zoom by clicking and dragging; if you want to zoom in, drag down or to the right; if

you want to zoom out, drag up or to the left

Writing Methods in Alice
Recall that a method is a set of instructions that causes some action to take place. If you
want an action to take place when an Alice world is played, you have to write a method.
Figure L-19 shows the location of the Method Editor in the Alice environment, where you
write the methods that perform actions in an Alice world.

Method Editor

Method name

Figure L-19 The Method Editor

Notice that a world.my first method tab appears at the top of the Method Editor in Figure
L-19. All methods have a name, and world.my first method is the name of the method that

L-18 Appendix L Getting Started with Alice

is currently open in the editor. When you create a new world Alice automatically creates an
empty method named world.my first method. By default, this method is automatically
executed when you play the world.

In Figure L-19 notice that a group of tiles appears at the bottom of the Method Editor. Each
of these tiles is an instruction that you can place in the method. Table L-2 describes the
instructions represented by these tiles.

Table L-2 Alice instructions

Instruction Description

Do in order You place other instructions inside a Do in order instruction. The
instructions that you place inside a Do in order instruction are executed
in the order that they appear.

Do together You place other instructions inside a Do together instruction. The
instructions that you place inside a Do together instruction are executed
simultaneously.

If/Else The If/Else instruction tests a condition, which is anything that gives
a true or false value. If the value is true, then one set of instructions is
executed. If the value is false, then a different set of instructions is
executed.

Loop The Loop instruction causes one or more other instructions to repeat a
specific number of times.

While The While instruction causes one or more other instructions to repeat
as long as a condition is true.

For all in order The For all in order instruction steps through the items in a list, one
item at a time, performing the same operation on each item.

For all together The For all together instruction performs the same operation on all
the items in a list simultaneously.

Wait The Wait instruction causes the method to pause for a specified number
of seconds.

print The print instruction displays a message in a special area at the bottom
of the World Running… window.

// The // tile allows you to insert a comment into a method.

In Alice you place instructions in a method by dragging tiles into the Method Editor. For
example, if you want to place a Wait instruction in the method that you are currently writ-
ing, you simply click and drag the Wait tile into the Method Editor, as shown in Figure L-20.
When you drop the tile (by releasing the mouse button) the Wait instruction will be created
in the method.

In addition to using the instructions that you see at the bottom of the Method Editor, you
can also create instructions that execute an object’s primitive methods. Once you have added
an object to a world, you can see tiles for all of the methods that the object can perform by
doing the following:

 Writing Methods in Alice L-19

 1. Select the object
 2. In the Details Panel select the methods tab to display a set of tiles representing the

object’s methods

Figure L-20 Dragging the Wait instruction into the Method Editor

For example, Figure L-21 shows an Alice world with an instance of the Hare class (which is
in the Animals collection). The object, which is named hare, is selected. The methods tab
is selected in the Details Panel, and a set of tiles for the hare object’s primitive methods is
displayed.

Select the
methods tab.

These tiles represent
the methods that the

object can perform.

Figure L-21 Methods displayed in the Details Panel

To create an instruction that executes a primitive method in the method that you are cur-
rently writing, simply drag the primitive method’s tile and drop it into the Method Editor.

L-20 Appendix L Getting Started with Alice

For example, Figure L-22 shows tile for the hare object’s move method being dragged into
the Method Editor.

Figure L-22 Dragging the hare.move method tile into the Method Editor

Most of the primitive methods require that you specify arguments. For example, when you
drop the tile for the move method into the Method Editor, a pop-up menu appears allowing
you to select a direction. The allowable directions are up, down, left, right, forward, and
backward. After you select a direction, another menu appears, allowing you to select an
amount, which is the distance that the object moves. In Alice distances are always measured
in meters.

Figure L-23 shows an example of world.my first method after three instructions have been
created. When the world containing this method is played, the hare object will move up
1 meter, then turn left 1 revolution, and then move down 1 meter.

First, the hare moves up 1 meter.

Second, the hare turns left 1 revolution.

Third, the hare moves down 1 meter.

Figure L-23 Three instruction tiles

 Creating Methods L-21

Copying and Deleting Instructions
To make a copy of an instruction tile within the same method, you right-click the tile and
then select make copy from the menu that appears. To copy an instruction so that you can
paste it into a different method, you drag the instruction to the clipboard. Then you open
the method that you want to paste the instruction into, and click and drag the clipboard
icon to the location where you want to paste the instruction. To delete an instruction tile
that you have created in the Method Editor, you drag the tile to the trashcan.

Creating Methods
When you first create an Alice world, a method named world.my first method is auto-
matically created in the world object. You are not limited to this one method in the world,
however. Follow these steps to create a new method in the world:

 1. Select the world object in the Object Tree.
 2. In the Details Panel, under the methods tab, click the create new method button, as

shown in Figure L-24.
 3. A dialog box will appear asking for the new method’s name. Enter a name in the dia-

log box and click the OK button. A tile for the new method will appear in the Details
Panel, above the create new method button. For example, the Details Panel in Figure
L-25 shows three world-level methods.

 4. Create the instructions for the method in the Method Editor.

Click here to create
a new method.

Figure L-24 The create new method button

World-level methods

Figure L-25 An example of a world with three world-level methods

L-22 Appendix L Getting Started with Alice

Once you have created the new method, you can call it from other methods by dragging the
new method’s tile from the Details Panel into the Method Editor and dropping it at the
point where you wish to call the method.

You can also create your own custom methods in the objects that you place in your world.
In Alice the methods that are part of an object are referred to as class-level methods. If an
object doesn’t provide all of the methods that you need, you can easily add your own meth-
ods for that object. You write custom class-level methods in Alice by following these steps:

 1. Create the desired object.
 2. Select the object.
 3. In the Details Panel, under the methods tab, click the create new method button.
 4. A dialog box will appear asking for the new method’s name. Enter a name in the dia-

log box and click the OK button. A tile for the new method will appear in the Details
Panel, above the create new method button.

 5. Create the instructions for the method in the Method Editor.

Once you have created the new method, you can call it from other methods in the usual
way: by dragging the new method’s tile into the Method Editor and dropping it at the point
where you wish to call the method.

Renaming Methods
To rename a method, you simply right-click the method’s tile and select Rename from the
menu that appears. After you do this, you will be able to edit the name that appears on the
method’s tile directly.

Creating Variables and parameters
A variable is a storage location that is represented by a name. Like traditional programming
languages, Alice allows you to use variables to store data. The following variable categories
are available in Alice:

•	 Local Variables—A local variable belongs to a specific method and can be used only in
the instructions in that method. When a method stops executing, its local variables
cease to exist in memory.

•	 World-Level Variables—A world-level variable belongs to the world object, and exists
as long as the world is playing.

•	 Class-Level Variables—A class-level variable belongs to a specific object, and exists as
long as the object exists. Class-level variables are like properties.

•	 Parameter Variables—A parameter variable is used to hold an argument that is passed
to a method when the method is called. Once you create a parameter variable in a
method, you must provide an argument for that parameter whenever you call the
method.

Before you can use a variable, you have to create it. To create a local variable or a parameter
variable in a method, you open the method in the Method Editor and then you click the

 Creating Variables and Parameters L-23

create new variable button or the create new parameter button. Figure L-26 shows the loca-
tions of these buttons.

Click here to create a new local variable.

Click here to create a new parameter variable.

Figure L-26 The create new variable button

When you click either of these buttons, a dialog box appears requiring you to enter more
information about the variable. In the dialog box you enter the variable’s name and select
the variable’s type and initial value. Figure L-27 shows the Create New Local Variable
 dialog box, which appears when you click the create new variable button. When you
click the create new parameter button, a dialog box that is virtually identical to the one in
Figure L-27 is displayed.

The variable’s name

The variable’s type

The variable’s initial value

Figure L-27 The Create New Local Variable dialog box

After you provide a name for the variable, select its type, specify its initial value, and click
the OK button, a tile for the variable is created in the method.

To create a world-level variable you perform the following steps:

 1. Select the world object in the Object Tree.
 2. In the Details Panel select the properties tab.

L-24 Appendix L Getting Started with Alice

 3. Click the create new variable button, which appears at the top of the properties tab, as
shown in Figure L-28.

 4. Enter the variable’s name, type, and initial value in the create new variable dialog box,
which is similar to the one shown in Figure L-27. When you click the dialog box’s OK
button, a tile for the variable will be created in the Details Panel, under the properties
tab.

Click here to create a
new world-level variable.

Select the world object.

Figure L-28 Creating a world-level variable

To create a class-level variable in an object you perform the following steps:

 1. Select the object in the Object Tree.
 2. In the Details Panel select the properties tab.
 3. Click the create new variable button, which appears at the top of the properties tab, as

shown in Figure L-29.
 4. Enter the variable’s name, type, and initial value in the Create New Variable dialog box,

which is similar to the one shown in Figure L-27. When you click the dialog box’s OK
button, a tile for the variable will be created in the Details Panel, under the properties
tab.

Click here to create a
new class-level variable.

Select the object.

Figure L-29 Creating a class-level variable

 Events L-25

Variable Assignment
When you create a variable, you give it an initial value. The initial value will remain in the
variable until you store a different value in the variable. In an Alice method you can create
set instructions that store different values in the variable. A set instruction simply “sets” a
variable to a new value.

To create a set instruction for a variable, you drag the variable tile and drop it into the
Method Editor at the point where you want the set instruction to occur. A menu appears,
and you select set value. Another menu appears that allows you to specify the value you
wish to store in the variable. As a result, a set instruction is created.

events
An event is an action that takes place while a program is running. When Alice worlds are
running, they are capable of detecting several different types of events. For example, an
event occurs when the user clicks an object with the mouse. An event also occurs when the
user types a key on the keyboard. Table L-3 describes all of the events that an Alice world
can detect while it is running.

Table L-3 Events that Alice can detect

Event Description

When the world starts This event occurs immediately when the world is
started. It happens only once, each time the world
is played.

When a key is typed When the user types a key on the keyboard, this
event occurs when the key is released.

When the mouse is clicked
on something

This event occurs when the user clicks an object in
the world with the mouse.

While something is true When a condition that you have specified becomes
true, this event occurs as long as the condition
remains true.

When a variable changes This event occurs when a variable’s value changes.

Let the mouse move <objects> This event allows the user to move an object in the
world by clicking and dragging it with the mouse.

Let the arrow keys move
<subject>

This event allows the user to move an object in the
world by typing the arrow keys on the keyboard.

Let the mouse move the camera This event allows the user to move the camera
through the world by clicking and dragging the
mouse.

Let the mouse orient the camera This event allows the user to change the camera’s
orientation (the direction in which it is pointing)
by clicking and dragging the mouse.

When any of the events listed in Table L-3 occur, your Alice world can perform an action in
response to that event, such as calling a method.

L-26 Appendix L Getting Started with Alice

At the top right of the screen in the Alice environment, you see an area labeled Events, as
shown in Figure L-30. This area is called the Events Editor. When you create an Alice world,
a tile appears in the Events Editor that reads as follows:

When the world starts, do world.my first method

This tile specifies that when the world starts, the method world.my first method will be
executed. The left portion of the tile shows the name of an event, When the world starts,
and the right portion of the tile is a drop-down box that shows the name of the method that
will be executed when the event occurs. You can click the down arrow on the drop-down
box to select a different method. Any method that is selected in this tile will be automatically
executed when the world starts.

This specifies the
method that will execute
when the world starts.

Click here to create
a new event.

Figure L-30 The Events Editor

The process of responding to an event is commonly called handling the event. In order for
an Alice world to handle an event, a tile for that event must appear in the Events Editor.
When a world is first created, the only tile that appears in the Events Editor is for the
When the world starts event. If you want the world to handle any other events, you must
create a new tile for the event in the Events Editor. To create a new event tile, you click the
create new event button, as shown in Figure L-30. A menu of available events will appear
next. You select the event that you want to handle from this menu. A tile for the event will
then be created in the Events Editor.

Most event tiles require that you specify additional arguments, such as the method that you
want to execute in response to the event. A method that is executed in response to an event
is commonly referred to as an event handler. For example, the event tile that is shown in
Figure L-30 specifies that when the world starts, world.my first method is called. The
method world.my first method is the event handler.

Figure L-31 shows another example of an event tile. Assume that this tile appears in a world
that has an object named fridge (a refrigerator object). The event tile specifies that when
the mouse is clicked on the fridge object’s fridgeDoor subpart, the fridgeDoor will turn left
0.25 revolution.

Figure L-31 Example of an event tile

M-1

A
p

p
e

n
d

ix

M

Beginning with Java 7, Java DB is automatically installed on your system when you install
the JDK. When you install the JDK, take note of the location on your system where it is
installed. If you accept the default location for the JDK, it will be installed in a folder with
a path such as this:

C:\Program Files\Java\jdk1.8.0_25

The name of the last folder in the path might be different on your system, because its name
indicates the version of the JDK that you are using. Nevertheless, the path will be similar to
the one shown here.

If you look inside the folder where the JDK is installed, you will see another folder named
db. Inside the db folder you will see another folder named lib, and inside the lib folder you
will see a file named derby.jar. The derby.jar file contains the Java DB database engine
and its associated JBDC embedded driver. Take a moment to verify that you can locate the
derby.jar file, and make a note of its path. For example, if you are using the JDK 8, update
25, the path of the derby.jar file will be something like:

C:\Program Files\Java\jdk1.8.0_25\db\lib\derby.jar

Once you have verified the path of the derby.jar file, you need to set the CLASSPATH envi-
ronment variable on your system.

Setting the CLASSPATH Environment Variable
To use Java DB with this book, you will need to set your system’s CLASSPATH environment
variable to include the location of the derby.jar file. The CLASSPATH environment variable
contains a list of class libraries that are needed by the Java Virtual Machine and other Java
applications.

Configuring Java dB

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

M-2 Appendix M Configuring Java dB

The following instructions describe the procedure for setting the CLASSPATH variable on
Windows 8 and Windows 7.

Windows 8

In the Right bottom corner of the screen, click on the Search icon and type Control Panel.
Click on Control Panel, then click System, then click Advanced system settings. Click on the
Advanced tab, then click Environment Variables. Look in the System Variables list to see if
the CLASSPATH variable exists.

If the CLASSPATH variable already exists, perform the following:

Select the CLASSPATH variable and click the Edit button. Add a semicolon to the end of
the existing contents and then add the path of the derby.jar file to the end of the list.

Click the OK buttons until all the dialog boxes are closed and exit the control panel.

If the CLASSPATH variable does not exist, perform the following:

Click the New. . . button that appears below the list of system variables.
In the Variable name box, type CLASSPATH.
In the Variable value box, type a period, followed by a semicolon, followed by the path

of the derby.jar file. For example, the value will be something similar to the follow-
ing (depending on the version of the JDK that you are using):

 .;C:\Program Files\Java\jdk1.8.0_25\db\lib\derby.jar

Click the OK buttons until all the dialog boxes are closed and exit the control panel.

Windows 7

Click the Start button and then right-click Computer. On the pop-up menu, select Proper-
ties. In the window that appears next, click Advanced system settings. This displays the
System Properties window. Click the Environment Variables. . . button. Look in the System
Variables list to see if the CLASSPATH variable exists.

If the CLASSPATH variable already exists, perform the following:

Select the CLASSPATH variable and click the Edit button. Add a semicolon to the end of
the existing contents and then add the path of the derby.jar file to the end of the list.

Click the OK buttons until all the dialog boxes are closed and exit the control panel.

If the CLASSPATH variable does not exist, perform the following:

Click the New… button that appears below the list of system variables.
In the Variable name box, type CLASSPATH.
In the Variable value box, type a period, followed by a semicolon, followed by the path

of the derby.jar file. For example, the value will be something similar to the follow-
ing (depending on the version of the JDK that you are using):

 .;C:\Program Files\Java\jdk1.8.0_25\db\lib\derby.jar

Click the OK buttons until all the dialog boxes are closed and exit the control panel.

Hal’s Home Computer Emporium is a retail seller of home computers. Hal’s sales staff works
strictly on commission. At the end of the month, each salesperson’s commission is calculated
according to Table CS1-1.

CS1-1

Calculating Sales
Commission

C
A

S
E

S
T

U
D

Y

1

Table CS1-1 Sales commission rates

Sales This Month Commission Rate

less than $10,000 5%

$10,000–14,999 10%

$15,000–17,999 12%

$18,000–21,999 15%

$22,000 or more 16%

For example, a salesperson with $16,000 in monthly sales will earn a 12% commission
($1,920). Another salesperson with $20,000 in monthly sales will earn a 15% commission
($3,000).

Because the staff gets paid once per month, Hal allows each employee to take up to $1,500
per month in advance. When sales commissions are calculated, the amount of each employ-
ee’s advanced pay is subtracted from the commission. If any salesperson’s commission is
less than the amount of this advance, he or she must reimburse Hal for the difference.

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS1-2 Case Study 1 Calculating Sales Commission

Here are two examples: Beverly and John have $21,400 and $12,600 in sales, respectively.
Beverly’s commission is $3,210 and John’s commission is $1,260. Both Beverly and John
took $1,500 in advance pay. At the end of the month, Beverly gets a check for $1,710, but
John must pay $240 back to Hal.

Now we will examine a program that eases the task of calculating the end-of-month
 commission.

Program Design
The program must perform the following general steps:

 1. Ask the user to enter the salesperson’s monthly sales.
 2. Ask the user to enter the amount of advanced pay.
 3. Use the amount of monthly sales to determine the commission rate.
 4. Calculate the commission.
 5. Calculate the salesperson’s pay by subtracting the amount of advanced pay from the

commission. If the amount is negative, the salesperson must reimburse the company.

Table CS1-2 lists and describes the program’s variables.

Table CS1-2 Variables

Variable Description

sales A double variable to hold a salesperson’s total monthly sales.

rate A double variable to hold the salesperson’s commission rate.

commission A double variable to hold the commission.

advance A double variable to hold the amount of advanced pay the salesperson has
drawn.

Pay A double variable to hold the salesperson’s amount of gross pay.

Programmers often write parts of a program in pseudocode before writing the actual Java
code. Recall from Chapter 1 that pseudocode is a cross between human language and a
programming language. It is an informal way of writing down each operation that a pro-
gram must perform, and is especially helpful when designing an algorithm. Although the
computer can’t understand pseudocode, most programmers find pseudocode helpful in cre-
ating a model of a program. When the pseudocode model is complete, it can be converted
to actual code. Here is a pseudocode model for the sales commission program:

Display “Enter the amount of monthly sales”.
Read sales.
Display “Enter the amount of advanced pay”.
Read advance.
If sales is less than 10,000
 Store 0.05 in rate.
else if sales is less than 15,000
 Store 0.1 in rate.

 Case Study 1 Calculating Sales Commission CS1-3

else if sales is less than 18,000
 Store 0.12 in rate.
else if sales is less than 22,000
 Store 0.15 in rate.
else
 Store 0.16 in rate.
commission = sales * rate.
pay = commission − advance.
Display pay.

Code Listing CS1-1 shows the actual program. Figure CS1-1 shows an example of interac-
tion with the program.

Figure CS1-1 Interaction with the HalsCommission program

Code Listing CS1-1 (HalsCommission.java)

 1 import javax.swing.JOptionPane; // Needed for JOptionPane
 2
 3 /**
 4 This program calculates a salesperson’s gross
 5 pay at Hal’s Computer Emporium.
 6 */
 7
 8 public class HalsCommission
 9 {
10 public static void main(String[] args)
11 {
12 String input; // To hold the user’s input
13 double sales; // Monthly sales
14 double rate; // Commission rate
15 double commission; // Amount of commission

CS1-4 Case Study 1 Calculating Sales Commission

16 double advance; // Advanced pay
17 double pay; // Salesperson’s pay
18
19 // Get the monthly sales.
20 input = JOptionPane.showInputDialog(“Enter the amount “ +
21 “of monthly sales.”);
22 sales = Double.parseDouble(input);
23
24 // Get the advanced pay.
25 input = JOptionPane.showInputDialog(“Enter the amount “ +
26 “of advanced pay.”);
27 advance = Double.parseDouble(input);
28
29 // Determine the rate of commission.
30 if (sales < 10000)
31 rate = 0.05; // 5% commission rate
32 else if (sales < 15000)
33 rate = 0.1; // 10% commission rate
34 else if (sales < 18000)
35 rate = 0.12; // 12% commission rate
36 else if (sales < 22000)
37 rate = 0.15; // 15% commission rate
38 else
39 rate = 0.16; // 16% commission rate
40
41 // Calculate the amount of commission.
42 commission = rate * sales;
43
44 // Calculate the salesperson’s pay.
45 pay = commission - advance;
46
47 // Display the salesperson’s commission rate and pay.
48 JOptionPane.showMessageDialog(null,
49 String.format(“Commission rate is %.2f. The amount of pay is $%,.2f”,
50 rate, pay));
51 System.exit(0);
52 }
53 }

The loan officer at one of the Central Mountain Credit Union’s branch offices has asked
you to write a loan amortization application to run on her desktop PC. The application
should allow the user to enter the amount of a loan, the number of years of the loan, and
the annual inter est rate. An amortization report should then be saved to a text file.

Calculations

The credit union uses the following formula to calculate the monthly payment of a loan:

The Amortization Class

C
A

S
E

S
T

U
D

Y

2

=
× ×

−
12

1
Payment

Loan
Rate

Term

Term

where: Loan 5 the amount of the loan,
 Rate 5 the annual interest rate, and
 Term 5 (11Rate/12)Years 3 12

Report Requirements
The report produced by the program should show the monthly payment amount and the
following information for each month in the loan period: amount applied to interest,
amount applied to principal, and the balance. The following report may be used as a
model. It shows all the required information on a one-year $5,000 loan at 5.9 percent
annual interest.

CS2-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS2-2 Case Study 2 The Amortization Class

Monthly Payment: $430.10
Month Interest Principal Balance

 1 24.58 405.52 4,594.48
 2 22.59 407.51 4,186.97
 3 20.59 409.52 3,777.45
 4 18.57 411.53 3,365.92
 5 16.55 413.55 2,952.37
 6 14.52 415.59 2,536.78
 7 12.47 417.63 2,119.15
 8 10.42 419.68 1,699.47
 9 8.36 421.75 1,277.72
10 6.28 423.82 853.90
11 4.20 425.90 428.00
12 2.10 428.00 0.00

The core of the program will be a class, Amortization, that holds the primary data,
performs the mathematical calculations, and displays the report. Figure CS2-1 shows
a UML diagram for the class.

Table CS2-1 lists and describes the class’s fields.

Figure CS2-1 UML diagram for the Amortization class

 Case Study 2 The Amortization Class CS2-3

Table CS2-2 lists and describes the class’s methods.

Table CS2-1 Amortization class fields

Field Description

loanAmount A double variable to hold the amount of the loan.

interestRate A double variable to hold the annual interest rate.

loanBalance A double variable to hold the loan balance.

term A double variable used in the calculation of the monthly payment.

payment A double variable to hold the amount of the monthly payment.

loanYears An int variable to hold the number of years of the loan.

Table CS2-2 Amortization class methods

Method Description

Constructor The constructor accepts three arguments: the loan amount, the annual
interest rate, and the number of years of the loan. These values are
stored in their corresponding fields. The private method calcPayment
is then called.

 calcPayment A private method that is used to calculate the monthly payment
amount. The result is stored in the payment field.

 getNumberOfPayments Returns as an int the number of loan payments.

 saveReport Saves the amortization report to a text file.

 getLoanAmount Returns as a double the amount of the loan.

 getInterestRate Returns as a double the annual interest rate.

 getLoanYears Returns as an int the number of years of the loan.

Code Listing CS2-1 shows the code for the class.

Code Listing CS2-1 (Amortization.java)

 1 import java.io.*; // For file-related classes
 2
 3 /**
 4 This class stores loan information and creates a
 5 text file containing an amortization report.
 6 */

CS2-4 Case Study 2 The Amortization Class

 7
 8 public class Amortization
 9 {
 10 private double loanAmount; // Loan Amount
 11 private double interestRate; // Annual Interest Rate
 12 private double loanBalance; // Monthly Balance
 13 private double term; // Payment Term
 14 private double payment; // Monthly Payment
 15 private int loanYears; // Years of Loan
 16
 17 /**
 18 The constructor accepts the loan amount, the annual
 19 interest rate, and the number of years of the loan
 20 as arguments. The private method CalcPayment is then
 21 called.
 22 @param loan The loan amount.
 23 @param rate The annual interest rate.
 24 @param years The number of years of the loan.
 25 */
 26
 27 public Amortization(double loan, double rate, int years)
 28 {
 29 loanAmount = loan;
 30 loanBalance = loan;
 31 interestRate = rate;
 32 loanYears = years;
 33 calcPayment();
 34 }
 35
 36 /**
 37 The calcPayment method calculates the monthly payment
 38 amount. The result is stored in the payment field.
 39 */
 40
 41 private void calcPayment()
 42 {
 43 // Calculate value of Term
 44 term =
 45 Math.pow((1+interestRate/12.0), 12.0 * loanYears);
 46
 47 // Calculate monthly payment
 48 payment =
 49 (loanAmount * interestRate/12.0 * term) / (term - 1);
 50 }
 51
 52 /**
 53 The getNumberOfPayments method returns the total number of
 54 payments to be made for the loan.

 Case Study 2 The Amortization Class CS2-5

 55 @return The number of loan payments.
 56 */
 57
 58 public int getNumberOfPayments()
 59 {
 60 return 12 * loanYears;
 61 }
 62
 63 /**
 64 The saveReport method saves the amortization report to
 65 the file named by the argument.
 66 @param filename The name of the file to create.
 67 */
 68
 69 public void saveReport(String filename) throws IOException
 70 {
 71 double monthlyInterest; // The monthly interest rate
 72 double principal; // The amount of principal
 73 //DecimalFormat dollar = new DecimalFormat(“#,##0.00”);
 74 FileWriter fwriter = new FileWriter(filename);
 75 PrintWriter outputFile = new PrintWriter(fwriter);
 76
 77 // Print monthly payment amount.
 78 outputFile.println(String.format(
 79 “Monthly Payment: $%.2f”, payment));
 80
 81 // Print the report header.
 82 outputFile.println(“Month\tInterest\tPrincipal\tBalance”);
 83 outputFile.println(“-----------------------------------” +
 84 “--------------”);
 85
 86 // Display the amortization table.
 87 for (int month = 1; month <= getNumberOfPayments(); month++)
 88 {
 89 // Calculate monthly interest.
 90 monthlyInterest = interestRate / 12.0 * loanBalance;
 91
 92 if (month != getNumberOfPayments())
 93 {
 94 // Calculate payment applied to principal
 95 principal = payment - monthlyInterest;
 96 }
 97 else // This is the last month.
 98 {
 99 principal = loanBalance;
100 payment = loanBalance + monthlyInterest;
101 }
102

CS2-6 Case Study 2 The Amortization Class

103 // Calculate the new loan balance.
104 loanBalance -= principal;
105
106 // Display a line of data.
107 outputFile.println(String.format(“%d\t%.2f\t\t%.2f\t\t%.2f”,
108 month, monthlyInterest, principal,
109 loanBalance));
110 }
111
112 // Close the file.
113 outputFile.close();
114 }
115
116 /**
117 The getLoanAmount method returns the loan amount.
118 @return The value in the loanAmount field.
119 */
120
121 public double getLoanAmount()
122 {
123 return loanAmount;
124 }
125
126 /**
127 The getInterestRate method returns the interest rate.
128 @return The value in the interestRate field.
129 */
130
131 public double getInterestRate()
132 {
133 return interestRate;
134 }
135
136 /**
137 The getLoanYears method returns the years of the loan.
138 @return The value in the loanYears field.
139 */
140
141 public int getLoanYears()
142 {
143 return loanYears;
144 }
145 }

 Case Study 2 The Amortization Class CS2-7

The Main Program
The main program code is shown in Code Listing CS2-2. First, it gets the amount of the
loan, the annual interest rate, and the years of the loan as input from the user. It then
 creates an instance of the Amortization class and passes this data to the class’s construc-
tor. The program then saves the amortization report in the file LoanAmortization.txt.
It asks the user whether he or she wants to run another report. If so, the program repeats
these steps. Figure CS2-2 shows an example of interaction with the program.

E

Figure CS2-2 Interaction with the LoanReport program

Code Listing CS2-2 (LoanReport.java)

 1 import javax.swing.JOptionPane; // For the JOptionPane class
 2
 3 // The following import statement is required because the main
 4 // method has a throws IOException clause. Although this program
 5 // doesn’t have code that directly performs file I/O, the import
 6 // statement is still required because of IOException.
 7 import java.io.*;
 8
 9 /**
10 This program displays a loan amortization report.
11 */
12
13 public class LoanReport
14 {

CS2-8 Case Study 2 The Amortization Class

15 public static void main(String[] args) throws IOException
16 {
17 String input; // To hold user input
18 double loan; // Loan amount
19 double interestRate; // Annual interest rate
20 int years; // Years of the loan
21 char again; // To indicate if loop should repeat
22
23 do
24 {
25 // Get the loan amount.
26 input = JOptionPane.showInputDialog("Enter the " +
27 "loan amount.");
28 loan = Double.parseDouble(input);
29
30 // Validate the loan amount.
31 // (No negative amounts.)
32 while (loan < 0)
33 {
34 input = JOptionPane.showInputDialog("Invalid amount. " +
35 "Enter the loan amount.");
36 loan = Double.parseDouble(input);
37 }
38
39 // Get the annual interest rate.
40 input = JOptionPane.showInputDialog("Enter the " +
41 "annual interest rate.");
42 interestRate = Double.parseDouble(input);
43 // Validate the interest rate
44 // (No negative amounts.)
45 while (interestRate < 0)
46 {
47 input = JOptionPane.showInputDialog("Invalid amount. " +
48 "Enter the annual interest rate.");
49 interestRate = Double.parseDouble(input);
50 }
51
52 // Get the years of the loan.
53 input = JOptionPane.showInputDialog("Enter the " +
54 "years of the loan.");
55 years = Integer.parseInt(input);
56
57 // Validate the number of years.
58 // (No negative amounts.)
59 while (years < 0)
60 {
61 input = JOptionPane.showInputDialog("Invalid amount. " +
62 "Enter the years of the loan.");

 Case Study 2 The Amortization Class CS2-9

63 years = Integer.parseInt(input);
64 }
65
66 // Create and initialize an Amortization object.
67 Amortization am =
68 new Amortization(loan, interestRate, years);
69
70 // Save the report.
71 am.saveReport("LoanAmortization.txt");
72 JOptionPane.showMessageDialog(null, "Report saved to " +
73 "the file LoanAmortization.txt.");
74
75 // Do another report?
76 input = JOptionPane.showInputDialog("Would you like " +
77 "to run another report? Enter Y for " +
78 "yes or N for no: ");
79 again = input.charAt(0);
80
81 } while (again == 'Y' || again == 'y');
82
83 System.exit(0);
84 }
85 }

Contents of the file LoanAmortization.txt:

Monthly Payment: $430.10
Month Interest Principal Balance
--
 1 24.58 405.52 4,594.48
 2 22.59 407.51 4,186.97
 3 20.59 409.52 3,777.45
 4 18.57 411.53 3,365.92
 5 16.55 413.55 2,952.37
 6 14.52 415.59 2,536.78
 7 12.47 417.63 2,119.15
 8 10.42 419.68 1,699.47
 9 8.36 421.75 1,277.72
10 6.28 423.82 853.90
11 4.20 425.90 428.00
12 2.10 428.00 0.00

First, notice that a do-while loop (in lines 23 through 81) controls everything done in
this program. Here is a condensed version of the loop:

23 do
24 {

(Code to get the loan data and display the report.)

CS2-10 Case Study 2 The Amortization Class

75 // Do another report?
76 input = JOptionPane.showInputDialog("Would you like " +
77 "to run another report? Enter Y for " +
78 "yes or N for no: ");
79 again = input.charAt(0);
80
81 } while (again == 'Y' || again == ‘y’);

During each iteration, this loop first gathers the necessary loan data as input and then
writes the amortization report. At the end of the iteration, the user is asked whether he or
she wants to run another report. If the user enters Y or y for yes, the loop repeats. Otherwise,
the loop terminates and the program ends.

Inside the loop, the code that gathers input from the user also validates the input. For
example, here is the code in lines 25 through 37 that gets and validates the loan amount:

25 // Get the loan amount.
26 input = JOptionPane.showInputDialog("Enter the " +
27 "loan amount.");
28 loan = Double.parseDouble(input);
29
30 // Validate the loan amount.
31 // (No negative amounts.)
32 while (loan < 0)
33 {
34 input = JOptionPane.showInputDialog
35 ("Invalid amount. Enter the loan amount.");
36 loan = Double.parseDouble(input);
37 }

If the user enters a negative number, the while loop displays an error message and asks the
user to enter the loan amount again. The code that gets the annual interest rate and the
years of the loan, in lines 39 through 64, also performs similar input validation. Once
these values have been correctly entered, an instance of the Amortization class is created in
lines 67 and 68:

Amortization am =
 new Amortization(loan, interestRate, years);

Then, the saveReport method is called in line 71 to save the amortization report to the file
LoanAmortization.txt:

am.printReport("LoanAmortization.txt");

NoTe: Notice that Code Listing CS2-1 has the following import statement in line 1:

import java.io.*;

Although this program does not have any code that directly performs file I/O, we still
have to have this import statement because of the throws IOException clause in the main
method header. The main method has to have the throws IOException clause because it
calls the saveReport method in the Amortization class.

The National Commerce Bank has hired you as a contract programmer. Your first assign-
ment is to write a class that will be used by the bank’s automated teller machines (ATMs)
to validate a customer’s personal identification number (PIN). Your class, which will be
named PinTester, will be incorporated into a larger program that asks the customer to
input his or her PIN on the ATM’s numeric keypad. (PINs are multi-digit numbers. The
program stores each digit in an element of an int array.) The program also retrieves a
copy of the customer’s actual PIN from a database, as an int array. If these arrays match,
then the customer’s identity is validated.

Table CS3-1 lists the fields that the class should have.

CS3-1

The PinTester Class

C
A

S
E

S
T

U
D

Y

3

Table CS3-1 PinTester class fields

Field Name Description

userPIN This field should be an int array reference variable. It will be used to reference
an array containing the PIN digits entered by the user.

validPIN This field should be an int array reference variable. It will be used to reference
an array containing the valid PIN digits retrieved from the database.

Table CS3-2 lists the methods that the class should have.

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS3-2 Case Study 3 The PinTester Class

Code Listing CS3-1 shows the PinTester class.

Code Listing CS3-1 (PinTester.java)

 1 /**
 2 The PinTester class is used to compare the PIN that
 3 was entered by a user to the valid PIN.
 4 */
 5
 6 public class PinTester
 7 {
 8 private int[] userPIN; // The PIN entered
 9 private int[] validPIN; // The valid PIN
10
11 /**
12 Constructor
13 @param user The PIN digits entered by the user.
14 @param valid The valid PIN digits.
15 */
16
17 PinTester(int[] user, int[] valid)
18 {
19 // Create an array to hold a copy of the
20 // PIN digits entered by the user.
21 userPIN = new int[user.length];
22
23 // Copy the user array to the userPIN array.
24 for (int i = 0; i < user.length; i++)
25 userPIN[i] = user[i];
26
27 // Create an array to hold a copy of the
28 // valid PIN digits.

Table CS3-2 PinTester class methods

Method Description

Constructor The constructor is to accept references to two int arrays as arguments. The
array referenced by the first argument will contain the numbers entered by
the customer. The array referenced by the second argument will contain the
numbers retrieved from the bank’s database. The constructor should create
two arrays and reference them by the userPIN and validPIN fields. Then, it
should copy the contents of the arrays passed as arguments to the userPIN
and validPIN arrays.

isValid This boolean function should return true if the userPIN and validPIN
arrays are identical. Otherwise, it should return false.

 Case Study 3 The PinTester Class CS3-3

29 validPIN = new int[valid.length];
30
31 // Copy the valid array to the validPIN array.
32 for (int i = 0; i < valid.length; i++)
33 validPIN[i] = valid[i];
34 }
35
36 /**
37 The isValid method compares the PIN digits entered
38 by the user and determines whether they are valid.
39 @return true if valid, false otherwise.
40 */
41
42 public boolean isValid()
43 {
44 int i; // Loop control variable
45 boolean isEqual; // Flag
46
47 // Compare the lengths of the two arrays. If
48 // the arrays are not the same size, then they
49 // are not equal.
50
51 if (userPIN.length != validPIN.length)
52 isEqual = false;
53 else // Compare the contents of the two arrays
54 {
55 i = 0;
56 isEqual = true;
57
58 while (isEqual && i < userPIN.length)
59 {
60 if (userPIN[i] != validPIN[i])
61 isEqual = false;
62 i++;
63 }
64 }
65
66 return isEqual;
67 }
68 }

Because you have only been asked to write a method that performs the comparison
between the customer’s input and the PIN that was retrieved from the database, you will
also need to write a program that tests the method. Code Listing CS3-2 shows the com-
plete program.

CS3-4 Case Study 3 The PinTester Class

Code Listing CS3-2 (PinTesterDemo.java)

 1 /**
 2 This program tests the PinTester class with
 3 various PIN values.
 4 */
 5
 6 public class PinTesterDemo
 7 {
 8 public static void main(String [] args)
 9 {
10 // Create two sample arrays that are identical.
11 int [] pin1 = {2, 4, 1, 8, 7, 9, 0};
12 int [] pin2 = {2, 4, 1, 8, 7, 9, 0};
13
14 // Create two sample arrays that are different.
15 int [] pin3 = {2, 4, 6, 8, 7, 9, 0};
16 int [] pin4 = {1, 2, 3, 4, 5, 6, 7};
17
18 // Create two PinTester objects.
19 PinTester pt1 = new PinTester(pin1, pin2);
20 PinTester pt2 = new PinTester(pin3, pin4);
21
22 // Compare pin1 and pin2. These arrays are identical.
23 if (pt1.isValid())
24 {
25 System.out.println("SUCCESS: pin1 and pin2 " +
26 "are the same.");
27 }
28 else
29 {
30 System.out.println("ERROR: pin1 and pin2 " +
31 "are different.");
32 }
33
34 // Compare pin3 and pin4. All of the elements in these
35 // arrays are different.
36
37 if (pt2.isValid())
38 {
39 System.out.println("ERROR: pin3 and pin4 " +
40 "are the same.");
41 }
42 else
43 {
44 System.out.println("SUCCESS: pin3 and pin4 " +
45 "are different.");
46 }

 Case Study 3 The PinTester Class CS3-5

47 }
48 }

Program Output

SUCCESS: pin1 and pin2 are the same.
SUCCESS: pin3 and pin4 are different.

This page intentionally left blank

Sometimes it’s useful to store related data in two or more arrays. For example, assume a
program uses the following arrays:

String[] names = new String[5];
String[] addresses = new String[5];

The names array is used to store the names of five persons, and the addresses array is used
to store the addresses of the same five persons. The data for one person is stored in the
same relative location in each array. For example, the first person’s name is stored at
names[0] and that same person’s address is stored at addresses[0]. This relationship
between the arrays is illustrated in Figure CS4-1.

Parallel Arrays

C
A

S
E

S
T

U
D

Y

4

Figure CS4-1 The relationship between the names and addresses arrays

CS4-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS4-2 Case Study 4 Parallel Arrays

To access the data, use the same subscript with both arrays. For example, the following
loop displays each person’s name and address.

for (int i = 0; i < names.length; i++)
{
 System.out.println("Name: " + names[i]);
 System.out.println("Address: " + addresses[i]);
}

The names and addresses arrays are examples of parallel arrays. Parallel arrays are two or
more arrays that hold related data, and the related elements of each array are accessed
with a common subscript.

Parallel arrays are especially useful when the related data is of unlike types. For example,
the program in Code Listing CS4-1 is a payroll program. It uses two arrays: one to store
the hours worked by each employee (as int values), and another to store each employee’s
hourly pay rate (as double values).

Code Listing CS4-1 (ParallelArrays.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates parallel arrays.
 5 */
 6
 7 public class ParallelArrays
 8 {
 9 public static void main(String [] args)
10 {
11 final int NUM_EMPLOYEES = 3;
12 int[] hours = new int[NUM_EMPLOYEES];
13 double[] payRates = new double[NUM_EMPLOYEES];
14
15 // Get the hours worked by each employee.
16 getPayData(hours, payRates);
17
18 // Display each employee's gross pay.
19 displayGrossPay(hours, payRates);
20 }
21
22 /**
23 The getPayData method accepts as arguments arrays
24 for employees' hours and pay rates. The user enters
25 values for these arrays.
26 */
27
28 private static void getPayData(int[] hours, double[] payRates)

 Case Study 4 Parallel Arrays CS4-3

29 {
30 // Create a Scanner object for keyboard input.
31 Scanner keyboard = new Scanner(System.in);
32
33 // Get each employee's hours worked and pay rate.
34 for (int i = 0; i < hours.length; i++)
35 {
36 // Get the hours worked for an employee.
37 System.out.printf(
38 "Enter the hours worked by employee #%d: ",
39 (i + 1));
40 hours[i] = keyboard.nextInt();
41
42 // Get the hourly pay rate for this employee.
43 System.out.printf(
44 "Enter the hourly pay rate for employee #%d: ",
45 (i + 1));
46 payRates[i] = keyboard.nextDouble();
47 }
48 }
49
50 /**
51 The displayGrossPay method accepts as arguments
52 arrays for employees' hours and pay rates. The
53 method uses these arrays to calculate and display
54 each employee's gross pay.
55 */
56
57 private static void displayGrossPay(int [] hours,
58 double [] payRates)
59 {
60 double grossPay; // To hold gross pay
61
62 // Display each employee's gross pay.
63 for (int i = 0; i < hours.length; i++)
64 {
65 // Calculate the gross pay.
66 grossPay = hours[i] * payRates[i];
67
68 // Display the gross pay.
69 System.out.printf(
70 "The gross pay for employee #%d is $%,.2f.\n",
71 (i + 1), grossPay);
72 }
73 }
74 }

CS4-4 Case Study 4 Parallel Arrays

Program Output with Example Input Shown in Bold

Enter the hours worked by employee #1: 15 [Enter]
Enter the hourly pay rate for employee #1: 12.00 [Enter]
Enter the hours worked by employee #2: 20 [Enter]
Enter the hourly pay rate for employee #2: 18.00 [Enter]
Enter the hours worked by employee #3: 40 [Enter]
Enter the hourly pay rate for employee #3: 25.50 [Enter]
The gross pay for employee #1 is $180.00.
The gross pay for employee #2 is $360.00.
The gross pay for employee #3 is $1,020.00.

Recall from Chapter 3 that the String class has a method, equals, that accepts a String
object as an argument. As a review, here is an example of how the code can be used:

String name1 = "Joe";
String name2 = "Jo";
if (name1.equals(name2))
 System.out.println("The names are the same.");
else
 System.out.println("The names are not the same.");

This is an example of a same class operation, where an object performs an operation
involving another object of the same class. In this section we use a class named FeetInches
to study same class operations. The FeetInches class is designed to hold distances or
measurements expressed in feet and inches. Figure CS5-1 shows a UML diagram for
the class.

The class has two int fields: feet and inches. Together these fields hold a distance measured
in feet and inches, such as 12 feet 7 inches. The feet field holds the feet part and the inches
field holds the inches part. Table CS5-1 describes the class’s methods.

The FeetInches Class

C
A

S
E

S
T

U
D

Y

5

CS5-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS5-2 Case Study 5 The FeetInches Class

Table CS5-1 The FeetInches class methods

Method Description

Constructor #1
(no-arg constructor)

This constructor assigns 0 to both the feet and inches fields.

Constructor #2 This constructor accepts two int arguments that are assigned to the
feet and inches fields. The simplify method is also called.

Constructor #3 This constructor accepts a FeetInches object as its argument. The
object that is being created will become a copy of the object passed as
an argument. This type of constructor is sometimes referred to as
a “copy constructor.”

simplify This method adjusts any set of values where the inches field is
greater than 11. For example, 3 feet 14 inches would be adjusted to
read 4 feet 2 inches.

setFeet This method accepts an int argument that is assigned to the feet
field.

setInches This method accepts an int argument that is assigned to the inches
field. The simplify method is then called.

getFeet This method returns the value in the feet field.

getInches This method returns the value in the inches field.

toString This method returns a string representing the distance held by the
object. For example, if an object’s feet field holds 3 and its inches
field holds 7, the toString method would return the string “3 feet
7 inches”.

Figure CS5-1 UML diagram for the FeetInches class

 Case Study 5 The FeetInches Class CS5-3

Before looking at the code for the FeetInches class, it might help to see a program that
uses the class. The program in Code Listing CS5-1 demonstrates the class.

Code Listing CS5-1 (DistanceDemo.java)

 1 import java.util.Scanner;
 2
 3 /**
 4 This program demonstrates the FeetInches class.
 5 */
 6
 7 public class DistanceDemo
 8 {
 9 public static void main(String[] args)
10 {
11 int feet, inches; // To hold feet and inches
12 FeetInches distance; // To reference a FeetInches object
13
14 // Create a Scanner object for keyboard input.
15 Scanner keyboard = new Scanner(System.in);
16
17 // Get a distance in feet and inches.
18 System.out.println("Enter a distance in feet "
19 + "and inches.");
20 System.out.print("First enter the feet: ");
21 feet = keyboard.nextInt();
22 System.out.print("Now enter the inches: ");
23 inches = keyboard.nextInt();
24
25 // Create a FeetInches object, initialized with
26 // the values entered by the user.
27 distance = new FeetInches(feet, inches);

Method Description

add This method accepts a FeetInches object as its argument. It returns a
reference to a FeetInches object that is the sum of the calling object
and the object that was passed as the argument.

equals This method accepts a FeetInches object as its argument. It returns
the boolean value true if the calling object and the argument object
hold the same data. Otherwise it returns false.

copy This method returns a reference to a new FeetInches object that is a
copy of the calling object.

Table CS5-1 The FeetInches class methods (continued)

CS5-4 Case Study 5 The FeetInches Class

28
29 // Display the object's contents.
30 System.out.println("The distance you entered is "
31 + distance.toString());
32 }
33 }

Program Output with Example Input Shown in Bold

Enter a distance in feet and inches.
First enter the feet: 5 [Enter]
Now enter the inches: 7 [Enter]
The distance you entered is 5 feet 7 inches

Program Output with Example Input Shown in Bold

Enter a distance in feet and inches.
First enter the feet: 5 [Enter]
Now enter the inches: 14 [Enter]
The distance you entered is 6 feet 2 inches

Notice that the FeetInches class automatically adjusts measurements so that the inches
field is never greater than 11. For example, the distance 5 feet 14 inches was adjusted to
the more proper measurement 6 feet 2 inches. This adjustment is performed by a private
method named simplify, which is called from the constructor and the setInches method.

Also notice that the class has a toString method which returns a string representing the
distance held by an object. This method is useful for displaying a distance. Code Listing
CS5-2 shows the FeetInches class.

Code Listing CS5-2 (FeetInches.java)

 1 /**
 2 The FeetInches class holds distances measured in
 3 feet and inches.
 4 */
 5
 6 public class FeetInches
 7 {
 8 private int feet; // The number of feet
 9 private int inches; // The number of inches
 10
 11 /**
 12 This constructor assigns 0 to the feet
 13 and inches fields.
 14 */
 15
 16 public FeetInches()

 Case Study 5 The FeetInches Class CS5-5

 17 {
 18 feet = 0;
 19 inches = 0;
 20 }
 21
 22 /**
 23 This constructor accepts two arguments which
 24 are assigned to the feet and inches fields.
 25 The simplify method is then called.
 26 @param f The value to assign to feet.
 27 @param i The value to assign to inches.
 28 */
 29
 30 public FeetInches(int f, int i)
 31 {
 32 feet = f;
 33 inches = i;
 34 simplify();
 35 }
 36
 37 /**
 38 The following is a copy constructor. It accepts a
 39 reference to another FeetInches object. The feet
 40 and inches fields are set to the same values as
 41 those in the argument object.
 42 @param object2 The object to copy.
 43 */
 44
 45 public FeetInches(FeetInches object2)
 46 {
 47 feet = object2.feet;
 48 inches = object2.inches;
 49 }
 50
 51 /**
 52 The simplify method adjusts the values
 53 in feet and inches to conform to a
 54 standard measurement.
 55 */
 56
 57 private void simplify()
 58 {
 59 if (inches > 11)
 60 {
 61 feet = feet + (inches / 12);
 62 inches = inches % 12;
 63 }
 64 }

CS5-6 Case Study 5 The FeetInches Class

 65
 66 /**
 67 The setFeet method assigns a value to
 68 the feet field.
 69 @param f The value to assign to feet.
 70 */
 71
 72 public void setFeet(int f)
 73 {
 74 feet = f;
 75 }
 76
 77 /**
 78 The setInches method assigns a value to
 79 the inches field.
 80 @param i The value to assign to inches.
 81 */
 82
 83 public void setInches(int i)
 84 {
 85 inches = i;
 86 simplify();
 87 }
 88
 89 /**
 90 getFeet method
 91 @return The value in the feet field.
 92 */
 93
 94 public int getFeet()
 95 {
 96 return feet;
 97 }
 98
 99 /**
100 getInches method
101 @return The value in the inches field.
102 */
103
104 public int getInches()
105 {
106 return inches;
107 }
108
109 /**
110 toString method
111 @return a reference to a String stating
112 the feet and inches.

 Case Study 5 The FeetInches Class CS5-7

113 */
114
115 public String toString()
116 {
117 String str = feet + " feet " +
118 inches + " inches";
119 return str;
120 }
121
122 /**
123 The add method returns a FeetInches object
124 that holds the sum of this object and another
125 FeetInches object.
126 @param object2 The other FeetInches object.
127 @return A reference to a FeetInches object.
128 */
129
130 public FeetInches add(FeetInches object2)
131 {
132 int totalFeet, // To hold the sum of feet
133 totalInches; // To hold the sum of inches
134
135 totalFeet = feet + object2.feet;
136 totalInches = inches + object2.inches;
137 return new FeetInches(totalFeet, totalInches);
138 }
139
140 /**
141 The equals method compares this object to the
142 argument object. If both have the same values,
143 the method returns true.
144 @return true if the objects are equal, false
145 otherwise.
146 */
147
148 public boolean equals(FeetInches object2)
149 {
150 boolean status;
151
152 if (object2 == null)
153 status = false;
154 else if (feet == object2.feet &&
155 inches == object2.inches)
156 status = true;
157 else
158 status = false;
159 return status;
160 }

CS5-8 Case Study 5 The FeetInches Class

161
162 /**
163 The copy method makes a copy of the
164 calling object.
165 @return A reference to the copy.
166 */
167
168 public FeetInches copy()
169 {
170 // Make a new FeetInches object and
171 // initialize it with the same data
172 // as the calling object.
173 FeetInches newObject =
174 new FeetInches(feet, inches);
175
176 // Return a reference to the new object.
177 return newObject;
178 }
179 }

More about the toString Method
The program in Code Listing CS5-1 explicitly called the FeetInches class’s toString
method to display the contents of the distance object. The following statement appears
in lines 30 and 31:

System.out.println("The distance you entered is "
 + distance.toString());

In actuality, it is unnecessary to explicitly call the toString method in this statement. If
you write a toString method for a class, Java will automatically call the method any time
you concatenate an object of the class with a string. For example, the following statement
would implicitly call the distance object’s toString method:

System.out.println("The distance you entered is "
 + distance);

Java also implicitly calls an object’s toString method when the object is passed to the
print or println method. Assuming that distance is a FeetInches object, here is
an example:

System.out.println(distance);

This statement is equivalent to:

System.out.println(distance.toString());

NOTE: Every class automatically has a toString method that returns a string contain-
ing the object’s class name, followed by the @ symbol, followed by an integer that is usu-
ally based on the object’s memory address. This method is called when necessary if you
have not provided your own toString method. This is discussed further in Chapter 8.

 Case Study 5 The FeetInches Class CS5-9

The add Method
The add method is the first FeetInches method we will study that performs a same class
operation. It allows us to add one FeetInches object to another. Let’s take a closer look at
the method, which appears in lines 130 through 138. For your convenience, the method is
shown here:

130 public FeetInches add(FeetInches object2)
131 {
132 int totalFeet, // To hold the sum of feet
133 totalInches; // To hold the sum of inches
134
135 totalFeet = feet + object2.feet;
136 totalInches = inches + object2.inches;
137 return new FeetInches(totalFeet, totalInches);
138 }

This method accepts a FeetInches object as its argument. The parameter variable object2
will reference the object that was passed as an argument. The statement in line 135 adds
the feet field of the calling object to the feet field of the argument object, and stores the
result in the local variable totalFeet. Notice that the method can access object2’s feet
field directly. Because the add method is a member of the FeetInches class, it is allowed to
access object2’s private fields.

Next, in line 136, the method adds the inches field of the calling object to the inches field
of object2, and stores the result in the local variable totalInches.

The last statement, in line 137, creates a new FeetInches object, passes totalFeet and
totalInches to the constructor, and returns a reference to the object. The program in Code
Listing CS5-3 demonstrates the method.

Code Listing CS5-3 (DistanceAdd.java)

 1 /**
 2 This program uses the FeetInches class's add method
 3 to add two distances.
 4 */
 5
 6 public class DistanceAdd
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a FeetInches object holding 5 feet, 9 inches.
11 FeetInches distance1 = new FeetInches(5, 9);
12
13 // Create a FeetInches object holding 2 feet, 5 inches.
14 FeetInches distance2 = new FeetInches(2, 5);
15
16 // Declare a FeetInches variable that does not
17 // reference an object.

CS5-10 Case Study 5 The FeetInches Class

18 FeetInches distance3;
19
20 // Add distance 1 and distance 2, store the
21 // result in distance3.
22 distance3 = distance1.add(distance2);
23
24 // Display the results.
25 System.out.println("The first distance is " + distance1);
26 System.out.println("The second distance is " + distance2);
27 System.out.println("The sum of these distances is " + distance3);
28 }
29 }

Program Output

The first distance is 5 feet 9 inches
The second distance is 2 feet 5 inches
The sum of these distances is 8 feet 2 inches

The equals Method
Now let’s take a closer look at the equals method, which also performs a same class oper-
ation: It compares the contents of two FeetInches objects and determines whether the two
objects are equal. This method is useful because you cannot use the == operator to com-
pare the contents of two objects. For example, the following code appears to compare two
FeetInches objects, but in reality does not.

FeetInches distance1 = new FeetInches(6, 5);
FeetInches distance2 = new FeetInches(6, 5);
if (distance1 == distance2) // This is a mistake.
 System.out.println("The objects are the same.");
else
 System.out.println("The objects are not the same.");

When you use the == operator with reference variables, the operator compares the memory
addresses that the variables contain, not the contents of the objects referenced by the vari-
ables. This is illustrated in Figure CS5-2.

Because the two variables reference different objects in memory, they will contain different
addresses. Therefore, the result of the boolean expression distance1 == distance2 is false
and the code reports that the objects are not the same. Instead of using the == operator to
compare two FeetInches objects, we should use the equals method.

 Case Study 5 The FeetInches Class CS5-11

Here is the code for the method, which appears in lines 148 through 160:

148 public boolean equals(FeetInches object2)
149 {
150 boolean status;
151
152 if (object2 == null)
153 status = false;
154 else if (feet == object2.feet &&
155 inches == object2.inches)
156 status = true;
157 else
158 status = false;
159 return status;
160 }

This method accepts a FeetInches object as its argument. The parameter variable object2
will reference the object that was passed as an argument. Lines 154 and 155 perform the
following comparison: If the feet field of the calling object is equal to the feet field of
object2, and the inches field of the calling object is equal to the inches field of object2,
then the two objects contain the same distance. In this case, the local variable status
(a boolean) is set to true. Otherwise, status is set to false. The method returns the value
of the status variable in line 159. The program in Code Listing CS5-4 demonstrates the
equals method.

Code Listing CS5-4 (DistanceCompare.java)

 1 /**
 2 This program uses the FeetInches class's equals
 3 method to compare two distances.
 4 */

Figure CS5-2 The if statement tests the contents of the reference variables, not the contents
of the objects the variables reference

CS5-12 Case Study 5 The FeetInches Class

 5
 6 public class DistanceCompare
 7 {
 8 public static void main(String[] args)
 9 {
10 // Create a FeetInches object holding 5 feet, 9 inches.
11 FeetInches distance1 = new FeetInches(5, 9);
12
13 // Create a FeetInches object holding 5 feet, 9 inches.
14 FeetInches distance2 = new FeetInches(5, 9);
15
16 // Create a FeetInches object holding 7 feet, 4 inches.
17 FeetInches distance3 = new FeetInches(7, 4);
18
19 // Display the distances.
20 System.out.println("The first distance is " + distance1);
21 System.out.println("The second distance is " + distance2);
22 System.out.println("The third distance is " + distance3);
23
24 // Compare distance1 and distance2.
25 if (distance1.equals(distance2))
26 System.out.println("distances 1 and 2 are the same.");
27 else
28 System.out.println("distances 1 and 2 are not the same.");
29
30 // Compare distance1 and distance3.
31 if (distance1.equals(distance3))
32 System.out.println("distances 1 and 3 are the same.");
33 else
34 System.out.println("distances 1 and 3 are not the same.");
35 }
36 }

Program Output

The first distance is 5 feet 9 inches
The second distance is 5 feet 9 inches
The third distance is 7 feet 4 inches
distances 1 and 2 are the same.
distances 1 and 3 are not the same.

NOTE: Every class automatically has an equals method, which works the same as
the == operator. This method is called when necessary if you have not provided your
own equals method. This is discussed further in Chapter 10.

If you want to be able to compare the objects of a given class, you should always write an
equals method for the class.

 Case Study 5 The FeetInches Class CS5-13

The copy Method
The copy method also performs a same class operation: It returns a FeetInches object that
is a copy of the calling object. This method is necessary because you cannot copy objects
with a simple assignment statement, as you would with primitive variables. For example,
look at the following code:

FeetInches distance1 = new FeetInches(4, 9);
FeetInches distance2 = distance1;

The first statement creates a FeetInches object and assigns its address to the distance1
variable. The second statement assigns distance1 to distance2. This does not make a
copy of the object referenced by distance1. Rather, it makes a copy of the address that is
stored in distance1 and stores it in distance2. After this statement executes, both the
distance1 and distance2 variables will reference the same object. This is illustrated in
Figure CS5-3.

Figure CS5-3 Both variables reference the same object

The copy method, which appears in lines 168 through 178, creates a new FeetInches
object and passes the calling object’s feet and inches fields as arguments to the constructor.
This makes the new object a copy of the calling object. The method then returns a reference
to the new object. Here is the method’s code:

168 public FeetInches copy()
169 {
170 // Make a new FeetInches object and
171 // initialize it with the same data
172 // as the calling object.
173 FeetInches newObject =
174 new FeetInches(feet, inches);
175
176 // Return a reference to the new object.
177 return newObject;
178 }

CS5-14 Case Study 5 The FeetInches Class

The Copy Constructor
The FeetInches class has three constructors: a no-arg constructor, a constructor that
accepts arguments for the feet and inches fields, and a third constructor that accepts a
FeetInches object as its argument. Here is the code for the third constructor, which
appears in lines 45 through 49:

45 public FeetInches(FeetInches object2)
46 {
47 feet = object2.feet;
48 inches = object2.inches;
49 }

This type of constructor is sometimes referred to as a copy constructor. It makes the object
that is being created a copy of the object that was passed as an argument. For example, the
following code segment creates two FeetInches objects. The second one is a copy of the
first one.

// Create a FeetInches object holding 5 feet, 9 inches.
FeetInches distance1 = new FeetInches(5, 9);
// Create another one that is a copy.
FeetInches distance2 = new FeetInches(distance1);

In this case study you examine the SerialNumber class, which is used by the Home Soft-
ware Company to validate software serial numbers. A valid software serial number is in
the form LLLLL-DDDD-LLLL, where L indicates an alphabetic letter and D indicates a numeric
digit. For example, WRXTQ-7786-PGVZ is a valid serial number. Notice that a serial number
consists of three groups of characters, delimited by hyphens. Figure CS6-1 shows a UML
diagram for the SerialNumber class.

The SerialNumber Class

C
A

S
E

S
T

U
D

Y

6

Figure CS6-1 UML diagram for the SerialNumber class

The fields first, second, and third are used to hold the first, second, and third groups of
characters in a serial number. The valid field is set to true by the constructor to indicate a
valid serial number, or false to indicate an invalid serial number. Table CS6-1 describes
the class’s methods.

CS6-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS6-2 Case Study 6 The SerialNumber Class

The code for the SerialNumber class is shown in Code Listing CS6-1.

Code Listing CS6-1 (SerialNumber.java)

 1 /**
 2 The SerialNumber class takes a software serial number in
 3 the form of LLLLL-DDDD-LLLL where each L is a letter
 4 and each D is a digit. The serial number has three groups
 5 of characters, separated by hyphens. The class extracts
 6 the three groups of characters and validates them.
 7 */
 8
 9 public class SerialNumber
 10 {
 11 private String first; // First group of characters
 12 private String second; // Second group of characters
 13 private String third; // Third group of characters
 14 private boolean valid; // Flag indicating validity
 15
 16 /**
 17 The constructor breaks a serial number into
 18 three groups and each group is validated.
 19 @param sn A serial number.
 20 */
 21
 22 public SerialNumber(String sn)
 23 {

Table CS6-1 SerialNumber class’s methods

Method Description

Constructor The constructor accepts a string argument that contains a serial
number. The string is tokenized and its tokens are stored in the first,
second, and third fields. The validate method is called.

isValid This method returns the value in the valid field.

validate This method calls the isFirstGroupValid, isSecondGroupValid, and
isThirdGroupValid methods to validate the first, second, and third
fields.

isFirstGroupValid This method returns true if the value stored in the first field is valid.
Otherwise, it returns false.

isSecondGroupValid This method returns true if the value stored in the second field is
valid. Otherwise, it returns false.

isThirdGroupValid This method returns true if the value stored in the third field is valid.
Otherwise, it returns false.

 Case Study 6 The SerialNumber Class CS6-3

 24 // Trim the argument.
 25 sn = sn.trim();
 26
 27 // Tokenize the argument.
 28 String tokens[] = sn.split(“-”);
 29
 30 // Validate the tokens.
 31 if (tokens.length != 3)
 32 valid = false;
 33 else
 34 {
 35 first = tokens[0];
 36 second = tokens[1];
 37 third = tokens[2];
 38 validate();
 39 }
 40
 41 }
 42
 43 /**
 44 The isValid method returns a boolean value
 45 indicating whether the serial number is valid.
 46 @return true if the serial number is valid,
 47 otherwise false.
 48 */
 49
 50 public boolean isValid()
 51 {
 52 return valid;
 53 }
 54
 55 /**
 56 The validate method sets the valid field to true
 57 if the serial number is valid. Otherwise it sets
 58 valid to false.
 59 */
 60
 61 private void validate()
 62 {
 63 if (isFirstGroupValid() && isSecondGroupValid() &&
 64 isThirdGroupValid())
 65 valid = true;
 66 else
 67 valid = false;
 68 }
 69
 70 /**
 71 The isFirstGroupValid method validates the first

CS6-4 Case Study 6 The SerialNumber Class

 72 group of characters.
 73 @return true if the group is valid, otherwise false.
 74 */
 75
 76 private boolean isFirstGroupValid()
 77 {
 78 boolean groupGood = true; // Flag
 79 int i = 0; // Loop control variable
 80
 81 // Check the length of the group.
 82 if (first.length() != 5)
 83 groupGood = false;
 84
 85 // See if each character is a letter.
 86 while (groupGood && i < first.length())
 87 {
 88 if (!Character.isLetter(first.charAt(i)))
 89 groupGood = false;
 90 i++;
 91 }
 92
 93 return groupGood;
 94 }
 95
 96 /**
 97 The isSecondGroupValid method validates the second
 98 group of characters.
 99 @return true if the group is valid, otherwise false.
100 */
101
102
103 private boolean isSecondGroupValid()
104 {
105 boolean groupGood = true; // Flag
106 int i = 0; // Loop control variable
107
108 // Check the length of the group.
109 if (second.length() != 4)
110 groupGood = false;
111
112 // See if each character is a digit.
113 while (groupGood && i < second.length())
114 {
115 if (!Character.isDigit(second.charAt(i)))
116 groupGood = false;

 Case Study 6 The SerialNumber Class CS6-5

117 i++;
118 }
119
120 return groupGood;
121 }
122
123 /**
124 The isThirdGroupValid method validates the third
125 group of characters.
126 @return true if the group is valid, otherwise false.
127 */
128
129
130 private boolean isThirdGroupValid()
131 {
132 boolean groupGood = true; // Flag
133 int i = 0; // Loop control variable
134
135 // Check the length of the group.
136 if (third.length() != 4)
137 groupGood = false;
138
139 // See if each character is a letter.
140 while (groupGood && i < third.length())
141 {
142 if (!Character.isLetter(third.charAt(i)))
143 groupGood = false;
144 i++;
145 }
146
147 return groupGood;
148 }
149 }

Let’s take a closer look at the constructor.

Notice that in line 25 we call the argument’s trim method to remove any leading and/or
trailing whitespace characters. This is important because whitespace characters are not
used as delimiters in this code. If the argument contains leading whitespace characters,
they will be included as part of the first token. Trailing whitespace characters will be
included as part of the last token. Then, in line 27 we call the argument’s split method to
tokenize the string, using the “-” character as a delimiter. The tokens are returned to an
array named tokens.

CS6-6 Case Study 6 The SerialNumber Class

Next, the if statement in lines 31 through 39 executes:

31 if (tokens.length != 3)
32 valid = false;
33 else
34 {
35 first = tokens[0];
36 second = tokens[1];
37 third = tokens[2];
38 validate();
39 }

A valid serial number must have three groups of characters, so the if statement determines
whether the tokens array has three elements. If not, the valid field is set to false. Other-
wise, the three tokens are assigned to the first, second, and third fields. Last, the
validate method is called. The validate method calls the isFirstGroupValid,
isSecondGroupValid, and isThirdGroupValid methods to validate the three groups of
characters. In the end, the valid field will be set to true if the serial number is valid, or
false otherwise. The program in Code Listing CS6-2 demonstrates the class.

Code Listing CS6-2 (SerialNumberTester.java)

 1 /**
 2 This program demonstrates the SerialNumber class.
 3 */
 4
 5 public class SerialNumberTester
 6 {
 7 public static void main(String[] args)
 8 {
 9 String serial1 = "GHTRJ-8975-AQWR"; // Valid
10 String serial2 = "GHT7J-8975-AQWR"; // Invalid
11 String serial3 = "GHTRJ-8J75-AQWR"; // Invalid
12 String serial4 = "GHTRJ-8975-AQ2R"; // Invalid
13
14 // Validate serial1.
15
16 SerialNumber sn = new SerialNumber(serial1);
17 if (sn.isValid())
18 System.out.println(serial1 + " is valid.");
19 else
20 System.out.println(serial1 + " is invalid.");
21
22 // Validate serial2.
23
24 sn = new SerialNumber(serial2);
25 if (sn.isValid())
26 System.out.println(serial2 + " is valid.");

 Case Study 6 The SerialNumber Class CS6-7

27 else
28 System.out.println(serial2 + " is invalid.");
29
30 // Validate serial3.
31
32 sn = new SerialNumber(serial3);
33 if (sn.isValid())
34 System.out.println(serial3 + " is valid.");
35 else
36 System.out.println(serial3 + " is invalid.");
37
38 // Validate serial4.
39
40 sn = new SerialNumber(serial4);
41 if (sn.isValid())
42 System.out.println(serial4 + " is valid.");
43 else
44 System.out.println(serial4 + " is invalid.");
45 }
46 }

Program Output

GHTRJ-8975-AQWR is valid.
GHT7J-8975-AQWR is invalid.
GHTRJ-8J75-AQWR is invalid.
GHTRJ-8975-AQ2R is invalid.

This page intentionally left blank

To demonstrate the JTextArea component, fonts, menus, and file choosers, we present a simple
text editor application. This application allows you to create new text files and open existing
text files. The file contents are displayed in a text area. You can also change the font and style
of the text that is displayed in the text area. The application’s window is shown in Figure CS7-1.
Line wrapping is turned on, using word wrap style, and the text area is in a scroll pane.

A Simple Text Editor
Application

C
A

S
E

S
T

U
D

Y

7

Figure CS7-1 The text editor window

CS7-1

From Starting Out with Java: From Control Structures through Objects, Sixth Edition. Tony Gaddis.
Copyright © 2016 by Pearson Education, Inc. All rights reserved.

CS7-2 Case Study 7 A Simple Text Editor Application

The application uses a menu system to perform these operations, which is shown in
Figure CS7-2.

Figure CS7-2 Menu system for the text editor application

Each menu item generates an action event that is handled by an action listener. The follow-
ing section presents a summary of the actions performed by each menu item.

File Menu
New This menu item clears any text that is stored in the text area. In addition, the

class’s filename field is set to null. The filename field contains the path and
name of the file that is currently displayed in the text area.

Open This menu item displays a file chooser that allows the user to select a file to
open. If the user selects a file, it is opened and its contents are read into the text
area. The path and name of the file are stored in the filename field.

Save This menu item saves the contents of the text area. The contents are saved to the
file with the name and path stored in the filename field. If the filename field is
set to null, which would indicate that the file has not been saved yet, then this
menu item performs the same action as the Save As menu item.

Save As This menu item displays a file chooser that allows the user to select a location
and file name. The contents of the text area are written to the selected file, and
the path and file name are stored in the filename field. (Be careful when using
this menu item. As it is currently written, this application does not warn you
when you are about to overwrite an existing file!)

Exit This menu item ends the application.

Font Menu
Monospaced This radio button menu item changes the text area’s font to Monospaced.

Serif This radio button menu item changes the text area’s font to Serif.

SansSerif This radio button menu item changes the text area’s font to SansSerif.

Italic This check box menu item changes the text area’s style to italic.

Bold This check box menu item changes the text area’s style to bold.

Code Listing CS7-1 shows the code for the TextEditor class. The main method creates
an instance of the class, which displays the text editor window. Figure CS7-3 shows the
window displaying text in various fonts and styles.

 Case Study 7 A Simple Text Editor Application CS7-3

Code Listing CS7-1 (TextEditor.java)

 1 import java.awt.*;
 2 import java.awt.event.*;
 3 import javax.swing.*;
 4 import java.io.*;
 5 import java.util.Scanner;
 6
 7 /**
 8 The TextEditor class is a simple text editor.
 9 */
 10
 11 public class TextEditor extends JFrame
 12 {
 13 // The following are fields for the menu system.
 14 // First, the menu bar
 15 private JMenuBar menuBar;
 16

SansSerif font, plain style Monospaced font, bold style

Serif font, bold and italic style

Figure CS7-3 Text displayed in various fonts and styles

CS7-4 Case Study 7 A Simple Text Editor Application

 17 // The menus
 18 private JMenu fileMenu;
 19 private JMenu fontMenu;
 20
 21 // The menu items
 22 private JMenuItem newItem;
 23 private JMenuItem openItem;
 24 private JMenuItem saveItem;
 25 private JMenuItem saveAsItem;
 26 private JMenuItem exitItem;
 27
 28 // The radio button menu items
 29 private JRadioButtonMenuItem monoItem;
 30 private JRadioButtonMenuItem serifItem;
 31 private JRadioButtonMenuItem sansSerifItem;
 32
 33 // The checkbox menu items
 34 private JCheckBoxMenuItem italicItem;
 35 private JCheckBoxMenuItem boldItem;
 36
 37 private String filename; // To hold the file name
 38 private JTextArea editorText;// To display the text
 39 private final int NUM_LINES = 20; // Lines to display
 40 private final int NUM_CHARS = 40; // Chars per line
 41
 42 /**
 43 Constructor
 44 */
 45
 46 public TextEditor()
 47 {
 48 // Set the title.
 49 setTitle("Text Editor");
 50
 51 // Specify what happens when the close
 52 // button is clicked.
 53 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 54
 55 // Create the text area.
 56 editorText = new JTextArea(NUM_LINES, NUM_CHARS);
 57
 58 // Turn line wrapping on.
 59 editorText.setLineWrap(true);
 60 editorText.setWrapStyleWord(true);
 61
 62 // Create a scroll pane and add the text area to it.
 63 JScrollPane scrollPane = new JScrollPane(editorText);
 64

 Case Study 7 A Simple Text Editor Application CS7-5

 65 // Add the scroll pane to the content pane.
 66 add(scrollPane);
 67
 68 // Build the menu bar.
 69 buildMenuBar();
 70
 71 // Pack and display the window.
 72 pack();
 73 setVisible(true);
 74 }
 75
 76 /**
 77 The buildMenuBar method creates a menu bar and
 78 calls the createFileMenu method to create the
 79 file menu.
 80 */
 81
 82 private void buildMenuBar()
 83 {
 84 // Build the file and font menus.
 85 buildFileMenu();
 86 buildFontMenu();
 87
 88 // Create the menu bar.
 89 menuBar = new JMenuBar();
 90
 91 // Add the file and font menus to the menu bar.
 92 menuBar.add(fileMenu);
 93 menuBar.add(fontMenu);
 94
 95 // Set the menu bar for this frame.
 96 setJMenuBar(menuBar);
 97 }
 98
 99 /**
100 The buildFileMenu method creates the file menu
101 and populates it with its menu items.
102 */
103
104 private void buildFileMenu()
105 {
106 // Create the New menu item.
107 newItem = new JMenuItem("New");
108 newItem.setMnemonic(KeyEvent.VK_N);
109 newItem.addActionListener(new NewListener());
110
111 // Create the Open menu item.
112 openItem = new JMenuItem("Open");

CS7-6 Case Study 7 A Simple Text Editor Application

113 openItem.setMnemonic(KeyEvent.VK_O);
114 openItem.addActionListener(new OpenListener());
115
116 // Create the Save menu item.
117 saveItem = new JMenuItem("Save");
118 saveItem.setMnemonic(KeyEvent.VK_S);
119 saveItem.addActionListener(new SaveListener());
120
121 // Create the Save As menu item.
122 saveAsItem = new JMenuItem("Save As");
123 saveAsItem.setMnemonic(KeyEvent.VK_A);
124 saveAsItem.addActionListener(new SaveListener());
125
126 // Create the Exit menu item.
127 exitItem = new JMenuItem("Exit");
128 exitItem.setMnemonic(KeyEvent.VK_X);
129 exitItem.addActionListener(new ExitListener());
130
131 // Create a menu for the items we just created.
132 fileMenu = new JMenu("File");
133 fileMenu.setMnemonic(KeyEvent.VK_F);
134
135 // Add the items and some separator bars to the menu.
136 fileMenu.add(newItem);
137 fileMenu.add(openItem);
138 fileMenu.addSeparator();// Separator bar
139 fileMenu.add(saveItem);
140 fileMenu.add(saveAsItem);
141 fileMenu.addSeparator();// Separator bar
142 fileMenu.add(exitItem);
143 }
144
145 /**
146 The buildFontMenu method creates the font menu
147 and populates it with its menu items.
148 */
149
150 private void buildFontMenu()
151 {
152 // Create the Monospaced menu item.
153 monoItem = new JRadioButtonMenuItem("Monospaced");
154 monoItem.addActionListener(new FontListener());
155
156 // Create the Serif menu item.
157 serifItem = new JRadioButtonMenuItem("Serif");
158 serifItem.addActionListener(new FontListener());
159

 Case Study 7 A Simple Text Editor Application CS7-7

160 // Create the SansSerif menu item.
161 sansSerifItem =
162 new JRadioButtonMenuItem("SansSerif", true);
163 sansSerifItem.addActionListener(new FontListener());
164
165 // Group the radio button menu items.
166 ButtonGroup group = new ButtonGroup();
167 group.add(monoItem);
168 group.add(serifItem);
169 group.add(sansSerifItem);
170
171 // Create the Italic menu item.
172 italicItem = new JCheckBoxMenuItem("Italic");
173 italicItem.addActionListener(new FontListener());
174
175 // Create the Bold menu item.
176 boldItem = new JCheckBoxMenuItem("Bold");
177 boldItem.addActionListener(new FontListener());
178
179 // Create a menu for the items we just created.
180 fontMenu = new JMenu("Font");
181 fontMenu.setMnemonic(KeyEvent.VK_T);
182
183 // Add the items and some separator bars to the menu.
184 fontMenu.add(monoItem);
185 fontMenu.add(serifItem);
186 fontMenu.add(sansSerifItem);
187 fontMenu.addSeparator();// Separator bar
188 fontMenu.add(italicItem);
189 fontMenu.add(boldItem);
190 }
191
192 /**
193 Private inner class that handles the event that
194 is generated when the user selects New from
195 the file menu.
196 */
197
198 private class NewListener implements ActionListener
199 {
200 public void actionPerformed(ActionEvent e)
201 {
202 editorText.setText("");
203 filename = null;
204 }
205 }
206

CS7-8 Case Study 7 A Simple Text Editor Application

207 /**
208 Private inner class that handles the event that
209 is generated when the user selects Open from
210 the file menu.
211 */
212
213 private class OpenListener implements ActionListener
214 {
215 public void actionPerformed(ActionEvent e)
216 {
217 int chooserStatus;
218
219 JFileChooser chooser = new JFileChooser();
220 chooserStatus = chooser.showOpenDialog(null);
221 if (chooserStatus == JFileChooser.APPROVE_OPTION)
222 {
223 // Get a reference to the selected file.
224 File selectedFile = chooser.getSelectedFile();
225
226 // Get the path of the selected file.
227 filename = selectedFile.getPath();
228
229 // Open the file.
230 if (!openFile(filename))
231 {
232 JOptionPane.showMessageDialog(null,
233 "Error reading " +
234 filename, "Error",
235 JOptionPane.ERROR_MESSAGE);
236 }
237 }
238 }
239
240 /**
241 The openFile method opens the file specified by
242 filename and reads its contents into the text
243 area. The method returns true if the file was
244 opened and read successfully, or false if an
245 error occurred.
246 @param filename The name of the file to open.
247 */
248
249 private boolean openFile(String filename)
250 {
251 boolean success;
252 String inputLine, editorString = "";
253

 Case Study 7 A Simple Text Editor Application CS7-9

254 try
255 {
256 // Open the file.
257 File file = new File(filename);
258 Scanner inputFile = new Scanner(file);
259
260 // Read the file contents into the editor.
261 while (inputFile.hasNext())
262 {
263 // Read a line from the file.
264 inputLine = inputFile.nextLine();
265
266 // Append it to the string to display
267 // in the editor.
268 editorString = editorString +
269 inputLine + "\n";
270 }
271
272 // Display the string that was read from the
273 // file in the editor.
274 editorText.setText(editorString);
275
276 // Close the file.
277 inputFile.close();
278
279 // Indicate that everything went OK.
280 success = true;
281 }
282 catch (IOException e)
283 {
284 // Something went wrong.
285 success = false;
286 }
287
288 // Return our status.
289 return success;
290 }
291 }
292
293 /**
294 Private inner class that handles the event that
295 is generated when the user selects Save or Save
296 As from the file menu.
297 */
298
299 private class SaveListener implements ActionListener
300 {
301 public void actionPerformed(ActionEvent e)

CS7-10 Case Study 7 A Simple Text Editor Application

302 {
303 int chooserStatus;
304
305 // If the user selected Save As, or the contents
306 // of the editor have not been saved, use a file
307 // chooser to get the file name. Otherwise, save
308 // the file under the current file name.
309
310 if (e.getActionCommand() == "Save As" ||
311 filename == null)
312 {
313 JFileChooser chooser = new JFileChooser();
314 chooserStatus = chooser.showSaveDialog(null);
315 if (chooserStatus == JFileChooser.APPROVE_OPTION)
316 {
317 // Get a reference to the selected file.
318 File selectedFile =
319 chooser.getSelectedFile();
320
321 // Get the path of the selected file.
322 filename = selectedFile.getPath();
323 }
324 }
325
326 // Save the file.
327 if (!saveFile(filename))
328 {
329 JOptionPane.showMessageDialog(null,
330 "Error saving " +
331 filename,
332 "Error",
333 JOptionPane.ERROR_MESSAGE);
334 }
335 }
336
337 /**
338 The saveFile method saves the contents of the
339 text area to a file. The method returns true if
340 the file was saved successfully, or false if an
341 error occurred.
342 @param filename The name of the file.
343 @return true if successful, false otherwise.
344 */
345
346 private boolean saveFile(String filename)
347 {
348 boolean success;
349 String editorString;
350 PrintWriter outputFile;

 Case Study 7 A Simple Text Editor Application CS7-11

351
352 try
353 {
354 // Open the file.
355 outputFile = new PrintWriter(filename);
356
357 // Write the contents of the text area
358 // to the file.
359 editorString = editorText.getText();
360 outputFile.print(editorString);
361
362 // Close the file.
363 outputFile.close();
364
365 // Indicate that everything went OK.
366 success = true;
367 }
368 catch (IOException e)
369 {
370 // Something went wrong.
371 success = false;
372 }
373
374 // Return our status.
375 return success;
376 }
377 }
378
379 /**
380 Private inner class that handles the event that
381 is generated when the user selects Exit from
382 the file menu.
383 */
384
385 private class ExitListener implements ActionListener
386 {
387 public void actionPerformed(ActionEvent e)
388 {
389 System.exit(0);
390 }
391 }
392
393 /**
394 Private inner class that handles the event that
395 is generated when the user selects an item from
396 the font menu.
397 */
398

CS7-12 Case Study 7 A Simple Text Editor Application

399 private class FontListener implements ActionListener
400 {
401 public void actionPerformed(ActionEvent e)
402 {
403 // Get the current font.
404 Font textFont = editorText.getFont();
405
406 // Retrieve the font name and size.
407 String fontName = textFont.getName();
408 int fontSize = textFont.getSize();
409
410 // Start with plain style.
411 int fontStyle = Font.PLAIN;
412
413 // Determine which font is selected.
414 if (monoItem.isSelected())
415 fontName = "Monospaced";
416 else if (serifItem.isSelected())
417 fontName = "Serif";
418 else if (sansSerifItem.isSelected())
419 fontName = "SansSerif";
420
421 // Determine whether italic is selected.
422 if (italicItem.isSelected())
423 fontStyle += Font.ITALIC;
424
425 // Determine whether bold is selected.
426 if (boldItem.isSelected())
427 fontStyle += Font.BOLD;
428
429 // Set the font as selected.
430 editorText.setFont(new Font(fontName,
431 fontStyle, fontSize));
432 }
433 }
434
435 /**
436 main method
437 */
438
439 public static void main(String[] args)
440 {
441 TextEditor te = new TextEditor();
442 }
443 }

	Front Cover
	Title Page
	Copyright Page
	Contents in Brief
	CONTENTS (with direct page links)
	Location of Videonotes in the Text
	Preface
	About the Author
	1. Introduction to Computers and Java
	1.1 Introduction�����������������������
	1.2 Why Program?�����������������������
	1.3 Computer Systems: Hardware and Software��
	Hardware���������������
	Software���������������

	1.4 Programming Languages��������������������������������
	What Is a Program?�������������������������
	A History of Java������������������������
	Java Applications and Applets������������������������������������

	1.5 What Is a Program Made Of?�������������������������������������
	Language Elements������������������������
	Lines and Statements���������������������������
	Variables����������������
	The Compiler and the Java Virtual Machine��
	Java Software Editions�����������������������������
	Compiling and Running a Java Program���

	1.6 The Programming Process����������������������������������
	Software Engineering���������������������������

	1.7 Object-Oriented Programming��������������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenge����������������������������

	2. Java Fundamentals
	2.1 The Parts of a Java Program��������������������������������������
	2.2 The print and println Methods, and the Java API��
	2.3 Variables and Literals���������������������������������
	Displaying Multiple Items with the + Operator��
	Be Careful with Quotation Marks��������������������������������������
	More about Literals��������������������������
	Identifiers������������������
	Class Names������������������

	2.4 Primitive Data Types�������������������������������
	The Integer Data Types�����������������������������
	Floating-Point Data Types��������������������������������
	The boolean Data Type����������������������������
	The char Data Type�������������������������
	Variable Assignment and Initialization���
	Variables Hold Only One Value at a Time��

	2.5 Arithmetic Operators�������������������������������
	Integer Division�����������������������
	Operator Precedence��������������������������
	Grouping with Parentheses��������������������������������
	The Math Class���������������������

	2.6 Combined Assignment Operators��
	2.7 Conversion between Primitive Data Types��
	Mixed Integer Operations�������������������������������
	Other Mixed Mathematical Expressions���

	2.8 Creating Named Constants with final��
	2.9 The String Class���������������������������
	Objects Are Created from Classes���������������������������������������
	The String Class�����������������������
	Primitive Type Variables and Class Type Variables��
	Creating a String Object�������������������������������

	2.10 Scope�����������������
	2.11 Comments��������������������
	2.12 Programming Style�����������������������������
	2.13 Reading Keyboard Input����������������������������������
	Reading a Character��������������������������
	Mixing Calls to nextLine with Calls to Other Scanner Methods���

	2.14 Dialog Boxes������������������������
	Displaying Message Dialogs���������������������������������
	Displaying Input Dialogs�������������������������������
	An Example Program�������������������������
	Converting String Input to Numbers���

	2.15 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	3. Decision Structures
	3.1 The if Statement���������������������������
	Using Relational Operators to Form Conditions��
	Putting It All Together������������������������������
	Programming Style and the if Statement���
	Be Careful with Semicolons���������������������������������
	Having Multiple Conditionally Executed Statements��
	Flags������������
	Comparing Characters���������������������������

	3.2 The if-else Statement��������������������������������
	3.3 Nested if Statements�������������������������������
	3.4 The if-else-if Statement�����������������������������������
	3.5 Logical Operators����������������������������
	The Precedence of Logical Operators��
	Checking Numeric Ranges with Logical Operators���

	3.6 Comparing String Objects�����������������������������������
	Ignoring Case in String Comparisons��

	3.7 More about Variable Declaration and Scope��
	3.8 The Conditional Operator (Optional)��
	3.9 The switch Statement�������������������������������
	3.10 Displaying Formatted Output with System.out.printf and String.format��
	Format Specifier Syntax������������������������������
	Precision����������������
	Specifying a Minimum Field Width���������������������������������������
	Flags������������
	Formatting String Arguments����������������������������������
	The String.format Method�������������������������������

	3.11 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	4. Loops and Files
	4.1 The Increment and Decrement Operators��
	The Difference between Postfix and Prefix Modes��

	4.2 The while Loop�������������������������
	The while Loop Is a Pretest Loop���������������������������������������
	Infinite Loops���������������������
	Don’t Forget the Braces with a Block of Statements���
	Programming Style and the while Loop���

	4.3 Using the while Loop for Input Validation��
	4.4 The do-while Loop����������������������������
	4.5 The for Loop�����������������������
	The for Loop Is a Pretest Loop�������������������������������������
	Avoid Modifying the Control Variable in the Body of the for Loop���
	Other Forms of the Update Expression���
	Declaring a Variable in the for Loop’s Initialization Expression���
	Creating a User Controlled for Loop��
	Using Multiple Statements in the Initialization and Update Expressions���

	4.6 Running Totals and Sentinel Values���
	Using a Sentinel Value�����������������������������

	4.7 Nested Loops�����������������������
	4.8 The break and continue Statements (Optional)���
	4.9 Deciding Which Loop to Use�������������������������������������
	4.10 Introduction to File Input and Output���
	Using the PrintWriter Class to Write Data to a File��
	Appending Data to a File�������������������������������
	Specifying the File Location�����������������������������������
	Reading Data from a File�������������������������������
	Reading Lines from a File with the nextLine Method���
	Adding a throws Clause to the Method Header��
	Checking for a File’s Existence��������������������������������������

	4.11 Generating Random Numbers with the Random Class���
	4.12 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	5. Methods
	5.1 Introduction to Methods����������������������������������
	void Methods and Value-Returning Methods���
	Defining a void Method�����������������������������
	Calling a Method�����������������������
	Hierarchical Method Calls��������������������������������
	Using Documentation Comments with Methods��

	5.2 Passing Arguments to a Method��
	Argument and Parameter Data Type Compatibility���
	Parameter Variable Scope�������������������������������
	Passing Multiple Arguments���������������������������������
	Arguments Are Passed by Value������������������������������������
	Passing Object References to a Method��
	Using the @param Tag in Documentation Comments

	5.3 More about Local Variables�������������������������������������
	Local Variable Lifetime������������������������������
	Initializing Local Variables with Parameter Values���

	5.4 Returning a Value from a Method��
	Defining a Value-Returning Method��
	Calling a Value-Returning Method���������������������������������������
	Using the @return Tag in Documentation Comments
	Returning a boolean Value��������������������������������
	Returning a Reference to an Object���

	5.5 Problem Solving with Methods���������������������������������������
	Calling Methods That Throw Exceptions��

	5.6 Common Errors to Avoid���������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	6. A First Look at Classes
	6.1 Objects and Classes������������������������������
	Classes: Where Objects Come From���������������������������������������
	Classes in the Java API������������������������������
	Primitive Variables vs. Objects��������������������������������������

	6.2 Writing a Simple Class, Step by Step���
	Accessor and Mutator Methods�����������������������������������
	The Importance of Data Hiding������������������������������������
	Avoiding Stale Data��������������������������
	Showing Access Specification in UML Diagrams���
	Data Type and Parameter Notation in UML Diagrams���
	Layout of Class Members������������������������������

	6.3 Instance Fields and Methods��������������������������������������
	6.4 Constructors�����������������������
	Showing Constructors in a UML Diagram��
	Uninitialized Local Reference Variables��
	The Default Constructor������������������������������
	Writing Your Own No-Arg Constructor��
	The String Class Constructor�����������������������������������

	6.5 Passing Objects as Arguments���������������������������������������
	6.6 Overloading Methods and Constructors���
	The BankAccount Class����������������������������
	Overloaded Methods Make Classes More Useful��

	6.7 Scope of Instance Fields�����������������������������������
	Shadowing����������������

	6.8 Packages and import Statements���
	Explicit and Wildcard import Statements��
	The java.lang Package����������������������������
	Other API Packages�������������������������

	6.9 Focus on Object-Oriented Design: Finding the Classes and Their Responsibilities��
	Finding the Classes��������������������������
	Identifying a Class’s Responsibilities���
	This Is Only the Beginning���������������������������������

	6.10 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	7. Arrays and the ArrayList Class
	7.1 Introduction to Arrays���������������������������������
	Accessing Array Elements�������������������������������
	Inputting and Outputting Array Contents��
	Java Performs Bounds Checking������������������������������������
	Watch Out for Off-by-One Errors��������������������������������������
	Array Initialization���������������������������
	Alternate Array Declaration Notation���

	7.2 Processing Array Elements������������������������������������
	Array Length�������������������
	The Enhanced for Loop����������������������������
	Letting the User Specify an Array’s Size���
	Reassigning Array Reference Variables��
	Copying Arrays���������������������

	7.3 Passing Arrays as Arguments to Methods���
	7.4 Some Useful Array Algorithms and Operations��
	Comparing Arrays�����������������������
	Summing the Values in a Numeric Array��
	Getting the Average of the Values in a Numeric Array���
	Finding the Highest and Lowest Values in a Numeric Array���
	The SalesData Class��������������������������
	Partially Filled Arrays������������������������������
	Working with Arrays and Files������������������������������������

	7.5 Returning Arrays from Methods��
	7.6 String Arrays������������������������
	Calling String Methods from an Array Element���

	7.7 Arrays of Objects����������������������������
	7.8 The Sequential Search Algorithm��
	7.9 Two-Dimensional Arrays���������������������������������
	Initializing a Two-Dimensional Array���
	The length Field in a Two-Dimensional Array��
	Displaying All the Elements of a Two-Dimensional Array���
	Summing All the Elements of a Two-Dimensional Array��
	Summing the Rows of a Two-Dimensional Array��
	Summing the Columns of a Two-Dimensional Array���
	Passing Two-Dimensional Arrays to Methods��
	Ragged Arrays��������������������

	7.10 Arrays with Three or More Dimensions��
	7.11 The Selection Sort and the Binary Search Algorithms���
	The Selection Sort Algorithm�����������������������������������
	The Binary Search Algorithm����������������������������������

	7.12 Command-Line Arguments and Variable-Length Argument Lists���
	Command-Line Arguments�����������������������������
	Variable-Length Argument Lists�������������������������������������

	7.13 The ArrayList Class�������������������������������
	Creating and Using an ArrayList Object���
	Using the Enhanced for Loop with an ArrayList��
	The ArrayList Class’s toString method��
	Removing an Item from an ArrayList���
	Inserting an Item������������������������
	Replacing an Item������������������������
	Capacity���������������
	Using the Diamond Operator for Type Inference (Java 7)���

	7.14 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	8. A Second Look at Classes and Objects
	8.1 Static Class Members�������������������������������
	A Quick Review of Instance Fields and Instance Methods���
	Static Members���������������������
	Static Fields��������������������
	Static Methods���������������������

	8.2 Passing Objects as Arguments to Methods��
	8.3 Returning Objects from Methods���
	8.4 The toString Method������������������������������
	8.5 Writing an equals Method�����������������������������������
	8.6 Methods That Copy Objects������������������������������������
	Copy Constructors������������������������

	8.7 Aggregation����������������������
	Aggregation in UML Diagrams����������������������������������
	Security Issues with Aggregate Classes���
	Avoid Using null References����������������������������������

	8.8 The this Reference Variable��������������������������������������
	Using this to Overcome Shadowing���������������������������������������
	Using this to Call an Overloaded Constructor from Another Constructor��

	8.9 Enumerated Types���������������������������
	Enumerated Types Are Specialized Classes���
	Switching On an Enumerated Type��������������������������������������

	8.10 Garbage Collection������������������������������
	The finalize Method��������������������������

	8.11 Focus on Object-Oriented Design: Class Collaboration��
	Determining Class Collaborations with CRC Cards��

	8.12 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	9. Text Processing and More about Wrapper Classes
	9.1 Introduction to Wrapper Classes��
	9.2 Character Testing and Conversion with the Character Class��
	Character Case Conversion��������������������������������

	9.3 More String Methods������������������������������
	Searching for Substrings�������������������������������
	Extracting Substrings����������������������������
	Methods That Return a Modified String��
	The Static value Of Methods

	9.4 The StringBuilder Class����������������������������������
	The StringBuilder Constructors�������������������������������������
	Other StringBuilder Methods����������������������������������
	The toString Method��������������������������

	9.5 Tokenizing Strings�����������������������������
	9.6 Wrapper Classes for the Numeric Data Types���
	The Static toString Methods����������������������������������
	The toBinaryString, toHexString, and toOctalString Methods���
	The MIN_VALUE and MAX_VALUE Constants��
	Autoboxing and Unboxing������������������������������

	9.7 Focus on Problem Solving: The TestScoreReader Class��
	9.8 Common Errors to Avoid���������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	10. Inheritance
	10.1 What Is Inheritance?��������������������������������
	Generalization and Specialization��
	Inheritance and the “Is a” Relationship��
	Inheritance in UML Diagrams����������������������������������
	The Superclass’s Constructor�����������������������������������
	Inheritance Does Not Work in Reverse���

	10.2 Calling the Superclass Constructor��
	When the Superclass Has No Default or No-Arg Constructors
	Summary of Constructor Issues in Inheritance���

	10.3 Overriding Superclass Methods���
	Overloading versus Overriding������������������������������������
	Preventing a Method from Being Overridden��

	10.4 Protected Members�����������������������������
	Package Access���������������������

	10.5 Chains of Inheritance���������������������������������
	Class Hierarchies������������������������

	10.6 The Object Class����������������������������
	10.7 Polymorphism������������������������
	Polymorphism and Dynamic Binding���������������������������������������
	The “Is-a” Relationship Does Not Work in Reverse���
	The instanceof Operator������������������������������

	10.8 Abstract Classes and Abstract Methods���
	Abstract Classes in UML������������������������������

	10.9 Interfaces����������������������
	An Interface is a Contract���������������������������������
	Fields in Interfaces���������������������������
	Implementing Multiple Interfaces���������������������������������������
	Interfaces in UML������������������������
	Default Methods����������������������
	Polymorphism and Interfaces����������������������������������

	10.10 Anonymous Inner Classes������������������������������������
	10.11 Functional Interfaces and Lambda Expressions���
	10.12 Common Errors to Avoid�����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	11. Exceptions and Advanced File I/O
	11.1 Handling Exceptions�������������������������������
	Exception Classes������������������������
	Handling an Exception����������������������������
	Retrieving the Default Error Message���
	Polymorphic References to Exceptions���
	Using Multiple catch Clauses to Handle Multiple Exceptions���
	The finally Clause�������������������������
	The Stack Trace����������������������
	Handling Multiple Exceptions with One catch Clause (Java 7)��
	When an Exception Is Not Caught��������������������������������������
	Checked and Unchecked Exceptions���������������������������������������

	11.2 Throwing Exceptions�������������������������������
	Creating Your Own Exception Classes��
	Using the @exception Tag in Documentation Comments

	11.3 Advanced Topics: Binary Files, Random Access Files, and Object Serialization��
	Binary Files�������������������
	Random Access Files��������������������������
	Object Serialization���������������������������
	Serializing Aggregate Objects������������������������������������

	11.4 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	12. A First Look at GUI Applications
	12.1 Introduction������������������������
	The JFC, AWT, and Swing������������������������������
	Event-Driven Programming�������������������������������
	The javax.swing and java.awt Packages��

	12.2 Creating Windows����������������������������
	Using Inheritance to Extend the JFrame Class���
	Equipping GUI Classes with a main Method���
	Adding Components to a Window������������������������������������
	Handling Events with Action Listeners��
	Writing an Event Listener for the KiloConverter Class��
	Background and Foreground Colors���������������������������������������
	The ActionEvent Object�����������������������������

	12.3 Layout Managers���������������������������
	Adding a Layout Manager to a Container���
	The FlowLayout Manager�����������������������������
	The BorderLayout Manager�������������������������������
	The GridLayout Manager�����������������������������

	12.4 Radio Buttons and Check Boxes���
	Radio Buttons��������������������
	Check Boxes������������������

	12.5 Borders�������������������
	12.6 Focus on Problem Solving: Extending Classes from JPanel���
	The Brandi’s Bagel House Application���
	The GreetingPanel Class������������������������������
	The BagelPanel Class���������������������������
	The ToppingPanel Class�����������������������������
	The CoffeePanel Class����������������������������
	Putting It All Together������������������������������

	12.7 Splash Screens��������������������������
	12.8 Using Console Output to Debug a GUI Application���
	12.9 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	13. Advanced GUI Applications
	13.1 The Swing and AWT Class Hierarchy���
	13.2 Read-Only Text Fields���������������������������������
	13.3 Lists�����������������
	Selection Modes����������������������
	Responding to List Events��������������������������������
	Retrieving the Selected Item�����������������������������������
	Placing a Border around a List�������������������������������������
	Adding a Scroll Bar to a List������������������������������������
	Adding Items to an Existing JList Component��
	Multiple Selection Lists�������������������������������

	13.4 Combo Boxes�����������������������
	Retrieving the Selected Item�����������������������������������

	13.5 Displaying Images in Labels and Buttons���
	13.6 Mnemonics and Tool Tips�����������������������������������
	Mnemonics����������������
	Tool Tips����������������

	13.7 File Choosers and Color Choosers��
	File Choosers��������������������
	Color Choosers���������������������

	13.8 Menus�����������������
	13.9 More about Text Components: Text Areas and Fonts��
	Text Areas�����������������
	Fonts������������

	13.10 Sliders��������������������
	13.11 Look and Feel��������������������������
	13.12 Common Errors to Avoid�����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	14. Applets and More
	14.1 Introduction to Applets�����������������������������������
	14.2 A Brief Introduction to HTML��
	Hypertext����������������
	Markup Language����������������������
	Document Structure Tags������������������������������
	Text Formatting Tags���������������������������
	Creating Breaks in Text������������������������������
	Inserting Links����������������������

	14.3 Creating Applets with Swing���������������������������������������
	Running an Applet������������������������
	Handling Events in an Applet�����������������������������������

	14.4 Using AWT for Portability�������������������������������������
	14.5 Drawing Shapes��������������������������
	The XY Coordinate System�������������������������������
	Graphics Objects�����������������������
	The repaint Method�������������������������
	Drawing on Panels������������������������

	14.6 Handling Mouse Events���������������������������������
	Handling Mouse Events����������������������������

	14.7 Timer Objects�������������������������
	14.8 Playing Audio�������������������������
	Using an AudioClip Object��������������������������������
	Playing Audio in an Application��������������������������������������

	14.9 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	15. Creating GUI Applications with JavaFX and Scene Builder
	15.1 Introduction������������������������
	Event-Driven Programming�������������������������������

	15.2 Scene Graphs������������������������
	15.3 Using Scene Builder to Create JavaFX Applications���
	Starting Scene Builder�����������������������������
	The Scene Builder Main Window������������������������������������

	15.4 Writing the Application Code��
	The Main Application Class���������������������������������
	The Controller Class���������������������������
	Using the Sample Controller Skeleton���
	Summary of Creating a JavaFX Application���

	15.5 RadioButtons and CheckBoxes���������������������������������������
	RadioButtons�������������������
	Determining in Code Whether a RadioButton Is Selected��
	Responding to RadioButton Events���������������������������������������
	CheckBoxes�����������������
	Determining in Code Whether a CheckBox Is Selected���
	Responding to CheckBox Events������������������������������������

	15.6 Displaying Images�����������������������������
	Displaying an Image with Code������������������������������������

	15.7 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	16. Recursion
	16.1 Introduction to Recursion�������������������������������������
	16.2 Solving Problems with Recursion���
	Direct and Indirect Recursion������������������������������������

	16.3 Examples of Recursive Methods���
	Summing a Range of Array Elements with Recursion���
	Drawing Concentric Circles���������������������������������
	The Fibonacci Series���������������������������
	Finding the Greatest Common Divisor��

	16.4 A Recursive Binary Search Method��
	16.5 The Towers of Hanoi�������������������������������
	16.6 Common Errors to Avoid����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	17. Databases
	17.1 Introduction to Database Management Systems���
	JDBC�����������
	SQL����������
	Using a DBMS�������������������
	Java DB��������������
	Creating the CoffeeDB Database�������������������������������������
	Connecting to the CoffeeDB Database��
	Connecting to a Password-Protected Database��

	17.2 Tables, Rows, and Columns�������������������������������������
	Column Data Types������������������������
	Primary Keys�������������������

	17.3 Introduction to the SQL SELECT Statement��
	Passing an SQL Statement to the DBMS���
	Specifying Search Criteria with the WHERE Clause���
	Sorting the Results of a SELECT Query��
	Mathematical Functions�����������������������������

	17.4 Inserting Rows��������������������������
	Inserting Rows with JDBC�������������������������������

	17.5 Updating and Deleting Existing Rows���
	Updating Rows with JDBC������������������������������
	Deleting Rows with the DELETE Statement��
	Deleting Rows with JDBC������������������������������

	17.6 Creating and Deleting Tables��
	Removing a Table with the DROP TABLE Statement���

	17.7 Creating a New Database with JDBC���
	17.8 Scrollable Result Sets����������������������������������
	17.9 Result Set Metadata�������������������������������
	17.10 Displaying Query Results in a JTable���
	17.11 Relational Data����������������������������
	Joining Data from Multiple Tables��
	An Order Entry System����������������������������

	17.12 Advanced Topics����������������������������
	Transactions�������������������
	Stored Procedures������������������������

	17.13 Common Errors to Avoid�����������������������������������
	Review Questions and Exercises�������������������������������������
	Programming Challenges�����������������������������

	INDEX (with direct page links)
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L, M
	N, O
	P
	Q, R
	S
	T
	U, V
	W
	X, Z

	APPENDICES
	A: Working with Records and Random Access Files
	B: The ASCII/Unicode Characters
	C: Operator Precedence and Associativity
	D: Java Key Words
	E: Installing the JDK and JDK Documentation
	F: Using the javadoc Utility
	G: More about the Math Class
	H: Packages
	I: More about JOptionPane Dialog Boxes
	J: Answers to Checkpoints
	K: Answers to Odd-Numbered Review Questions
	L: Getting Started with Alice
	M: Configuring JavaDB

	CASE STUDIES
	CS#1: Calculating Sales Commission
	CS#2: The Amortization Class
	CS#3: The PinTester Class
	CS#4: Parallel Arrays
	CS#5: The FeetInches Class
	CS#6: The SerialNumber Class
	CS#7: A Simple Text Editor Application

	Page 9-12

